
Preventing Overfitting in GP with Canary Functions
Nate Foreman
Altarum Institute

3520 Green Court
Ann Arbor, Michigan, USA 48105

nathan.foreman@altarum.org

Matthew Evett
Eastern Michigan University

Ypsilanti, MI 48197

mevett@emich

ABSTRACT
Overfitting is a fundamental problem of most machine learning
techniques, including genetic programming (GP). Canary
functions have been introduced in the literature as a concept for
preventing overfitting by automatically recognizing when it starts
to occur. This paper presents a simple scheme for implementing
canary functions using cross-validation. The effectiveness of this
technique is demonstrated by applying it to the numeric regression
problem. A list of conditions and criteria for applying this
technique to other problem domains is also identified. Other
strategies for dealing with overfitting in GP are discussed.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming –
program synthesis; I.2.6 [Artificial Intelligence]: Learning –
induction, parameter learning.

General Terms: Algorithms, Experimentation, Performance.

Keywords: Genetic Programming, Overfitting.

1. CANARY FUNCTIONS
Ideally, genetic programming (GP) would learn the true
relationship between the inputs and the outputs over the entire
problem space. Instead, GP can have a tendency to find solutions
that are biased towards the training set. This can prevent GP from
scaling to more difficult problems. In complex and sparse search
spaces where GP is unlikely to easily find optimal solutions, the
learning process focuses on minimizing the training error, which,
in turn, increases the generalization error.

Several methods have been suggested for limiting the effect of
overfitting in GP, including Editing [3], Minimum Description
Length [5] and Dynamic Subset Selection [2].
Some researchers have hypothesized that we may be able to
reduce the effects of overfitting by limiting the amount of time
spent on training with a particular fitness function and a particular
set of training data. That is, if we were somehow able to
recognize when overfitting has started to occur, then we could
take action to help produce more generalizable solutions. With
that said, finding a reliable way of automatically determining
when overfitting has begun to occur is critical. Evett et al [1]
proposed a concept, called canary functions, for doing just that:
“The canary function should be distinct from the fitness function,

 but also related toward meeting the same goal as the fitness
function. The hope is that, since the canary function differs from
the fitness function, its value will begin to degrade significantly
from the fitness function at about the same time overfitting
occurs.” During each generation, the canary function is evaluated
on some of the best of generation models. When the performance
of the canary function on these models begins to consistently
degrade, then we can have confidence that overfitting has begun.
The use of canary functions in [1] was peculiar to a particular
domain. Our goal is to find a way to generalize the approach.
This paper presents a simple scheme for implementing canary
functions based on cross-validation, and applies it to the numeric
regression problem. The objectives of this investigation are:

1. To determine if it is possible to limit the effects of
overfitting, or at least recognize when it starts to occur,
by monitoring the performance of the population with
respect to a secondary validation dataset.

2. To identify some of the conditions or criteria necessary
for applying this technique to other domains.

Cross-validation has been successfully used to overcome the
problem of overfitting and to help select the best models in other
machine learning algorithms like neural networks [4] and decision
trees. It calls for using a separate set of fitness cases, distinct from
the training examples, called the validation set. The algorithm
monitors the error of the models with respect to the validation set,
while using the training set to drive the search process. When the
algorithm is complete, the model that has the lowest error over the
validation set is selected because it is most likely to generalize
upon unseen examples.

Cross-validation can be incorporated into the GP algorithm as a
canary function in the following way:

1) When the performance of the models on the validation
set begins to significantly diverge from that of the
training set, take action to prevent overfitting.

2) After the algorithm is complete, the best of generation
individuals should be evaluated upon the test set to
determine the true quality of the predictive models.

Determination of divergence is the crucial step, and unfortunately
is also the least well-defined step, because, as of yet, no one has
implemented an online indicator for GP that signals when the
performance of the models on the validation set begins to
significantly diverge from that of the training set in an automated,
generalizable, and reliable fashion. Prechelt [4] has made some
progress with this problem in the field of neural networks.

Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

1779

Our experiments made use of two of Prechelt’s online indicators:
The generalization loss at generation g, GL(g), is defined to be
the relative increase of the validation error over the minimum
found so far, in percent. The productivity quotient, PQ(g) is
defined to be the ratio of the generalization loss over the training
progress (which is a measure of the progress of the training set,
over a window.) Details as to the calculations of these values can
be found in our full paper.
In addition to Prechelt’s online indicators, another metric that
may be useful for determining when overfitting starts to occur
during GP runs is the correlation coefficient. A correlation
coefficient of 0.80 means that 80% of the variation in one of the
variables may be explained by variations in the other variable.
The correlation coefficient between the fitness of the best of
generation individual with respect to the training set, and the
fitness of the best of generation individual with respect to the
validation set at the end of each generation of the GP run should
be a strong indicator as to when indicate when they diverge.

2. THE EXPERIMENT
Symbolic regression was chosen as the problem domain upon
which to demonstrate this technique, because it is easy to
manipulate and it is easy to obtain datasets to serve as fitness
cases. We used GP to evolve programs that approximated the
functions (1) F1(x) = x4 + x3 + x2 + x, and (2) F2(x) = cos(3x),
respectively, across 20 data points.
Throughout the experimental trials, four main types of overfitting
were identified: 1) Dramatic Divergence, 2) Slight Divergence, 3)
Negative Performance, and 4) Negative Performance with
Crossover. We explain just the first in this abbreviated paper.
Dramatic Divergence is depicted in Figure 1, and is a type of
overfitting that is characterized by an early, sharp separation in
the performance of the adjusted fitness of the best of generation
solution between the validation set and the training set.
Figure 1a shows the adjusted fitness of the best of generation
solution (BOGS) using the training and validation sets. The
divergence of the two curves around generation 10 indicates that
overfitting starts to occur there.
The correlation coefficient, in Figure 1b, provides a measure of
the similarity of the data series plotted in Figure 1a (Adjusted
Fitness). While generally high, the correlation coefficient is on a
downward trend during the interval between generations 10 and
20, where we deduce that overfitting starts to occur.
The generalization loss, GL(g), is plotted in Figure 1c. It provides
a measure of the rate of the change in generalization error with
respect to the most accurate solutions found so far on the
validation set. The generalization loss reaches a global maximum
at generation 10, and another high peak is attained just after
generation 20.
The progress of the performance of the training set is plotted in
Figure 1d. P(g) is being calculated with respect to the previous
five generations. As expected, the progress is high at the
beginning of the GP run, and then tapers off gradually until a
fitness plateau is reached.
The productivity quotient, PQ(g), plotted in Figure 1e, measures
the ratio of the generalization loss over the progress of the
training set. This figure has a very similar shape to that of Figure

1c. Unlike the curve in Figure 1c, a single global maximum no
longer stands-out at generation 10. Rather, there are several high
peaks that could all be used as stopping points.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

Generation

Adjusted
Fitness

Training
Validation

0.94

0.96

0.98

1

Correlation
Coefficient

-20

-10

0

10

Generalization
Loss:
GL(g)

200

300

400

500

Training
Productivity:

P(g)

0 10 20 30 40 50 60 70 80 90 100
-0.05

0

0.05

Generation

Productivity
Quotient:
PQ(g)

Figure 1a-e. Dramatic Divergence

Analysis of these graphs for each of the four types of overfitting
we identified leads us to the following rule:
Rule: IF PQ(g) > α, AND the Correlation Coefficient at
generation g is on a downward trend, THEN stop training
because overfitting has occurred.

3. CONCLUSION
Our work has demonstrated that canary functions can be used to
determine overfitting in symbolic regression problems. Much
work remains to determine if the technique can be applied to other
domains.

4. REFERENCES
[1] Matthew Evett, Taghi Khoshgoftar and Pei-der Chien and

Edward Allen. GP-based software quality prediction, Genetic
Programming 1998: Proceedings of the Third Annual
Conference, pages 60—65, Morgan Kaufmann, 1998.

[2] Chris Gathercole and Peter Ross. Small populations over
many generations can beat large populations over few
generations in genetic programming. Genetic Programming
1997: Proceedings of the Second Annual Conference.

[3] Koza, J. R. Genetic Programming: On the Programming of
Computers by Natural Selection. MIT Press, Cambridge,
MA, USA, 1992

[4] Lutz Prechelt. Automatic early stopping using cross-
validation: quantifying the criteria. Neural Networks, Vol.
11, Number 4, pages 761—767, 1998.

[5] Byoung-Tak Zhang and Muhlenbein, H., Balancing
Accuracy and Parsimony in Genetic Programming,
Evolutionary Computation, vol.3, no.1, pages17--38, 1995

1780

