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ABSTRACT 
This paper describes a tunably-difficult problem for genetic 
programming (GP) that probes for limits to building block mixing 
and assembly. The existence of such a problem can be used to 
garner insight into the dynamics of what happens during the 
course of a GP run. The results indicate that the amount of mixing 
is fairly low in comparison to the amount of content that could be 
present in an initial population. 

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – 
program synthesis. 

General Terms 
Algorithms, Performance, Experimentation, Theory. 

Keywords 
Tunably-difficult problems, Highlander problem, building blocks, 
initial populations. 

1. INTRODUCTION 
Are there limits to the degree to which building blocks can be 
mixed and assembled by genetic programming (GP)? If so, what 
are they, and what is the nature of those limits? 
Intuitively, one would think that such limits do exist. GP cannot 
arbitrarily pick and choose what it needs in its derivation of a 
solution. Rather, the selection of content material is constrained 
by that material’s placement in a tree structure. Material that is 
closer to the terminals of a tree is more likely to be picked than 
material that is at or closer to a root node. It is unlikely, then, that 
GP would derive a solution that has been formed from all of the 
root nodes of individuals that are in a typical population. 

This intuitive understanding has been supported by a number of 
rigorous studies that have investigated the processes by which GP 
derives a solution. For example, researchers have shown that GP 
generally selects and locks in a root node rapidly and before the 
remaining content of a solution has been determined (e.g., [12, 14, 
16, 22]). These findings have been corroborated by a few model 
problems that exploit the difficulty of dislodging a root node 
during the course of a GP run (e.g., [10, 13]). 
Root nodes and rooted tree schema are not the only constraints in 
assembling building blocks that researchers have identified. Root 
nodes and rooted tree schema are parts of tree structures. The fact 
that content is arranged in trees does have its own implications, 
which researchers have subsequently investigated. This would 
include work such as [6, 11, 19]. Subtrees, of course, are the basis 
of formal definitions of building blocks (e.g., [14, 20]). The 
nature of putting building blocks together has also been 
investigated with the development of several other model 
problems including ORDER and MAJORITY [11, 18, 19], Royal 
Tree [21], and binomial-3 [5, 9]. 
Although an intuition of building block mixing limits seems 
reasonable given these constraints, a test of this intuition is not so 
easy. On one hand, building blocks are difficult to separate from a 
problem’s domain. There is reason to suspect that classes of 
problems in one domain (like data modeling) might have 
intrinsically different building block properties than a class of 
problems in another domain (like Boolean) (see [1]). It would be 
reasonable, then, to suspect that limits to building block mixing 
and assembly would be particular to a domain. On the other hand, 
there is work that has totally abstracted content away from GP and 
has focused exclusively on structure [6, 7]. There is reason to 
suspect that there are indeed constraints to building block mixing 
and assembly, but it could be argued that those constraints tell us 
little about the actual mixing and assembly. The link between 
constraints that are purely the result of structure and those that 
would come from a typical GP problem are left to be resolved. 
This paper articulates a linkage between constraints that could 
arise from purely structural concerns and those that would arise as 
a result of a problem’s domain. As work by Sastry et al. [23] 
implies, the interaction between content and structure is highly 
nonlinear. The purpose of this paper, then, is to describe a model 
problem that can be used to probe for these interactions. 
This paper is organized as follows. Section 2 describes a 
conjecture about how building blocks and tree structures could 
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interact. If the conjecture is true, it should be possible to construct 
a tunably-difficult model that exploits this interaction. Section 3 
gives a specification for the proposed model problem, which we 
have called Highlander. Section 4 describes an experiment that 
tests this problem. Section 5 describes the results of that 
experiment. Section 6 discusses the results, and Section 7 
concludes. 

