
Learning Basic Navigation for Personal Satellite
Assistant Using Neuroevolution

Yiu Fai Sit and Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712, U.S.A.

{yfsit, risto}@cs.utexas.edu

ABSTRACT
The Personal Satellite Assistant (PSA) is a small robot proposed
by NASA to assist astronauts who are living and working aboard
the space shuttle or space station. To help the astronaut, it has to
move around safely. Navigation is made difficult by the arrange-
ment of thrusters. Only forward and leftward thrust is available
and rotation will introduce translation. This paper shows how sta-
ble navigation can be achieved through neuroevolution in three
basic navigation tasks: (1) Stopping autorotation, (2) Turning 90
degrees, and (3) Moving forward to a position. The results show
that it is possible to learn to control the PSA stably and efficiently
through neuroevolution.

Categories and Subject Descriptors
I.2.6-Learning; I.2.8-Problem Solving, Control Methods, and
Search; I.2.9-Robotics

General Terms
Algorithms, Experimentation, Performance

Keywords
Neuroevolution, Enforced Sub-Populations, PSA

1. INTRODUCTION
The Personal Satellite Assistant, or PSA [2], is a small robot

that is proposed by NASA to aid the astronauts in daily life and
in carrying out experiments and maintenance in the space shuttle
or space station (Figure 1). In order to be a helpful assistant, the
PSA has to be able to navigate independently and in a controlled
fashion. Since the PSA operates in a nearly frictionless environ-
ment, it can easily be set into motion but it is more difficult to
make it stop. Translational and rotational velocities can increase
rapidly, which can be dangerous if it hits the astronauts or the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

equipment on board. Maintaining controlled navigation is thus
the most important task for the PSA.

Control is complicated by the way the thrusters are arranged.
A 2-dimensional model of the PSA is shown in Figure 2. All the
thrusters generate propulsions in one direction only. Thrusters
0 and 2 propel to the right and therefore together can accelerate
the PSA to the left. Similarly, thrusters 1 and 3 together move
it forward. The PSA therefore can move forward or sideways to
the left along a straight path, but it cannot move backward or to
the right. As a result, there is no simple mechanism built in that
can stop a forward or left motion. Although control can be made
easier by adding enough thrusters to the PSA, such minimalist
design can make maintenance easier aboard. Even with enough
thrusters, using only four thrusters for navigation is also useful
when one or more of the thrusters fail. Learning stable navigation
with only four thrusters is thus a meaningful and challenging task.

There are problems with rotation too. Although the PSA can
rotate both clockwise (using thrusters 2 and 3) and anticlockwise
(thrusters 0 and 1), making it possible to stop autorotation, any
positive propulsion also results in a translational force. As the
PSA initiates or stops a rotation, it also gains velocity and starts
to drift from its original position, and the drift must be stopped
as well. In other words, whenever the PSA turns, its position
also changes. This interdependence makes navigation in a small
environment like the space shuttle or space station difficult.

In this paper, these problems are addressed by using Enforced
Sub-Populations (ESP) [3, 4] to evolve neural network controllers
for three basic navigation tasks in a 2-dimensional world. The
networks are evolved in incrementally more challenging tasks to
speed up learning.

Previously, evolving neural networks, i.e. neuroevolution, has
been shown efficient in many control tasks such as pole-balancing
[12], robot arm control [8], food collection [9], and hexapod walk-
ing [1]. ESP is one of the more advanced neuroevolution meth-
ods, and has been used successfully e.g. to learn to actively guide
a finless rocket [5]. The throttles of the rocket’s thrusters are con-
trolled so that it will not tumble. The rocket control task is similar
to controlling the PSA and hence ESP is used in this paper. How-
ever, whereas the rocket only needs to go up, the PSA has to move
around and stop. Such variety in behavior makes the PSA task a
versatile next challenge for neuroevolution methods.

In the next section, the three basic navigation tasks for the PSA
are defined. The learning methods, the simulation model, and the
experimental design are then introduced followed by experimen-
tal results, discussion, and conclusion.

