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ABSTRACT
The Push programming language was developed for use in
genetic and evolutionary computation systems, as the rep-
resentation within which evolving programs are expressed.
It has been used in the production of several significant re-
sults, including results that were awarded a gold medal in
the Human Competitive Results competition at GECCO-
2004. One of Push’s attractive features in this context is its
transparent support for the expression and evolution of mod-
ular architectures and complex control structures, achieved
through explicit code self-manipulation. The latest version
of Push, Push3, enhances this feature by permitting explicit
manipulation of an execution stack that contains the ex-
pressions that are queued for execution in the interpreter.
This paper provides a brief introduction to Push and to ex-
ecution stack manipulation in Push3. It then presents a
series of examples in which Push3 was used with a simple
genetic programming system (PushGP) to evolve programs
with non-trivial control structures.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; D.3.2 [Programming Languages]: Lan-
guage Classifications—specialized application languages

General Terms
Algorithms, Experimentation, Languages
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1. INTRODUCTION
Complex programs written by humans almost always make

use of control structures including conditionals, loops, and
recursions. Genetic programming researchers have long ap-
preciated this fact and have developed a number of ways
in which programs evolved in genetic programming systems
can potentially make use of sophisticated control structures.
Some of the earliest work allowed for conditionals (“if then
else” structures) and some forms of iterative loops (“do un-
til” structures), and a variety of schemes have been proposed
to allow for modules (sometimes also called subroutines, de-
fined functions, automatically defined functions, automati-
cally defined macros, or products of encapsulation); see for
example [8, 10, 2, 6, 22, 18, 19]. Additional work has ex-
plored the use of implicit or explicit recursion in evolved
programs (for example [15, 16, 31, 3, 34, 33, 38, 14, 35, 36,
20, 7, 32, 11]).

The Push programming language provides an alternative
mechanism for the expression and evolution of arbitrary con-
trol structures [23, 28, 24, 27]. It is not possible in a paper
of this length to compare the Push approach to all of the
approaches mentioned in the previous paragraph, and this
paper has no such comparative goal; some comparisons can
be found in other publications on Push cited above. The
objective of this paper is rather to present new features in
Push3 that further facilitate the evolution of novel control
structures — primarily the facilities for execution stack ma-
nipulation — and to demonstrate through a series of ex-
amples the kinds of results that the approach can routinely
produce. Some of these results are striking both for their
power and for their novelty.

The next section of the paper outlines the Push language
to provide context for the innovations in Push3 that are
described in the subsequent section. The discussion of the
Push3 execution stack is followed by a series of case studies
in which Push3 was used with a genetic programming system
(PushGP) to evolve programs that incorporate non-trivial
control structures.

2. PUSH
The Push programming language was developed specifi-

cally for genetic and evolutionary computation. Among its
virtues for such applications is its combination of an un-
usually simple syntax with the ability to work flexibly with
multiple datatypes.
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The syntax of a Push program is simply:

program ::= instruction | literal | ( program* )

That is, a Push program is an instruction, a literal, or
a parenthesized sequence of zero or more Push programs.
The only syntactic restriction is that parentheses must be
balanced. Because Push programs are typically stored and
manipulated as tree structures within which the parenthe-
ses are implicit, this restriction is usually automatically en-
forced.

With respect to handling multiple datatypes, Push achieves
its flexibility through the use of a stack-based execution ar-
chitecture with one stack for each type. Genetic program-
ming with Push extends prior work on stack-based genetic
programming (e.g. [17, 29, 30]) by providing multiple stacks,
one per type. Types are provided for integers, floating point
numbers, Boolean values, symbolic names, and code (de-
scribed in more detail below), each of which has a corre-
sponding data stack. Additional types for vectors, matrices,
and other data are provided in some implementations, and
it is straightforward to add new types.1 As instructions
are executed they pop any required input values from the
appropriate stacks, preform calculations, and push any out-
put values onto the appropriate stacks. The types of the
values that will be needed or produced are specified in the
implementations of the instructions themselves, and are in-
dependent of the syntactic contexts in which calls to the
instructions occur. This scheme ensures that Push instruc-
tions will always receive inputs and produce outputs of the
appropriate types, regardless of the structure of the pro-
grams in which they occur. Whenever an instruction finds
insufficient items on the stacks for its inputs it acts as a
“no-op” and has no effect.