2. CONJECTURE 
One rigorous way to answer the questions posed at the outset of 
this paper would be to work through the schema theorems, which 
account for the consequences of GP selecting and amplifying 
ensembles of nodes to build up solutions (e.g., [14, 20]). 
However, it is possible to simplify matters if one considers a 
slightly different framing than using these theorems. Instead of 
framing the questions as to whether GP can select and assemble 
ensembles of nodes, we frame the questions as to whether GP can 
transport nodes that it would need to a solution. We understand 
that having the needed nodes in a tree is not equivalent to having 
those same nodes arranged as schema. Nevertheless, the issue of 
whether those nodes exist in a tree is a limiting condition to 
whether schema with those nodes would exist. 
This framing allows us to re-express the question of whether there 
are limits to the degree to which building blocks can be mixed and 
assembled in the following manner: Given an initial population 
P0, let every node in this population be uniquely identified to 
form a set V0. What is the maximal fraction that can be 
instantiated by a single GP individual (i.e., the maximum ratio of 
the number of elements from V0 in a tree relative to the total 
number of elements in V0)?  
At first glance, the answer could approach “1,” because GP uses a 
variable-length structure. Given enough time, there should be 
enough recombination and trees should be large enough such that 
an individual may consist of every single node in V0. Figure 1 
suggests otherwise. 
Figure 1 suggests that there are several competing processes that 
would affect the transport of initial population nodes to 
individuals in subsequent generations. These processes are:  
Rate of Mixing (recombination). There is a finite rate at which 
elements of V0 can be mixed, since elements of V0 are grouped as 
individuals in P0 and individuals are recombined two at a time. 
Rate of Individual Loss (selection). It is known that certain 
methods such as tournament selection can result in a significant 
fraction of individuals in one generation failing to recombine and 
to contribute to the formation of individuals in the next generation 
(e.g., [17]). As a result, elements in V0 can be permanently lost. 
Rate of Aggregation (structure). There has been work that 
indicates that tree structures grow in a particular manner and are 
subsequently constrained to certain ranges in shape [6]. A side 
consequence is that not all nodes are accessible for recombination 
even if they were still present in a population. As a result, 
elements in V0 can be practically lost. 

If these and perhaps other competing processes exist in a GP run, 
it should be possible to exploit differences in these rates to derive 
a tunably-difficult problem. The next section describes how this 
could be done. 

3. THE HIGHLANDER PROBLEM 
The overall objective of our proposed test problem is to identify 
the maximal fraction of V0 that can be instantiated by a single GP 
individual. We can do so by having GP solve for a specified 
fraction β and then by using this specification as a tuning 
parameter to determine at which fraction GP fails to solve. 
Section 3.1 provides a qualitative description of how this would 
work, while Section 3.2 describes the problem’s specifications. 
Section 3.3 details the tunability of the proposed problem. 

3.1 Problem Description 
Figure 2 illustrates how a problem like Highlander would work. 
For the purposes of this illustration, the initial population is very 
small. If all of the nodes were counted in this population, there 
would be just 10 nodes. Each node would be labeled with a 
unique number. To test whether GP would be able to transport 
nodes in an initial population to an individual, we would need to 
specify a percentage of an initial population to appear in a 
solution. If building an individual with the requested material can 
be done before material is lost either to structure or selection, GP 
should be able to build an individual with the requested 
percentage of initial population nodes. Individuals would 
subsequently be scored on the basis of how many nodes with 
unique labels would exist in a tree. The individual tree shown in 
Figure 2 is consequently an example of a solution for a specified 
percentage of 30%.  

3.2 Problem Specification  
As in ORDER and MAJORITY [11, 19], the function set for 
Highlander is the single primitive function JOIN { J }, which is 
of arity-2. As in Royal Tree [21], the terminal set is the single 
primitive { X }. As in Lid [7], the semantics of { J } and { X } are 
not a factor and serve only as placeholders, since the 
corresponding program to each tree is not executed for evaluation. 
For this paper, we presume only crossover. 