1913

Figure 1: A functional prototype of the PSA in the test fa-
cility. The PSA has a video display unit that shows informa-
tion to help the astronaut on the tasks at hand. There are
microphone and speaker that provide two-way communica-
tion between the astronaut and the mission control center or
other astronauts on board. There is also a camera for remote
visual inspection of the instruments and other parts of the
space shuttle or space station. There are also range finder,
motion sensors and a search light for navigation and other
tasks. (Reprinted with permission.)

2. THE THREE BASIC TASKS FOR PSA
NAVIGATION

The three basic tasks that are needed for the PSA to maintain
stable navigation and remain stationary afterwards are defined as
follows:

1. Stopping autorotation, pointing to an assigned direction and
remaining approximately at the same position.

2. Turning 90 degrees, stopping and maintaining approximately
at the same position.

3. Given some forward velocity, stopping at an assigned posi-
tion.

To simplify the problem, the PSA is assumed to operate in a 2-
dimensional world. Using the solutions found in the first and the
third tasks, a moving and rotating PSA can be brought into a halt
by first ceasing autorotation and then stopping at a safe position.
Simple vertical and horizontal navigation can be accomplished by
applying the solutions of the second and the third tasks.

The 2-dimensional model can help us understand and analyze
the behavior of the controller more easily and is an important
first step for designing the controller. Possible future extension
to 3-dimensional space and more interesting behaviors will be
discussed in section 6.

3. LEARNING METHODS

3.1 Enforced Sub-Populations (ESP)
Enforced Sub-Populations (ESP) [3, 4] is an advanced neu-

roevolution method that is able to learn complex control tasks
efficiently. Instead of evolving chromosomes that encode com-
plete networks, ESP evolves sub-populations of neurons. For a

Vy
ω

Thruster 1

Thruster 2

Thruster 3

Thruster 0

Vx

(x, y)y

x

θ

Figure 2: A 2D model for the PSA. Each thruster generates
propulsion in one direction only. Thrusters 0 and 2 move the
PSA to the left, while thrusters 1 and 3 move it forward. The
gray dot at the top-right corner is the destination of the PSA.
The inputs to the neural network controller representing the
states of the PSA are x,y,Vx,Vy,θ, and ω. The 2D model pre-
serves the essence of the control task and is a meaningful first
step to understanding the behavior of the PSA under such
configuration of thrusters.

fully-connected two-layer network with h hidden nodes, the pop-
ulation is divided into h separate sub-populations. Each chromo-
some in a particular sub-population is a list of real numbers that
represent the weights of the incoming and outgoing connections
of the hidden unit with which that sub-population is associated.
During evolution, genetic operators only apply to chromosomes
in the same sub-population.

To form a complete network for evaluation, one chromosome
is chosen from each sub-population to construct the hidden layer.
After the network is evaluated, its fitness is passed back to each
of the participated chromosomes. In this way, a certain number
of networks are formed within each generation to find the fitness
of the chromosomes.

The detailed algorithm of ESP is as follows [4]:

1. Initialization. The number of hidden units h in the net-
works that will be formed is specified and a sub-population
of neuron chromosomes is created. Each chromosome en-
codes the input and output connection weights of a neuron
with a random string of real numbers.

2. Evaluation. A set of h neurons is selected randomly, one
neuron from each sub-population, to form the hidden layer
of a complete network. The network is submitted to a trial
in which it is evaluated on the task and awarded a fitness
score. The score is added to the cumulative fitness of each
neuron that participated in the network. This process is
repeated until each neuron has participated in an average
of e.g. 10 trials.

3. Recombination. The average fitness of each neuron is cal-
culated by dividing its cumulative fitness by the number of
trials in which it participated. Neurons are then ranked by
average fitness within each sub-population. Each neuron in
the top quartile is recombined with a higher-ranking neu-
ron using 1-point crossover at a random boundary between
the weights and weight mutation to create the offspring to
replace the lowest-ranking half of the sub-population.

