
Measuring, Enabling and Comparing Modularity,
Regularity and Hierarchy in Evolutionary Design

Gregory S. Hornby
QSS Group Inc., NASA Ames Research Center, Mailstop 269-3

Moffett Field, CA

hornby@email.arc.nasa.gov

ABSTRACT
For computer-automated design systems to scale to complex
designs they must be able to produce designs that exhibit
the characteristics of modularity, regularity and hierarchy –
characteristics that are found both in man-made and natural
designs. Here we claim that these characteristics are enabled
by implementing the attributes of combination, control-flow
and abstraction in the representation. To support this claim
we use an evolutionary algorithm to evolve solutions to dif-
ferent sizes of a table design problem using five different
representations, each with different combinations of modu-
larity, regularity and hierarchy enabled and show that the
best performance happens when all three of these attributes
are enabled. We also define metrics for modularity, regular-
ity and hierarchy in design encodings and demonstrate that
high fitness values are achieved with high values of modu-
larity, regularity and hierarchy and that there is a positive
correlation between increases in fitness and increases in the
measured values of modularity, regularity and hierarchy.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: General

General Terms
Algorithms, Design

Keywords
Representation, Computer-Automated Design, Design, Evo-
lutionary Algorithms, Evolutionary Design, Open-ended de-
sign

1. INTRODUCTION
In recent years evolutionary algorithms (EAs) have had

increasing success in producing results that are competi-
tive with traditional human design. For EAs to continue to
gain wider acceptance and industrial usage the complexity

This paper is authored by an employee(s) of the United States Government
and is in the public domain.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

of what can be evolved must continue to increase. Neces-
sary for improving the ability of evolutionary design systems
(EDSs) to scale to more complex structures is a better un-
derstanding of the types of complexity we are interested in,
along with metrics for measuring them, and an understand-
ing of which attributes of an evolutionary design system en-
able these types of complexity.
In engineering and software development complex arti-

facts are achieved by exploiting the principles of modularity,
regularity, and hierarchy [8] [11] [14], and these character-
istics can also be seen in the artifacts of the natural world.
Assuming that the principles of modularity, regularity and
hierarchy (MR&H) are necessary to achieve scalability then
scalable evolutionary design can only be achieved by con-
structing an EDS capable of producing designs with these
characteristics. Breaking down an EDS into its separate
modules yields the representation for encoding designs, the
algorithm for exploring the space of designs that can be rep-
resented, and the fitness function for scoring the goodness of
a particular design. Ideally, the ability of an EDS to create
hierarchies of reused modules should be independent of how
designs are scored. In addition, the algorithm for explor-
ing the space of designs can only find designs that can be
expressed by the chosen representation. Thus for an EDS
to achieve MR&H it must use a representation capable of
encoding designs with these characteristics.
In recent years there has been a handful of research into

classes of representations and the different attributes they
can have. Angeline classifies representations by whether or
not they allow reuse of genotypic elements, and then whether
or not the evolved generative system is local to each in-
dividual or shared across the population [1]. Bentley and
Kumar distinguish between representations which directly
encode an object and then distinguish between those that
indirectly encode an object implicitly like cellular automata
or explicitly like a computer program [2]. Komosinski and
Rotaru-Varga list several characteristics of representations
for a creature design problem, of which modularity, com-
pression and redundancy are generalizable to other design
domains [9]. Stanley and Miikkulainen take five attributes
of embryogenies from natural biology as their dimensions
for classifying representations – cell fate, targeting, hete-
rochrony, canalization and complexification – but it is dif-
ficult to apply these attributes to representations that are
not models of developmental biology [13]. In general, these
investigations do not explain how different attributes of a
representation enable modularity, regularity or hierarchy.
Previously we have argued that the fundamental attributes

1729

of design representations are combination, control-flow and
abstraction [5, 6, 7]. Here we claim that these attributes
enable modularity, regularity and hierarchy and lead to im-
proved evolutionary performance. To support this claim
we compare evolutionary performance on different sizes of
a table design problem using representations with differ-
ent attributes enabled and find that better performance is
achieved with representations having more features imple-
mented. In addition we define metrics for measuring MR&H
in evolved designs and show that in offspring increases in
MR&H values are more strongly correlated to increases in
fitness than decreases in fitness, and similarly that decreases
in MR&H values are more strongly correlated with decreases
in fitness than increases in fitness.