Figure 1. Example of nodes used and others lost in an initial 
population. Dark (blue) nodes are those that would be used in 

the creation of individuals for the next generation. 
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Figure 2. Example of how Highlander would work. 
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The Highlander problem requires the specification of a target β: 

β ≡
Νdesired T( )

Ν V0( )
,  (1) 

where Ν( A ) denotes the number of uniquely labeled elements in 
a set A; Νdesired( T ) is a specified number of uniquely labeled 
nodes that belong to a set T; set T corresponds to the ordered set 
of nodes that belong to an individual tree; set V0 consists of all the 
nodes that make up the initial population, whereby each element 
in V0 is presumed to be labeled with a unique ID. 
The ID labeling scheme is similar to that employed by McPhee 
and Hopper [16]. Their scheme called for tagging each node in the 
initial population with integer label pairs (ID:memID). The ID 
part of their label is assigned just once at population initialization 
and consists of an integer that is unique to a node relative to the 
set of nodes that make up the initial population (i.e., V0). One can 
think of ID as a serial number that can be used to track individual 
nodes. The memID part of their label can change from generation 
to generation and is used for providing an audit trail for subtree 
memberships. In our case, we use just the ID portion to compute 
Ν( T ). 
Raw fitness is defined as  

fitnessraw T( )= β −
Ν T( )
Ν V0( )

. (2) 

For example, if β =1, it means that for an individual tree to score 
perfectly (i.e., raw fitness = 0), a tree would need to minimally 
consist of all nodes in V0. The size (i.e., number of nodes) of that 
tree can exceed that of Ν(V0), since there can be repeated 
instances of an element in V0 that appear in that tree. 

3.3 Tunability Considerations 
In theory, different settings for β should result in Highlander 
being easier or harder to solve for a given set of GP parameters. 
One can use a fairly simple metric to characterize problem 
difficulty: the percentage of successful runs that produce at least 
one “perfect” individual (i.e., has a raw fitness score of zero). 
Easier problems would have higher percentages of successful 
runs. 
Although GP parameters are not directly involved in the tuning, 
parameters that correspond to population initialization can be 
significant factors. For example, the size of a population (i.e., M) 
determines in part the size and membership of V0. Likewise, the 
initial population parameters (e.g., method of population 
initialization, range of depths considered in population 
initialization, etc.) can also determine the size and membership of 
V0.  
Other GP parameters can also influence results. For example, 
method of selection and selection parameters can affect the rate of 
individual loss. Parameters affecting internal node bias and 
recombination can directly influence recombination rates and 
indirectly influence aggregation rates. 

4. Experimental Procedure  
We investigated the tunability of the proposed problem using 
several common parameter configurations for GP. Table 1 lists the 
parameter settings considered in this experiment. 
We used a modified version of lilgp [25] similar to that used in 
[8]. Most of the modifications were for bug fixes and for the 
replacement of the random number generator with the Mersenne 
Twister [15]. Other significant modifications included augmenting 
the data structure associated with each node to include an integer 
ID that serves as that node’s serial number. Each ID is unique to 
a node and is generated once during population initialization. We 
configured lilgp to run as a single thread. 
Table 1 describes the ten different experimental configurations 
that we used, since we considered two different selection methods 
and five different population sizes. 
Difficulty was measured as the percentage of successful runs that 
produced at least one “perfect” individual and to a precision of 
three decimal places. This translated to 1000 trials per β value per 
configuration. Each configuration was adaptively sampled over 
the range of β (0%, 100%] (i.e., more samples were taken in 
rapidly varying regions than in slowly varying ones). A total of 
238 data points were taken, which corresponds to 238,000 trials 
that were conducted for all ten configurations. 
Trials were run on a Linux grid, which consists of 67 nodes of 
dual processor Athlon MP CPUs. The results correspond to 
approximately two CPU-years of computation. 