1914

4. The Evaluation-Recombination cycle is repeated until a net-
work that performs sufficiently well in the task is found.

Similar to other genetic algorithms, the diversity within a sub-
population in ESP may decline as evolution proceeds. To tackle
this problem, a technique called burst mutation, which is simi-
lar to the idea of Delta-Coding [14], is used. When performance
of the whole population has stagnated for a predefined number of
generations, burst mutation will be triggered. New sub-populations
are created from the best chromosomes by adding noise to them.
The noise is generated following Cauchy distribution so that much
of the noise is small while there are still some chances for large
changes. The resultant sub-populations will contain many chro-
mosomes that are similar to the best chromosomes but also a
few that are significantly different. By doing this, the new sub-
populations diversify without losing much of the solution found.

3.2 Incremental Evolution
It is often possible to learn faster and solve harder tasks by

learning a simpler task first. The solution for the simpler task is
then used as a seed to learn a more difficult task. The initial search
introduces a bias that makes it more likely to find a solution to the
more difficult task. This idea is common in humans and other an-
imals. For example, to learn to run, infants first have to learn
to stand and then to walk. In evolutionary computation, this ap-
proach is called shaping, or incremental evolution [3, 10, 11, 15].

Incremental evolution is particularly useful for evolutionary al-
gorithms in tasks where suboptimal solutions are abundant and
very different from the optimal solution. Such algorithms tend to
find suboptimal solutions first. The fitness of the chromosomes
for these suboptimal solutions is therefore higher than the others
in the beginning, even though some chromosomes may be near
the optimal solution. After several generations, the population
will be dominated by suboptimal solutions. Since they are very
different from the optimal solution, diversification methods like
burst mutation may not be able to escape from them in the first
try. By first learning a simpler task that has an optimal solution
similar to the original task, a more useful bias can be established.

4. EXPERIMENTS

4.1 The Simulator
There is no publicly available simulator for the PSA at present

time. A simulator that models the dynamics in a 2-dimensional
world was therefore developed as part of this project.1 The simu-
lator is based on several simplifying assumptions. First, the world
is frictionless and has no gravity. This is a close approxima-
tion of the environment in which the PSA operates. To simplify
learning, there is no noise in the sensors and the outputs of the
thrusters. The weight distribution of the PSA is assumed to be
uniform, implying that the center of mass is at the center. The
thrusters and the simulator operate at 10Hz: At 0.1 second inter-
vals, the thrusters receive control commands and output the de-
sired propulsion throughout this period. Following the expected
specifications, the PSA weights 5kg with a diameter of 0.3m, and
the maximum power of a thruster is 1N.

The environment is a 3m × 3m space in which the PSA can
move freely. There are no obstacles but they can be added in
future experiments to model more complex environments.

1The source code of the simulator is available under
http://nn.cs.utexas.edu/keyword?psa

4.2 Neural Controller Architecture
For each of the tasks defined in the previous section, a separate

controller was evolved. Each controller is represented by a two-
layer feed-forward network with 18-20 hidden units. This size
was found to be effective experimentally; generally any network
with fewer or more hidden units performs reasonably well.

The controller receives a vector of 6 inputs every 0.1 second.
The inputs consist of the x and y coordinates of the destination
relative to the center of the PSA, its velocities along the x and y
direction (Vx, Vy), its heading θ, and its angular velocity ω (Figure
2). These inputs are reasonable readings that are expected be
available to the PSA. Most of the inputs are scaled so that they
are in the range of [-1, 1].

The networks have four outputs with each controlling the force
(0 to 1N) that the corresponding thruster has to generate.

4.3 Experimental Setup
Three sets of experiments, one for each of the control tasks,

were carried out. In all experiments, each sub-population had 40
chromosomes and ESP ran for 2000 generations. All the tasks are
episodic.

4.3.1 Task 1: Stopping Autorotation
At the beginning of an episode, the PSA is at the center of the

environment and is set with an initial angular velocity of π
2 rad/s

clockwise. There is no translational velocity and x and y are both
set to 0. The desired final heading is 0◦. If this task is learned,
the PSA can be set to an arbitrary final heading by rotating the x-
and y- axes in the input.