2. MODULARITY, REGULARITY AND
HIERARCHY

To improve the complexity of what can be evolved with
EDSs, we need definitions and metrics for the types of com-
plexity that we are interested in. Here we claim that mod-
ularity, regularity and hierarchy are the characteristics of
interest and the ability to produce designs with these charac-
teristics is determined by the representation. Consequently,
one way to measure the complexity of an evolved object is
to measure its modularity, regularity and hierarchy. Before
creating metrics for measuring MR&H it is first useful to
give an overview what we mean by these terms.
We define modularity as an encapsulated group of ele-

ments that can be manipulated as a unit. This form of
modularity is related to the building block hypothesis of ge-
netic algorithms (GAs) [4], which states that GAs work by
testing groups of basic components and combining them to
form highly fit solutions. Modularity also helps enable both
regularity and hierarchy. Regularity is a repetition or simi-
larity in a design. Here we focus on the reuse of genotypic
elements in creating the phenotype since this form of regu-
larity has been shown to improve scalability of EDSs in two
ways: by allowing larger moves through the design space
through the manipulation of pre-adapted modules; and by
capturing design dependencies into a single location in the
genotype thereby improving the ability of variation oper-
ators to perform coordinated changes in the design [5, 6].
Hierarchy is the number of layers of encapsulated modules
in the structure of a design.
To create metrics of MR&H that generalize across dif-

ferent design domains (graph structures, 3D solid objects,
computer programs, . . .) it is useful to define them in terms
of the structure of an object’s encoding and not of the phe-
notype. Since representations are a language for describing
the phenotype, they have the same fundamental attributes
as programming languages: combination; control flow, in-
cluding conditionals and iteration; and abstraction, consist-
ing of parameters, labeled procedures and the ability to call
procedures recursively [5]. Using these attributes we can
then show how modularity, regularity and hierarchy can be
achieved and can define metrics for measuring them.
Modularity: The modularity value of a design is a count

of the number of structural modules in it, which we define
as an encapsulated group of genotypic elements that can be
manipulated as a unit. Since a label to a procedure can
be manipulated as a unit, each procedure in the genotype
counts as one toward the genotypic modularity value and in

compiling to the phenotype each procedure call counts as
one toward the phenotypic modularity value. In addition,
the ability to change the iteration counter means that the
group of genotypic elements inside an iterative block also
constitute a module, hence each iterative block is one geno-
typic module and each iteration of an iterative block adds
one to the phenotypic modularity value. Thus modularity
is enabled by abstraction and iteration.
Regularity: The type of regularity that has been shown

to be useful in improving evolvability is a reuse of genotypic
elements in creating the phenotype [5, 7]. The reuse in a
design is a measure of the average number of times each
genotypic element is used in creating the phenotype. It is
enabled through either iteration or recursion through ab-
straction. Reuse can also be enabled by the goto, but we
leave this out as a desired feature of representations since it
is considered detrimental to good programming.
Hierarchy: The hierarchy of an encoded design is a mea-

sure of the number of nested layers of modules, such as
through iteration or abstraction. A genotype with no mod-
ules has a hierarchy of one. Each nested module, whether
a successful call to a labeled procedure or a non-empty it-
erative block, increases the hierarchy value by one. This is
similar to measures of the depth of an object’s assembly se-
quence [3], but whereas there the measure is of basic steps
in constructing an object, here we are measuring modules of
basic steps. Modules are enabled through abstraction and
iteration and necessary for the creation of nested layers of
modules is combination.
These measures of design complexity more intuitively mea-

sure the structural complexity of an object than the Kol-
mogorov complexity, which measures the amount of infor-
mation needed to specify an algorithm [10]. For example the
algorithmic information content (AIC) of an algorithmically
random bit string, by which is meant one with no regular-
ities, is the number of bits in the smallest algorithm which
generates that string. Since the string has no regularities
it cannot be compressed so its AIC is the size of the string
plus the overhead necessary for the print operator. In con-
trast, in measuring the design complexity of this string by
measuring the modularity, regularity and hierarchy values
in mapping from the genotype (the uncompressed string is
both the genotype and phenotype since it is incompressible)
to the phenotype we find its modularity value is 1, since it
consists of one module, its regularity value is 1, since there
are no reused symbols, and its hierarchy value is 1, since
it has only one layer of modules. The values of 1, 1 and 1
for MR&H match our intuition that this random string does
not have a complex structure.