5. Results 
Figure 3 shows the difficulty curves corresponding to the ten 
different configurations of this experiment. There are five sets of 
plots shown in Figure 2, with each plot corresponding to a 
particular population size M. Each plot includes two difficulty 
curves, which correspond to the configurations for tournament 
selection and fitness proportionate selection at that particular 
population size. Problem difficulty was measured as the 
percentage of the number of trials that resulted in a “perfect” 
individual. (Each data point in a curve represents the computed 
percentage of successful trials out of 1000 trials.) Note that higher 
values of β generally correspond to more difficult variations of 
Highlander for GP to solve.  

Table 1 . Para meter settings  

Parameter  Setting  
Run Objective Evolve an individual  that con tains a 

spec ified fraction  of V0  
Terminal Set X 

Function Set J 
Selection Tournamen t q=7 or Propo rtionate 
Populati on Size M [50, 100, 500, 1 000,  1500] 
Initialization Method  Ramped  Hal f-and-Hal f 
Initialization Depths 2Š6 Leve ls 
Max Gene rations  G 50 
Maximum Depth 2048  
Internal Node  Bias 90% i nternal, 10%  terminals 
Termination Criteria Run reaches  G 
Highlander  (in %) See text 
Success  Predicate Fitness  is within 5% of spec ified  
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Since tree structure has been implicated as a contributing factor to 
the amount of material that a GP solution can or cannot have, 
Figures 4 and 5 show a subset of the results shown in Figure 3 as 
structural plots, which were introduced in [24]. One scatter plot 
summarizes the size versus depth results that correspond to one 
data point on a difficulty curve for M = 500. Although there are 
23 data points depicted per curve for M = 500, only 10 data points 
are shown per curve as scatter plots in Figures 4 and 5. (One can 
presume that the depicted scatter plots are representative of what 
happens in size and structure as β is varied).  Each point in a 
scatter plot corresponds to one trial—the measurement at that 
point specifically corresponds to the best-of-trial solution for that 
particular trial. 
For comparison, we also included two sets of boundaries to 
accompany each scatterplot. The light (gray) lines indicate the 
maximum extent for size and depth that are achievable using 
complete binary trees (i.e., using a function set that consists 
exclusively of functions of arity-2). The dark (blue) lines indicate 
the theoretical boundaries of the size and depth ranges for typical 
trees (see [6]). Those boundaries were not computed beyond 
depth 26, which is the reason why those boundaries seem 
truncated in both Figures 4 and 5. 
It is significant that in both Figures 4 and 5, that there is not much 
difference between each plot once β has been increased beyond a 

certain value. The implications of this are discussed in the next 
section.  

6. Discussion 
There are four observations that can be made about the results 
given in Section 5. These include the following: 
• The Highlander Problem is tunably difficult. 
• There is evidence for the existence of an upper bound to the 

amount of initial population material that can be expressed in 
a single individual. 

• Structural processes played a significant limiting role in the 
Highlander solutions that GP identified. 

• The existence of an attractor in size and depth space suggests 
that the material that GP uses is not dispersed throughout an 
initial population, but is instead concentrated in a subset of 
individuals in that population 

These observations are discussed in Sections 6.1 to 6.4, 
respectively. 

6.1 Tunability 
Observation: The Highlander Problem is tunably difficult. 
The results clearly demonstrate that the Highlander problem is 
tunably difficult as a function of parameter β. In particular, there 
were three general kinds of regions: an “easy” region where the 
likelihood of being able to solve for the problem was high; a 
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“hard” region where the likelihood of being able to solve for the 
problem was low; and transition regions that were either 
monotonically increasing or decreasing.  
The results also indicate that the dynamic range for problem 
difficulty is significant. The measured dynamic range between 
“easy” and “hard” regions is at least three orders of magnitude: for 
“easy” regions, 1000 trials out of 1000 trials resulted in a 
“perfect” solution; for “hard” regions, 0 trials out of 1000 trials 
resulted in a “perfect” solution. This range could be greater than 
three orders of magnitude: the exact range is unknown since 
difficulty was measured to only three digits of precision. 
What were surprising was that the “easy” region corresponded to 
a fairly small range of values for β and that this range of values 
corresponded to low fractions of the total number of possible 
initial population nodes that can be found in a single individual. 
For example, for population size M = 500, the range that defines 