An episode ends if the controller successfully completes the
task, or if the PSA moves out of the 3m × 3m environment, the
translational velocity exceeds 4m/s, or the angular velocity be-
comes larger than 2π/s. The fitness is 0 in the last three cases. An
episode has a maximum length of 1000 time steps (100 seconds).
Although the PSA should be able to stop autorotation in a small
fraction of this time, a long episode is needed to ensure the PSA
remains stationary.

The most straight-forward fitness function to use is the sum of
squared error. Since the PSA needs to point to 0◦, it is possible to
just add the square of the heading at each time step t (∑1000

t=1 θ2
t).

Although a network that accomplishes the task efficiently will
have a high fitness, the reverse may not be true. The PSA can
drift while keeping a small error in heading. A measure on the
position of the PSA has to be included in the fitness function.
A commonly used fitness function would be the sum of a linear
combination of the errors in heading and position at each time
step, and it usually requires tuning the weights of the two errors to
achieve the best result. Instead of trying to find the best weights,
the fitness function used is the number of time steps that satisfy
all of the following constraints:

• |θ| < 0.05 (≈ 3◦);

• |x| < 0.2;

• |y| < 0.2.

4.3.2 Task 2: Turning 90 Degrees
At the beginning of the episode, the PSA is at the center of

the environment. It points to the right (θ = π/2) and there is no
translational and angular velocity.

The goal is to turn the PSA 90 degrees anticlockwise so that
it points to 0◦, while staying at the same position. The fitness

1915

function is defined similarly to the first task, i.e. the number of
time steps that satisfy all the following constraints:

• |θ| < 0.035 (≈ 2◦);

• |x| < 0.15;

• |y| < 0.15.

For reasons discussed in the next section, this task was learned
both by using the above fitness function directly and by incremen-
tal evolution using an initial fitness function with relaxed con-
straints:

• |θ| < 0.05 (≈ 3◦);

• |x| < 0.2;

• |y| < 0.2.

When incremental evolution was used, each episode consisted
of 100 time steps and the neurons were evaluated using the re-
laxed fitness function initially. The network that learned success-
fully was then used to seed the population in ESP to learn the fully
constrained task using the original fitness function. The episodes
were also extended to 2000 time steps.

4.3.3 Task 3: Moving Forward to a Position
The PSA is initially set 0.4m below the destination. It has an

upward velocity of 0.04m/s which is equivalent to the result of
having both the thrusters on the side generate full power for 1
time step. The goal of this task is to stop at the destination.

This task is difficult because there is no obvious braking action
in the PSA. The learning algorithm has to find a way to stop us-
ing only forward movements. Incremental evolution was used to
learn this task.

The fitness function used initially in incremental evolution is
the number of time steps that satisfy the constraints:

• |θ| < 0.05 (≈ 3◦);

• |x| < 0.15;

• |y| < 0.15.

Each episode had 100 time steps. After this task was learned
using the above fitness function, the constraints were tightened:

• |θ| < 0.05 (≈ 3◦);

• |x| < 0.1;

• |y| < 0.1;

• |ω| < π.

The extra constraint |ω| < π is to penalize solutions that in-
crease the fitness by rapidly rotating about the destination. The
episodes were also extended to 3000 time steps.

5. RESULTS

5.1 Task 1: Stopping Autorotation
There are two subgoals in this task: (1) stop the rotation at 0◦,

and (2) stay near to the starting position. ESP learns to stop the
rotational motion first, but the resulting position and velocities
usually do not satisfy the constraints in the fitness function early
on, and later in evolution ESP manages to control this variables
as well. The strategy, outputs, and states of the resulting best
solution found in 2000 generations are shown in Figures 3, 4, and
5, respectively.2

In performing this task, thruster 0 is never fully activated. It is
therefore likely that the PSA can be forced to remain closer to the
starting position if so desired, by further incremental evolution
with tighter distance bounds. Alternatively, its position can be
corrected through translation, as is done in task 3.