3. REPRESENTATIONS
To give an example of the use of our metrics for modular-

ity, regularity and hierarchy we now describe the represen-
tational language for GENRE [5], our EDS. The representa-
tion used here is a kind of macro-expansion computer lan-
guage within which design-constructing programs are writ-
ten. A tree-structure is used for the design programs in
which each node in the tree is an operator. Operators can be
procedure calls, control-flow operators, or design construc-
tion operators. Designs are created by compiling a design
program into an assembly procedure of construction opera-
tors and then executing this assembly procedure to construct
the artifact it encodes.

1730

The representational framework that we use is similar in
style to genetic programming (GP) trees with automatically
defined functions (ADFs) and also to tree-structured pro-
duction systems. The following example of a design encod-
ing using this representation consists of two labeled proce-
dures, Proc 0 and Proc 1, each with two parameters:

Proc 0(4.0, 2.0) :

Proc 0(n0, n1) :
n0 > 4.0 → rotate-z(1) [Proc 0(1.0,2.0) re-

peat(2) [forward(n1/2) [repeat-end
[Proc 1(n0+2.0,2.0) [forward(1)]]
[] []]]]

true → rotate-z(1) [repeat(4) [rotate-
y(1) [forward(n1+1.0) repeat-end [
rotate-x(1)]]] []]

Proc 1(n0, n1) :
n0 > 1.0 → forward(2) [Proc 1(1.0,n1+1.0)

[forward(1)] rotate-y(2) [[]
Proc 1(1.0,n1+1.0) [forward(1)]]
Proc 1(n0-2.0,n1-1.0) [end-proc]]

n0 > 0.0 → rotate-y(1) [[] backward(n1) [end-
proc []]]

This language has the ability to combine operators to form
more complex expressions in a tree-structure, has condition-
als and iterative blocks, and has labeled procedures that can
take parameters as well as be called recursively.
To compile this program an iterative rewriting-like pro-

cess is used to expand iterative loops and replace procedure
names with the encapsulated set of operators to which they
point. When the above program is started with the call
Proc 0(4.0,2.0) it is initially re-written as:
rotate-z(1) [Proc 0(1.0,2.0) repeat(2) [forward(1)

[repeat-end [Proc 1(6.0,2.0) [forward(1)]] []

[]]]]

Then, after four more rewriting steps, the following is the
final assembly procedure:
rotate-z(1) [rotate-z(1) [rotate-y(1) [forward(3)

rotate-y(1) [forward(3) rotate-y(1) [forward(3)

rotate-y(1) [forward(3) rotate-x(1)]]]] []]

forward(1) [forward(1) [forward(2) [rotate-y(1)

[[] backward(3) [forward(1) []]] rotate-y(2)

[[] rotate-y(1) [[] backward(3) [forward(1)

[]]]] forward(2) [rotate-y(1) [[] backward(2)

[forward(1) []]] rotate-y(2) [[] rotate-y(1) [

[] backward(2) [forward(1) []]]] forward(2) [

rotate-y(1) [[] backward(1) [forward(1) []]]

rotate-y(2) [[] rotate-y(1) [[] backward(1) [

forward(1) []]]] forward(1)]]] [] []] [] []

]]

Since there are no more procedures or iterative loops to ex-
pand rewriting stops with this last assembly procedure.
A graphical version of this design encoding is shown in

figure 1.a along with a sequence of images which show each
step of the compilation process, figures 1.a to g. In these
images cubes represent labeled procedures and the calls to
them, pyramids represent control-flow operators, and con-
struction operators are represented by spheres.
To create designs with this representation the final as-

sembly procedure is interpreted by a design constructor.
The example design program uses the following construc-

(a)

(b) (c)

(d) (e)

(f) (g)

(h)

Figure 1: Graphical version of: (a) an example geno-
type; (b-g) the sequence of assembly procedures pro-
duced during its compilation process; and (h) the
three-dimensional object that is constructed from
the final assembly procedure.