the “easy” region is approximately [2%, 12%] (under 
proportionate selection. That range is even smaller for population 
size M = 1500 (i.e., approximately [2%, 8%]). 
The implication is that GP was able to assemble just a small 
portion of the total number of possible initial population nodes 
into a single individual. For example, for a population size of M = 
1000, only about 12% of all nodes that were created during 
ramped half-and-half (depths 2–6) initialization can “easily” be 
transported and assembled into a single individual. Under these 
same run parameters, it would be very difficult to assemble 
individuals if those individuals required more than 20% of all of 
the initial population nodes. 
We understand that for many GP problems, these limited ranges 
may be sufficient. There is a significant amount of redundancy 
implicit in the expression of function and terminal sets in an intial 
population. Nevertheless, this range of values does represent a 

21 
  

25 
  

29 
  

213 
  

217 
  

1  100  

21 
  

25 
  

29 
  

213 
  

217 
  

1  100  

21 
  

25 
  

29 
  

213 
  

217 
  

1  100  

21 
  

25 
  

29 
  

213 
  

217 
  

1  100  

21 
  

25 
  

29 
  

213 
  

217  
 

1  100  

21 
  

25 
  

29 
  

213 
  

217  
 

1  100  

21 
  

25 
  

29 
  

213 
  

217  
 

1  100  

21 
  

25 
  

29 
  

213 
  

217  
 

1  100  

21 
  

25 
  

29 
  

213 
  

217  
 

1  100  

21  
 25 
  

29 
  

213 
  

217 
  

1  100  

β=1 β=10% β=20% β=30% β=40%

β=50% β=60% β=70% β=80% β=90%

Depth Depth Depth Depth Depth

Nu
m

be
r o

f N
od

es
Nu

m
be

r o
f N

od
es

 
Figure 4. Size versus Depth scatter plots for Tournament Selection, Population Size M = 500. For 

clarity, only scatter plots for selected values of ββββ are shown. 
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Figure 5. Size versus Depth scatter plots for Fitness Proportionate Selection, Population Size M = 500. 

For clarity, only scatter plots for selected values of ββββ are shown. 
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limiting condition to the amount of mixing that can be done 
concerning building blocks. If critical ensembles of nodes are 
needed but exist outside this range, it will likely not be possible 
for GP to derive a solution. 
We note that Highlander’s property of tunable difficulty has 
markedly different behaviors in comparison with two other 
problems, binomial-3 [5, 9] and Lid [7]. For these problems, 
generally became much easier to solve when using tournament 
selection q = 7 than proportionate selection. For Highlander, the 
problem remained just as, if not more, difficult to solve under 
tournament selection than under proportionate selection. 

6.2 Upper Bound to Transport 
Observation: There is evidence for the existence of an upper 
bound to the amount of initial population material that can be 
expressed in a single individual. 
The results suggest both an upper and a lower bound to the 
amount of initial population material (i.e., V0) that can appear in 
any one GP individual. Of these two bounds, the lower bound is 
the least surprising, since Equation 1 approaches zero when the 
amount of material from the initial population (e.g., a large initial 
population) approaches infinity. 
However, the existence of an upper bound has not been 
anticipated by current theory [e.g., [14]]. Although one could 
suspect that it would be next to impossible to have just one 
individual contain all of the nodes that were present in the initial 
population, it is not intuitive that an upper bound would manifest 
just after a β of 10% for either selection method for a population 
size as modest as 500. 
The existence of an upper bound does support our conjecture of 
competing rates. As mentioned in Section 2, there may be at least 
three rates involved: rate of mixing (recombination), rate of 
aggregation (structure) and rate of individual loss (selection). The 
first two rates would contribute positively towards assembling an 
individual, while the third would contribute negatively. For 
example, if a solution required that a certain percentage V0 be 
used, GP would generally have to mix and aggregate it from 
individuals in a population before elements of V0 are lost because 
of selection. 