5.2 Task 2: Turning 90 Degrees
At first, this task appears easier than the first because the PSA

can control its rotational speed. It is therefore surprising that ESP
is not able to learn this task effectively using the fitness function
defined. The best network after 2000 generations turns the PSA
only very slowly: It takes more than 30 seconds to rotate 90 de-
grees and the fitness is very low. The reason is that the neurons
that make a fast turn in the early generations do not know how to
remain stationary afterwards. Their fitness turns out to be lower
than the fitness of those neurons that turn the PSA very slowly but
are able to remain nearly stationary. As evolution proceeds, the
population becomes dominated by the slow-turning neurons that
are very different from the optimal one.

To fix this problem, incremental evolution is used. The task
is first shortened to 100 time steps and the fitness function with
relaxed constraints is used. Shorter episodes force ESP to learn
to turn quickly because a slow turn can never finish the turn and
will have zero fitness. The best network is then used as a seed
to learn the original task. Since the population is now highly
concentrated around a fast-turning solution, the evolution of the
neurons is more likely to follow this line. With this method, ESP
is able to solve the task within 2000 generations.

The strategy, outputs, and states of the best network are shown
in Figures 6, 7, and 8, respectively.

5.3 Task 3: Moving Forward to a Position
This task is the most difficult of the basic tasks because there

is no obvious braking mechanism. It was actually not clear if
a solution for this task even existed when this experiment was
started. By using ESP with incremental evolution, a solution was
found.

The strategy learned is rather surprising and creative: The PSA
overshoots the target first, then moves back in an elliptical path.
The turning action provides a way to make vertical velocity zero
by a precise coordination of the thrusters. Near the end of the
path, only a sideways motion to the right and a small rotation
remain. Motion to the right is easy to stop because the PSA
can accelerate to the left (but not to the right). The rotation is
stopped at the time that the horizontal movement is halted (Figure
9). The outputs of the thrusters, the velocities, and the positions
during the task are shown in Figures 10, 11, and 12, respectively.
This solution is an interesting example on how an non-intuitive,

2Animations showing evolved solutions for the three tasks are
also available at http://nn.cs.utexas.edu/keyword?psa

1916

Figure 3: A sequence of snapshots showing how the learned
network solves task 1, stopping clockwise autorotation. The
thick gray bars represent the force output by the thrusters.
The dot at the center is the origin at which the PSA tries
to stay. The gray line is the trajectory of the PSA’s center.
At 0s, the PSA is rotating clockwise; thruster 0 exerts about
half of its full power to decrease the angular velocity. The
power is then rapidly decreased but maintained at low level
to slow down the rotation. When the PSA points downward
(at t=1.8s), thruster 0 again increases the output and reduces
it gradually. This causes rightward movement but also min-
imizes vertical displacement. At 9.8s, the heading is about
0◦ and thruster 0 gives a quick burst to stop the rotation
completely. There are some very small adjustments (order
of 10−4) afterwards that keep it at the same position (t=15s).

challenging control problem can be solved using the discovering
mechanisms of evolutionary computation.

6. DISCUSSION AND FUTURE WORK
The PSA control tasks in this paper demonstrate the possibility

and power of applying neuroevolution to control problems. Even
rather complex solutions can be discovered in this way, yet it is
still possible for human observers to understand why most actions
are taken and what their consequences are. This understanding
can give the designers or engineers insight into the control prob-
lems in general. In addition to evolving a network that solves the
whole task, one may also use neuroevolution methods to obtain
partial solutions and ideas on how to extend them to the whole
problem, thus speeding up the design process.