Instructions in Push3 are typically given names such as
<TYPE>.<NAME>, where NAME specifies the operation and
TYPE specifies the data type upon which the operation should
be preformed. INTEGER.=, for example, takes two input val-
ues from the INTEGER stack, compares them, and places the
result of the comparison on the BOOLEAN stack. It is not un-
common for the same operator to be implemented for mul-
tiple types. The instructions INTEGER.POP, FLOAT.POP, and
CODE.POP, for example, each pop the top item from the cor-
responding stack.

The full Push instruction set is large and cannot be fully
documented here,2 but a sample of some of the more com-
monly used Push instructions is shown in Table 1. The
instructions shown on the right-hand side are implemented
for each of the types described in the left column, so the in-
struction MAX, for example, exists both as INTEGER.MAX and
as FLOAT.MAX.

Flexibility with respect to control arises because CODE is
itself a native type in Push. A Push program can put code
on the CODE stack (for example, with the CODE.QUOTE in-
struction), duplicate or otherwise manipulate it, and later
execute it by means of other CODE instructions. This allows
programs to dynamically create novel control structures and
subroutine architectures. Examples of several such results

1Support for the definition of new types from within Push
programs is not part of the current Push3 specification, al-
though several proposals for accomplishing this are under
consideration.
2See [27].

Table 1: Sample Push instructions.

Stack manipulation POP, SWAP, YANK,
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, −, /, ∗, >, <,
(INTEGER and FLOAT) MIN, MAX
Logic (BOOLEAN) AND, OR, NOT,

FROMINTEGER

Code manipulation QUOTE, CAR, CDR, CONS,
(CODE) INSERT, LENGTH, LIST,

MEMBER, NTH, EXTRACT
Control manipulation DO*, DO*COUNT, DO*RANGE,
(CODE and EXEC) DO*TIMES, IF

in earlier versions of Push are described elsewhere [23, 28,
24, 27].

Code manipulation by evolving programs can also sup-
port entirely new forms of evolutionary computation such
as “autoconstructive evolution,” in which evolving programs
must generate their own offspring, eschewing hardcoded ge-
netic operators in favor of evolved genetic operators that are
implemented by code-manipulation instructions working on
the CODE stack. The results of experiments employing au-
toconstructive evolution in earlier versions of Push can be
found in [23, 25, 26].

3. THE PUSH3 EXEC STACK

3.1 Push Program Interpretation
The most significant change to the Push language in Push3

is the introduction of the EXEC stack, which stores expres-
sions, instructions, and literals that the Push interpreter will
subsequently execute. This stack is independent of the CODE

stack, which can still be used for code manipulation and for
general list manipulation. Code on the CODE stack is static
data unless it is executed with an instruction like CODE.DO*

or CODE.DO*TIMES; such instructions, which were formerly
implemented by (single or multiple) recursive calls to the in-
terpreter, are now implemented by moving code to the EXEC

stack. In contrast with the CODE stack, the EXEC stack holds
the code that is queued for execution in the interpereter, and
it is continuously executed. Although the EXEC stack execu-
tion model of Push3 is backward compatible with program
execution in Push2, it nonetheless represents a fundamental
change in the way that Push programs are executed and it
does so in a way that provides new opportunities for the
evolution of arbitrary control.

In Push2, programs were executed according to the fol-
lowing algorithm:

• To execute program P :

1. If P is an INSTRUCTION: execute P (accessing
whatever stacks are required).

2. If P is a LITERAL: push P onto the appropriate
stack.

3. If P is a LIST: recursively execute each subpro-
gram in P .

In this scheme an interpreter that encounters a list must
maintain the state of the computation for continuation after
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returning from recursive calls; for example, when executing
a list of two subprograms the interpreter must store the
second (for later execution) while recursively executing the
first. If the Push interpreter is implemented in a language
that supports recursion then this can be handled by the
language’s native mechanisms, which presumably store local
variables in activation records during recursive calls. Push3,
by contrast, performs the same computation by storing all
of the necessary information within the interpreter itself, on
an EXEC stack:

• To execute program P :

1. Push P onto the EXEC stack.

2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:

(a) If E is an instruction: execute E (accessing
whatever stacks are required).

(b) If E is a literal: push E onto the appropriate
stack.

(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.