6.3 Structural Reasons for Tunability 
Observation: Structural processes played a significant limiting 
role in the Highlander solutions that GP identified. 
Although theoretical results have not been computed at the depths 
to which many of the Highlander solutions were measured, the 
location of all Highlander solutions in size and depth space is 
consistent with observations that were made in [4] concerning 
structural mechanisms and constraints. 
A summary of our hypothesis is as follows:  
• The iterative growth of tree structures in standard GP is 

analogous to a physical process of diffusion-limited 
aggregation (also known as ballistic accretion). 

• Objects that are created by diffusion-limited aggregation have 
a characteristic density (i.e., because they are a kind of 
fractal). 

• If the iterative growth of trees in standard GP is analogous to 
diffusion-limited aggregation, trees may also have a 

characteristic “density” or range of “densities,” which can be 
measured by tree sizes and depths. 

• We can create a model of iterative tree growth to map out 
which structures are likely. 

• Our model predicts four regions in the space of number of 
nodes and tree depth: I (easy), II (transitional), III (hard), and 
IV (out-of-bounds). A map of these regions is shown in Figure 
6. This particular map presumes GP with an arity-2 function 
set. 

The model results have been compared to several different 
problems of known difficulty [2, 4, 6], including quintic, sextic, 6-
input multiplexer, 11-input multiplexer, and binomial-3. In spite 
of the varying levels of difficulty, nearly all (better than 90%) of 
the results fall within Region I. The results are significant, in part 
because Region I accounts only for about 0.005% of the entire 
allowable search space in size and number of nodes between 
depths 0–26. (Region I’s area looks larger in Figure 1 because the 
y-axis is scaled as log 2.) 
In that work, it was noted that in spite of problem difficulty, the 
trajectory of search was constrained to the most likely shapes that 
aggregation yields. Such a trend is consistent with what is shown 
in Figures 4 and 5. It is notable that regardless of the wide latitude 
given for the kinds of solutions that were allowable for the 
Highlander, the size and depth characteristics for the derived 
solutions fell within a relatively narrow range. 

6.4 Location of Potential Building Blocks in 
an Initial Population 
Observation: The existence of an attractor in size and depth space 
suggests that the material that GP uses is not dispersed 
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throughout an initial population, but is instead concentrated in a 
subset of individuals in that population. 
The existence of two competing rates—rate of mixing and rate of 
individual loss—could conceivably be enough to account for an 
upper bound to diversity in the difficulty curves. In other words, 
the speed at which V0 can be distributed and mixed between 
individuals is in tension with the speed at which individuals are 
lost (i.e., failing to recombine or to replicate) from a population. 
An equilibrium point would be where the remainder of V0 is 
evenly distributed among every individual in population. At that 
point, the loss of an individual would not result in a loss from V0. 
An upper bound to the amount of initial population material 
would be the result of specifying β such that the number of 
elements of V0 remaining in a population would exceed that which 
is possible at equilibrium. 
The problem with this line of thinking is that it does not account 
for what appears to be an attractor that exists in the space defined 
by size and depth—both of which are structural metrics. This 
attractor appears in Figures 4 and 5 at values of β, which 
correspond to 0.0% success rate. The position of this attractor did 
not move once a particular rate in β was reached. There are 
similar attractors that were found at other population sizes. 
If the elements of V0 that were used by GP solutions were 
dispersed widely throughout an initial population, one would 
expect solution size and depth to vary as β varies. After all, the 
minimum sized solutions to the Highlander problem increases as 
β increases. Instead, there seems to be an attractor that remains 
invariant in size and depth space regardless of β. 
Insight into the nature of this attractor might be gleaned by 
examining the numbers of distinct elements of V0 in a GP solution 
as a function of β. (The tuning parameter β can be thought of as 
the desired number of distinct elements of V0 in a GP solution that 
is normalized by the total number of distinct elements in V0.) 
Figure 7 shows this plot for the tournament selection case (for the 
data shown in Figure 4). When Highlander builds a successful 
solution, points of desired and measured numbers should fall on 
the 45° diagonal. However, the average number of distinct 
elements of V0 remained constant after β = 20%—about 15%. 
As it turns out, this value of 15% is consistent with findings in 
[3]. That paper focused on tracking the number of initial 