The most immediate direction of future work is to make the
simulation more realistic by including noise in the sensors and the
outputs. Extending the model to a 3-dimensional environment is
also a necessary future step. A 3-dimensional model will need, in
addition to the x- and y-axes (Figure 2), an extra z-axis that points
out of the paper. There will be totally six thrusters that moves and
rotate the PSA about the three axes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

O
ut

pu
t (

N
)

Time (seconds)

Thruster 0
Thruster 1
Thruster 2
Thruster 3

Figure 4: The outputs of the thrusters versus time in task 1.
In this task, thruster 0 plays a major role while others only
generate insignificant forces. At 0s, thruster 0 is at half of the
maximum power which is reduced quickly at the next time
step. This action slows down the rotation a little and also pro-
duce a movement to the left. The propulsion increases again
when the PSA points downward, and is then reduced grad-
ually. The resulting force reduces vertical motion but causes
the PSA to accelerate to the right. Since this force is applied
for a longer duration, the initial leftward movement is can-
celed and the PSA starts moving to the right. When the PSA
is pointing at 0◦ again with a slow rotation at 9.8s, thruster 0
gives a sudden shot to stop the rotation and translation.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16
 0

 1

 2

 3

 4

 5

 6

 7

ω
 (

ra
d/

s)

θ
(r

ad
)

Time (seconds)

ω
θ

Figure 5: The angular velocity ω and the heading θ versus
time in task 1. At the beginning, the PSA is rotating at π/2
rad/s. This rate was decreased rapidly by the first burst of
the thruster 0. It is then gradually reduced as the force from
thruster 0 is adjusted. Finally, the rotation is brought to a
stop by the sudden force at 9.8s. The heading is displayed
using the y-axis on the right. The PSA points to 2π = 0 after
the rotation is stopped.

1917

Figure 6: A sequence of snapshots showing how a learned net-
work solves task 2, rotating 90 degrees. At time 0, the PSA is
stationary at the origin, pointing at 90◦. Thruster 1 gives out
full power for one time step and then stops. This action gives
the PSA some angular velocity to turn to 0◦. Since there is no
friction, the rotation continues. The force from thruster 1 also
produces a small translational velocity that moves the PSA to
the right. At 4.8s, the desired heading is reached and thruster
2 outputs full thrust to counter the rotation and translation.
Thruster 3 also outputs a very small force of about 0.001N
to help stop the rotation. The PSA then remains stationary
afterwards.

One possible way to approach the 3-dimensional tasks is to
use the 2-dimensional task as an incremental step. Interestingly,
the solutions found in tasks 2 and 3 in the 2-dimensional space
can be extended to the same tasks in the 3-dimensional space.
Moving and rotating in 3-dimensional space can be carried out
in two steps: (1) move or rotate in the x-y plane, and (2) move
or rotate in the x-z (or y-z) plane. Rotating about an arbitrary
axis requires the PSA to be able to turn an arbitrary angle in 2-
dimensional space, which can be seen as an extension of task
2. However, solutions of task 1 cannot be used directly in 3-
dimensional space because the magnitude of the torque in the x-y
plane now depends on the orientation of the PSA in addition to
the force exerted by the thrusters. Although the 3-dimensional
control tasks are more difficult, the principles of finding a solution
as discussed in the 2-dimensional simulation should still apply.

Another interesting direction is to construct more complex be-
haviors by combining the learned networks of the basic tasks,
possibly with further training. Such an approach has been suc-
cessful e.g. in the robotic soccer domain: Given an appropriate
decomposition that reduces the original task into a combination
of several independent and simpler tasks, complex behaviors like
keepaway can be learned [13]. Since the three PSA control tasks
described in this paper are necessary for all stable navigation ma-
neuvers, it might be possible to apply the same approach to learn
more interesting behaviors like following the astronaut closely
without colliding with him or her.

Incremental evolution was utilized and found powerful in learn-
ing tasks 2 and 3. Similar observations have been reported in
other difficult domains [5, 15]. Incremental evolution biases the
search around the space where good solutions are more likely to
be found. It can therefore be understood more generally as a way
to inject human knowledge of the task, or advice, to a learning
algorithm.