1731

tion operators: backward(n), place a sequence of n cubes
in the current negative X direction; forward(n), place a
sequence of n cubes in the current positive X direction;
rotate-x(n), rotate the current heading n×90◦ about the X
axis; rotate-y(n), rotate the current heading n×90◦ about
the Y axis; and rotate-z(n), rotate the current heading
n × 90◦ about the Z axis.
With this design-construction language a design starts

with a single cube in a three-dimensional grid and new cubes
are added with the operators forward() and backward().
The current state, consisting of location and orientation, is
maintained with the addition of cubes resulting in a change
in the current location and the rotate-xyz() operators change
the current orientation. A branching in the assembly proce-
dure results in a split in the construction process with con-
struction continuing with each child subtree working with its
own copy of the construction state. The solid object that
is created by executing this assembly procedure is shown in
figure 1.h.
Using the genotype and compilation process the MR&H

values of this object can be measured. The genotype has six
modules that are used a total of 17 times giving a genotypic
modularity value of 6 and a phenotypic modularity value
of 17. The size of the genotype is 30 symbols and the size
of the final assembly procedure is 38 symbols giving a reg-
ularity value of 1.27. In compiling the genotype there are
five rewriting passes indicating that there are five levels of
nested modules which gives a hierarchy value of 5.

4. EXPERIMENTS
In this section we present experiments to support our

claim that modularity, regularity and hierarchy are neces-
sary to improve the scalability of evolutionary design sys-
tems and that these characteristics are enabled by different
features of design representations. For this we compare evo-
lutionary performance on a design problem in which the ob-
jective is to evolve a table out of cubes in a 3D grid environ-
ment [6]. The fitness function to score tables is a function of
its height, surface structure, stability and number of excess
cubes used. Height is the number of cubes above the ground.
Surface structure is the number of cubes at the maximum
height. Stability is a function of the volume of the table and
is calculated by summing the area at each layer of the table.
Maximizing height, surface structure and stability typically
results in table designs that are solid volumes, thus a mea-
sure of excess cubes is used to reward designs that use fewer
bricks,

fheight = the height of the highest cube, Ymax.

fsurface = the number of cubes at Ymax.

fstability =

Ymax∑

y=0

farea(y)

farea(y) = area in the convex hull at height y.

fexcess = number of cubes not on the surface.

To produce a single fitness score for a design these five cri-
teria are combined together:

fitness = fheight × fsurface × fstability/fexcess (1)

The EA used for all experiments is generational, using a pop-
ulation size of 100 individuals, an elitism of two, and new

individuals are created with an equal probability of muta-
tion and recombination. Parents for these individuals are
selected with remainder stochastic sampling based on rank,
using exponential scaling [12].
In the experiments presented in this section we use five

representations with different combinations of MR&H en-
abled. These combinations are:
None: No features are enabled. In this case there are no

forms of control-flow or abstraction and the genotype being
evolved is a single procedural rule with a single body in
which the condition always succeeds. None of modularity,
regularity or hierarchy are enabled with this representation.
M: Labeled procedures are enabled, but not iteration and

only the first procedure, Proc 0, can call any other pro-
cedures. With this representation modularity is enabled
through abstraction, but reuse is not enabled since there
is neither iteration or recursion (the first procedure is not
allowed to call itself) and hierarchy is limited to at most two
levels. For this representation at most ten procedures can
be used, with each procedure having one conditional with a
subtree of at most 500 symbols.
MR: Iteration and labeled procedures are used but only

the first procedure, Proc 0, is able to call other procedures
and have iterative loops. Through these features modularity
and reuse are enabled. Hierarchy is limited to two levels
by only allowing iterative loops and procedure calls in the
first procedure, Proc 0, which is not allowed to call itself.
As with MH, at most ten procedures can be used with each
procedure having three conditionals, since reuse of genotypic
symbols is allowed each subtree is limited to at most 25
symbols.
MH: This representation has labeled procedures which

can call each other, but no iteration nor can procedures be
called more than once. Here modularity is enabled through
abstraction and hierarchy is enabled through the use of
nested modules but reuse is not allowed. With this rep-
resentation at most ten procedures can be used, with each
procedure having three conditionals, each with a subtree of
at most 166 symbols.
MRH: This representation has all of the features allowed