population individuals that were represented at the end of 200 
generations for a completely different problem, but using similar 
GP parameters as those used to generate the results given in 
Figure 7. As that paper turned out, less than 20% of an initial 
population’s individuals were represented at a time when most of 
a population should consist of elements of a GP solution. (e.g., 
see Figure 8.) Although the number of unique nodes in a 
Highlander solution indicates nothing of the number of initial 
population individuals and although the number of represented 
initial population individuals indicates only roughly the number 
of unique initial population nodes, the results suggest that similar 
phenomena may be involved.  

7. Conclusions 
At the outset of this paper, two questions were posed: Are there 
limits to the degree to which building blocks can be mixed and 
assembled by GP? If so, what are they, and what is the nature of 
those limits? 
To the first question, the answer is “yes.” In answering this 
question, we devised a model problem—called Highlander—that 
serves as a probe to explore for these limits. It was specifically 
designed to be tunably difficult, which would serve to indicate the 
boundaries of when GP could and could not mix and assemble 
building blocks. It was specifically designed to exploit various 
processes in GP that are most likely to produce this phenomenon 
of tunable difficulty. As a result, this tunable problem has a 
heritage that is apart from those found in genetic algorithms, and 
for that matter, in other branches of genetic and evolution 
programming. 
We tested this model’s property of tunable difficulty in one of the 
larger computational experiments in the field. A total of 238,000 
trials were evaluated on a Linux grid to measure the behavior of 
this problem as a function of population size, selection method, 
and its tuning parameter. The results indicated, with fairly 
common choices for population size and selection method, that 
the degree to which building blocks can be assembled is fairly 
low. In particular, the results showed that only 2% to 18% of all 
nodes that were created during population initialization would 
ever make it into a solution. 
We acknowledge that this range may be sufficient for many 
problems in GP because there is a significant amount of 
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redundancy that is implicit with the expression of function and 
terminal sets. Nevertheless, this range of values does represent a 
limiting condition to the amount of mixing that can be done 
concerning building blocks. 
To the second question, the answer is “the limits exist because 
there are competing processes within a GP process.” We have 
speculated that there are three main processes. The first process 
allows for the mixing and assembly of building blocks 
(recombination). The second process potentially removes 
materials that could be used in the assembly of these blocks 
(selection). The third constrains the way these building blocks are 
assembled, regardless of the selection pressure that is applied 
(aggregation). 
The results from our computational experiment have yielded 
evidence for the existence of all three of these processes. This 
evidence is in addition to the most obvious one—the problem is 
clearly tunable—but further experimentation is needed to identify 
all of the processes that may or may not be limiting factors in the 
assembly of building blocks. This paper looked at just three 
variables; there are others (such as those associated with initial 
population creation) that are likely to figure prominently. Such 
work, however, was beyond the scope of this paper. 
We are optimistic that the use of a model problem like Highlander 
could be used as an experimental complement in the development 
of GP theory. Although three main processes were conjectured 
that afford for this problem to be tunably difficult, it remains to be 
seen whether a theoretical model can be developed that can 
explain some of the phenomena discussed in this paper. 
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