There has been some prior work on taking advice in reinforce-
ment learning [6, 7]. Hand-coded sets of rules or action sequences
are added to the policy of the learner. The advisor thus needs to
know exactly what has to be done. A more general method would
be modeling an advice as an incremental subtask. The advisor
only needs to define the subtask instead of knowing how to solve
it. One possible way to do this is by incremental evolution. If

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

O
ut

pu
t (

N
)

Time (seconds)

Thruster 0
Thruster 1
Thruster 2
Thruster 3

Figure 7: The outputs of the thrusters during task 2. Thruster
1 starts the rotation at time 0 and then its output remains near
zero. When the turn is complete, thruster 2 gives a maximum
output to stop the motion. The output of thruster 3 at this
time is too small to be seen in this figure.

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0 1 2 3 4 5 6 7
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

ω
 (

ra
d/

s)

θ
(r

ad
)

Time (seconds)

ω
θ

Figure 8: The angular velocity ω and the heading θ versus
time during task 2. After the rotation is started, the angular
velocity stays about the same until the heading reaches 0. The
outputs from thruster 2 and 3 stop the rotation and the PSA
stays still, pointing at about 0.4◦ .

the advice is available at the beginning, a neuroevolution method
can learn this subtask first. The resulting network can then be
used to seed the population that learns the complete task. This
lets the learning algorithm figure out what the best solution for
the subtask is instead of having someone to hand code it.

As an example, the advice in learning task 2 is ”turn quickly
and try to stay at the same position” and the neuroevolution method
is able to learn how to do it without intervention. Such incremen-
tal evolution can be an easier and more natural way of providing
advice than supplying actual action sequences in tasks like the
PSA control. The challenges of such approach would be learning
new subtasks without forgetting the learned ones and taking ad-
vice during the learning of the whole task. If these challenges can
be met, incremental evolution from advice may make it possible
to evolve controllers for highly complex devices in the future.

1918

Figure 9: A sequence of snapshots showing how the learned
network solves task 3, moving forward and then stopping at
an assigned position. At the beginning, the PSA has an up-
ward velocity of 0.04m/s. It keeps going forward until it over-
shoots (t=14.5s). Then it turns left and moves in an elliptical
fashion by activating thruster 0. After a short while (t=15.0s),
thruster 2 kicks in, accelerating the PSA towards the desti-
nation. Thruster 0 then decreases its output while thruster 2
keeps a full throttle (15.5s). This action slows down the ro-
tation. Both of the thrusters then generate a small amount
of thrust to counteract the elliptical and downward motions
(17.0s), until the PSA ends up at the destination with a head-
ing of 0◦. There is no vertical velocity at that point and only
some horizontal movement which is stopped by thrusters 0
and 2. The PSA then stays at the destination (25.0s). Such
complex control sequence is necessary because the arrange-
ment of the thrusters does not allow a simple braking action.
Discovering it automatically is an important demonstration
of how complex and counter-intuitive problems can be solved
through evolutionary computation.

7. CONCLUSIONS
In this paper, the Enforced Sub-Populations neuroevolution method

was applied to solving three basic PSA navigation tasks. The re-
sults show that neuroevolution is a promising approach to solving
even complex and non-intuitive control problems. Incremental
evolution was found to be crucial in guiding the evolution search
towards spaces where good solutions are more easy to find. In
the future, it might be possible to devise a principle approach to
controller design based on combining human knowledge with the
incremental evolution methods.

Acknowledgements
We would like to thank Dr. Gregory A. Dorais of NASA Ames
Research Center for providing detailed information about the PSA
as well as the image in Figure 1. This research was supported in
part by the National Science Foundation under grant EIA-0303609.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

O
ut

pu
t (

N
)

Time (seconds)

Thruster 0
Thruster 1
Thruster 2
Thruster 3

Figure 10: The outputs of the thrusters during task 3. After
the PSA overshoots, thruster 0 increases its output sharply
towards full power. After the PSA is set in an elliptical path,
thruster 2 is activated to accelerate the PSA towards the des-
tination. About 0.5 seconds later, thruster 0 reduces its out-
put rapidly. Thruster 2 maintains low-level throttle, slowing
down the rotation set up by thruster 0. This action also re-
duces the downward velocity. When the PSA is near the des-
tination, there is no vertical motion. Thruster 0 increases its
output by a little and together with thruster 2, they stop the
horizontal movement of the PSA.