– control-flow, iteration, and labeled procedures with pa-
rameters that are able to call themselves recursively – con-
sequently all three of modularity, regularity and hierarchy
are enabled. The number and size of the procedures is con-
figured the same as with MR: 10 productions, with 3 condi-
tional subtrees, each with a maximum size of 25 symbols.
The different representations vary in the number of pro-

duction rules and conditional subtrees they may use. Since
generative representations can produce much larger pheno-
types than their genotype size, for a fair comparison we set
the maximum size of phenotypes for all representations to
5000 symbols and limit the maximum size of genotypes for
generative representations to approximately 750 symbols.
In the first set of experiments we compare the five rep-

resentations with different combinations of MR&H enabled
on five different sizes of the table design problem (10x10x10,
20x20x20, . . . 50x50x50). Table 1 contains the results of per-
forming thirty trials with each combination of representation
and problem size. Each entry in the table shows the aver-
age over these thirty trials of the best individual found after
4000 generations using a population size of 100 individuals.
These results show that generally the best performance is
achieved in a representation with more of the features of

1732

 0

 1e+07

 2e+07

 3e+07

 0 1000 2000 3000 4000

fit
ne

ss

generation

MRH
MH
MR

M
none

Figure 2: A comparison of evolution with different
combinations of MR&H enabled on the 50x50x50
table problem. Each curve is the average of thirty
trials.

MR&H enabled. Performance with just two features, MR
and MH, is comparable on the larger three design spaces,
on which both outperform search with just M enabled.

10 20 30 40 50
none 9388 226124 1229000 3732797 7985324
M 9108 294458 1909880 5799474 16314567
MR 10732 325120 2007445 6367398 19309882
MH 8826 274245 1993205 8070569 20751354
MRH 12406 341586 1953056 9269713 25352851

Table 1: Performance results of the different rep-
resentations on different sizes of the table problem.
Each entry is the average of thirty trials of the best
result after 400000 evaluations.

It is worth examining the performance of the different
representations over the course of a run. Figure 2 shows the
averaged-best performance over thirty trials of the different
representations on the 50x50x50 table design problem. From
this graph it can be seen that evolution with MR enabled
increases in fitness rapidly at the beginning but is then over-
taken by MH. Also, evolution with MR&H enabled in the
representation increases very rapidly in fitness for the first
1000 generations, but then levels off more than the other
representations. This suggests that reuse of genotypic ele-
ments is very helpful to rapidly get good solutions but it
may be hard to later specialize a module. Interestingly, the
representation with none of MR&H enabled initially outper-
forms both M and MH, but then is overtaken after 400 gen-
erations. One explanation for this is that it takes evolution
some time to evolve a good decomposition of the problem
into modules before it can take advantage of them.
Next we demonstrate that increased modularity, regular-

ity and hierarchy go hand in hand with higher fitness. For
this experiment we performed 25 trials using the MR&H
representation with a population of 100 individuals evolved
for 2500 generations on the 40x40x40 table design problem.
The graphs in figure 3 are scatter plots of fitness plot-

ted against the different complexity measures defined in sec-

tion 2 along with plots of the genotype and assembly pro-
cedure size and the number of modules in the genotype. In
all cases higher fitness corresponds with greater modularity,
regularity and hierarchy. With one or two modules, fitness
does not go beyond 100 and the highest fitness values re-
quire ten or more modules in the genotype and 100 or more
modules in the actual design. With an average reuse of 1.5
or less the best fitness is less than 1000 and then there is
a large jump in fitness to over one million when reuse goes
from 1.5 to 2.0 and another jump to over 7 million when
reuse goes from 4 to 7. Similarly, with a hierarchy of 2 or
less the best fitness achieved is under 500, but this jumps to
almost one million for hierarchy values of 3 and then reaches
the maximum fitness for hierarchy values of 7. In addition,
using genotype length as an upper-bound estimate of AIC
(figure 3.a), these plots show that better designs come from
individuals which contain more information While higher
complexity corresponds to higher fitness, these plots also
show that the increase in fitness plateaus after a certain
level of modularity, regularity and hierarchy are achieved.
Finally, the importance of MR&H is demonstrated by ex-