8. REFERENCES
[1] R. Beer and J. Gallagher. Evolving dynamical neural

networks for adaptive behavior. Adaptive Behavior,
1(1):91–122, 1992.

[2] Y. Gawdiak, J. Bradshaw, B. Williams, and H. Thomas.
R2d2 in a softball: The portable satellite assistant. In
Proceedings of the 5th international conference on
Intelligent user interfaces, pages 125–128, 2000.

[3] F. Gomez and R. Miikkulainen. Incremental evolution of
complex general behavior. Adaptive Behavior, 5:317–342,
1997.

[4] F. J. Gomez. Robust Non-Linear Control through
Neuroevolution. PhD thesis, University of Texas at Austin,
Austin, TX, 2003. Department of Computer Sciences
Technical Report AI-TR-03-303.

[5] F. J. Gomez and R. Miikkulainen. Active guidance for a
finless rocket through neuroevolution. In Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO-2003), 2003.

[6] G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik.
Guiding a reinforcement learner with natural language
advice: Initial results in robocup soccer. In The AAAI-2004
Workshop on Supervisory Control of Learning and
Adaptive Systems, 2004.

[7] R. Maclin and J. Shavlik. Creating advice-taking
reinforcement learners. Machine Learning, 22:251–281,
1996.

[8] D. E. Moriarty. Symbiotic Evolution of Neural Networks in
Sequential Decision Tasks. PhD thesis, 1997. Technical
Report UT-AI97-257.

[9] S. Nolfi, J. L. Elman, and D. Parisi. Learning and evolution
in neural networks. Adaptive Behavior, 2:5–28, 1994.

1919

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 5 10 15 20 25
-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15
ω

 (
ra

d/
s)

V
el

oc
ity

 (
m

/s
)

Time (seconds)

ω
Vx
Vy

Figure 11: The angular velocity ω and the translational ve-
locities, Vx and Vy along the x and y directions in task 3. The
activation of thruster 0 sets the PSA into rotation and at the
same time introduces translational motion along both direc-
tions. The angular velocity stops increasing when thruster 2
kicks in and then decreases when the output of thruster 0 is
reduced. This series of motions stops the vertical movement
(Vy = 0). Both the remaining horizontal and angular motions
are halted by thruster 0 and 2 at about the same time (20s).

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0 5 10 15 20 25
-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

x y

Time (seconds)

x
y

Figure 12: The x and y position of the destination relative
to the PSA in task 3. After the overshoot (y < 0), the rota-
tion first brings the PSA level to the destination (y = 0). Then
the PSA moves horizontally until the motion is stopped by
thrusters 0 and 2. There are some very small residue veloci-
ties (in the order of 10−4) that move the PSA.

[10] S. P. Singh. Transfer of learning by composing solutions of
elemental sequential tasks. Machine Learning, 8:323–339,
1992.

[11] B. F. Skinner. The Behavior of Organisms. B. F. Skinner
Foundation, Morgantown, WV, 1938. Reprinted in 1999.

[12] K. O. Stanley and R. Miikkulainen. Efficient reinforcement
learning through evolving neural network topologies. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2002), 2002.

[13] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone.
Evolving keepaway soccer players through task
decomposition. Machine Learning, 2005. To appear.

[14] D. Whitley, K. Mathias, and P. Fitzhorn. Delta-Coding: An
iterative search strategy for genetic algorithms. In
Proceedings of the Fourth Internation Conference on
Genetic Algorithms, pages 77–84, 1991.

[15] A. P. Wieland. Evolving controls for unstable systems. In
D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E.
Hinton, editors, Connectionist Models: Proceedings of the
1990 Summer School, pages 91–102. 1990.

1920