amining the correlation between decreases/increases in fit-
ness and decreases/increases in MR&H values. For offspring
with different fitness than their parents, table 2 lists the per-
centage of times a fitness decrease/increase occurred along
with a decrease/increase in genotype size, phenotype size,
genotypic modularity, phenotypic modularity, hierarchy and
reuse. Of the more than 5 million individuals evaluated,
2618943 individuals had lower fitness than their parents and
66843 individuals had higher fitness than their parents. For
all six measures of complexity, a decrease in fitness was far
more likely to occur with a decrease in MR&H value than
with an increase in MR&H value. Similarly, but to a lesser
degree, an increase in fitness was more likely to occur to-
gether with an increase in MR&H value than with a de-
crease in MR&H value. This indicates that better fitness is
achieved through increasing MR&H.

fitness decrease fitness increase
val decr val incr val decr val incr

geno size 55.12% 16.45% 26.55% 42.99%
pheno size 57.02% 16.50% 26.72% 44.35%
geno mod 23.24% 3.71% 6.75% 9.85%

pheno mod 32.21% 5.76% 9.19% 16.74%
hierarchy 16.76% 0.89% 3.17% 5.52%

reuse 47.82% 24.83% 30.51% 38.37%

Table 2: For decreases/increases in fitness this table
lists the percentage of times there was a correspond-
ing decrease/increase in the measured value.

5. DISCUSSION
An intuitive understanding of the differences between evo-

lution with MR&H enabled and not enabled can be gained
by viewing the structure of the evolved genotypes and phe-
notypes. The best table evolved without any of MR&H en-
abled is shown in figure 4.a. It has randomly scattered holes
on its surface and none of the legs on its corners go down
more than a few levels. Since none of the features of the
representation are used, its modularity, regularity and hier-
archy values are all 1.0. Its lack of structural organization

1733

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 40 80 160 320

fit
ne

ss

genotype length

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 50 250 1250 6250

fit
ne

ss

phenotype length
(a) (b)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30

fit
ne

ss

genotypic modularity

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000

fit
ne

ss

phenotypic modularity
(c) (d)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 4 8 16 32

fit
ne

ss

reuse

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12 14

fit
ne

ss

hierarchy
(e) (f)

Figure 3: Measured values of: (a) genotype size; (b) assembly procedure size; (c) number of modules in the
genotype; (d) modularity value; (e) reuse; (f) hierarchy value.

1734

(a) (b)

(c)

(d)

(e)

Figure 4: Results from the experiments on the 50x50x50 table design problem: (a) the best table evolved
with none of MR&H enabled has a fitness of 25116510 (the black lines mark the limits of the 50x50x50 design
space); its genotype, which is the same as the assembly procedure for constructing it, is shown in (c) and has
4999 operators; (b) the best table evolved with MR&H all enabled has a fitness of 60098951; its genotype is
shown in (d) and has 495 operators; its resulting assembly procedure is shown in (e) and has 4871 operators.

1735

can be seen in the randomness of its assembly procedure,
which is the same as its genotype and is shown in figure 4.c.
In contrast the table evolved with all of MR&H enabled,
figure 4.b, has straight legs going all the way from top to
bottom and a fully filled surface. It has a genotypic modu-
larity of 34, a phenotypic modularity of 1298 (the 34 modules
in the genotype are collectively used a total of 1298 times),
a hierarchy of 9 and reuse of 10. Its genotype is shown in
figure 4.d and the structural complexity it produces can be
seen in the complex, multi-level patterns in the assembly
procedure it generates, figure 4.e.
From the different representational features – combina-

tion, control-flow and abstraction – used in the different
representations additional conclusions can be drawn from
these experiments. The representations MR and MH per-
formed similarly in these experiments and the difference in
features between them is that MR does not have abstraction
but instead has iteration, whereas MH has abstraction and
hierarchically nested procedures but no iteration or recur-
sion. This suggests that adding iteration to a representation
can compensate for not having abstraction (such as ADFs).
Also of significance is the large performance difference be-
tween MH and MRH. The difference in features between MH
and MRH is that MH does not have iteration or the abil-
ity to call procedures recursively whereas both of these are
possible with MRH. One explanation is that ADFs are more
useful if they can be called recursively, alternatively the dif-
ference in performance can be attributed to the addition of
iterative loops.

6. CONCLUSION
In this paper we have argued that to improve the scalabil-

ity of evolutionary design systems the types of complexity
that need to be enabled are modularity, regularity and hi-
erarchy (MR&H) – characteristics found in both man-made
and natural designs. Furthermore, these three characteris-
tics are enabled not by the fitness function or the search al-
gorithm but by attributes of the representational language of
the genotype. Here we borrowed from the field of computer
programming languages to identify three attributes of design
representations – combination, control-flow and abstraction
– and claimed that these attributes enable MR&H in evolved
designs and used them to define metrics of MR&H.
To support our arguments that MR&H are the design

characteristics that must be enabled to improve scalabil-
ity we ran experiments comparing five variations of a rep-
resentation with different combinations of representational
attributes enabled on five sizes of a 3D table design problem.
In all, more than 300 million tables were generated and eval-
uated in these experiments. The results showed that search
using representations with more of these attributes imple-
mented generally achieved better performance. Further sup-
port for our claim that enabling MR&H improves scalability
came in comparing the correlation between increases and de-
creases in fitness and in measured values of MR&H. There
we found a much stronger correlation when both fitness and
measured complexity value increased/decreased at the same
time than when there was an increase in one and a decrease
in the other.
In the future we expect that more improvements in the

scalability of EDSs will come through further inspiration
from the field of programming languages, such as with ob-
jects and object oriented programming. By implementing

increasingly more powerful methods to hierarchically encode
reusable modules future EDSs will be better able to produce
ever more complex and interesting designs.

7. REFERENCES
[1] P. J. Angeline. Morphogenic evolutionary

computations: Introduction, issues and examples. In
J. McDonnell, B. Reynolds, and D. Fogel, editors,
Proc. of the Fourth Annual Conf. on Evolutionary
Programming, pages 387–401. MIT Press, 1995.

[2] P. Bentley and S. Kumar. Three ways to grow designs:
A comparison of embryogenies of an evolutionary
design problem. In W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, editors, Genetic and Evolutionary Computation
Conference, pages 35–43. Morgan Kaufmann, 1999.

[3] M. Goldwasser, J. Latombe, and R. Motwani.
Complexity measures for assembly sequences. In Proc.
IEEE Intl. Conf. on Robotics and Automation, pages
1581–1587, Minneapolis, MN, Apr. 1996.

[4] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

[5] G. S. Hornby. Generative Representations for
Evolutionary Design Automation. PhD thesis,
Michtom School of Computer Science, Brandeis
University, Waltham, MA, 2003.

[6] G. S. Hornby. Functional scalability through
generative representations: the evolution of table
designs. Environment and Planning B: Planning and
Design, 31(4):569–587, July 2004.

[7] G. S. Hornby and J. B. Pollack. Creating high-level
components with a generative representation for
body-brain evolution. Artificial Life, 8(3):223–246,
2002.

[8] C. C. Huang and A. Kusiak. Modularity in design of
products and systems. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, 28(1):66–77, 1998.

[9] M. Komosinski and A. Rotaru-Varga. Comparison of
different genotype encodings for simulated 3d agents.
Artificial Life, 7(4):395–418, 2001.

[10] M. Li and P. M. B. Vitanyi. An Introduction to
Kolmogorov Complexity and Its Applications.
Springer-Verlag, Berlin, 1993.

[11] B. Meyer. Object-oriented Software Construction.
Prentice Hall, New York, 1988.

[12] Z. Michalewicz. Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, New York,
1992.

[13] K. O. Stanley and R. Miikkulainen. A taxonomy for
artificial embryogeny. Artificial Life, 9(2):93–130,
2003.

[14] K. Ulrich and K. Tung. Fundamentals of product
modularity. Issues in Design/Manufacture Integration
- 1991 American Society of Mechanical Engineers,
Design Engineering Division (Publication) DE,
39:73–79, 1991.

1736