All of the Push2 control structures (e.g. CODE.DO*TIMES)
are expressed in Push3 as sequences of instructions that are
pushed onto the EXEC stack and subsequently executed by
the loop in step 2 above. The CODE.DO*COUNT instruction,
for example, was implemented in Push2 as a loop in the
Push interpreter’s native language that would repeatedly
push counter values on to the INTEGER stack and then ex-
ecute code obtained from the CODE stack. In Push3, the
CODE.DO*COUNT instruction simply pushes code (including a
recursive call) and integers onto the EXEC stack, and the con-
tinued execution of elements from the EXEC stack produces
the same results.3 Other features of Push can also be more
elegantly implemented in Push3 than in Push2; for example
the CODE.QUOTE instruction, which formerly required an ex-
ception to the standard evaluation rule and a global flag, can
now be implemented simply by copying the top of the EXEC

stack to the CODE stack (making it the inverse of CODE.DO*).
At first glance the use of the EXEC stack does not appear

to be a dramatic departure from the program execution al-
gorithm used in Push2. The power of this approach be-
comes evident, however, when one considers what it means
to manipulate the EXEC stack during a computation. Just
as control structures can be implemented by manipulating
and later executing items on to the CODE stack, novel con-
trol structures can also be implemented through EXEC stack
manipulation and these implementations are often more par-
simonious (and therefore potentially more evolvable).

Since a list of code to be executed is placed on the EXEC

stack in reverse order, EXEC instructions have the property
of operating on elements in the code which come after them,
unlike operators applied to other types which use the post-
fix notation standard in stack-based languages. The follow-
ing two programs fragments, for example, both produce the
same results:

( 5 CODE.QUOTE ( INTEGER.+ ) CODE.DO*COUNT )

( 5 EXEC.DO*COUNT ( INTEGER.+ ) )

3The new EXEC.DO*COUNT instruction is equivalent except
that it takes its code argument from the EXEC stack. Other
EXEC versions of pre-existing CODE instructions are analo-
gous.

3.2 Combinators
The stack manipulation instructions that are provided for

all types in Push can be used to manipulate the EXEC stack,
but the EXEC stack can also be manipulated with Push ver-
sions of the standard combinators K, S and Y [21, 5]. These
combinatory logic operators allow complex computational
processes to be built up from simple expressions on the EXEC

stack.
The combinator EXEC.K simply removes (and discards)

the second element from the EXEC stack. For example, if
the EXEC stack contains [A,B, C, ...] then executing EXEC.K

yields [A, C, ...]. The combinator EXEC.S pops three items,
A, B and C from the EXEC stack and then pushes back three
separate items: (B C), C and A (leaving the A on top).
Note that this produces two calls to C. The fixed point
Y -combinator instruction EXEC.Y can also be used to im-
plement recursion using anonymous expressions on the EXEC

stack; it inspects (but does not pop) the top of the EXEC

stack, A, and then inserts the list (EXEC.Y A) as the second
item on the EXEC stack. By itself, this generates an endlessly
recursive call to the unnamed non-recursive “function” A.
Recursion can be terminated through further manipulation
of the EXEC stack that may occur, possibly conditionally,
within A.

3.3 Re-entrance
An additional benefit of the EXEC stack is that the state of

a Push interpreter can now be fully specified by its configura-
tion, its NAME bindings, and the contents of its stacks. No in-
ternal state variables such as loop counters, execution point-
ers or continuations are necessary. Among other things, this
makes Push interpreters fully re-entrant and allows stricter
control over program execution. Loops, previously imple-
mented in the native language’s for-loop (or analogous con-
trol structure), are now implemented by pushing a series of
elements onto the EXEC stack. Execution of the loop pro-
ceeds through the sequential execution of the elements on
the EXEC stack.

Re-entrant interpreters are of particular interest when us-
ing Push programs as controllers in time sensitive applica-
tions. In these situations, Push programs cannot be allowed
to run until they are complete or until a loop terminates—
there may be strict limits on the number of Push instruc-
tions that can be executed per time-step. The re-entrant
interpreter allows for the controlled execution of a particu-
lar number of instructions per time-step.

3.4 Naming simplified
Previous incarnations of Push allowed names to be bound

to values using a SET instruction and retrieved later using a
GET instruction. This allowed, in principle, for evolution of
named constants and subroutines but it required synchro-
nization of several different instructions. The introduction
of the EXEC stack presents opportunities for simplification.

Binding a name to a subroutine has been simplified by one
instruction, using the EXEC stack instead of a quoted value
on the CODE stack:

Push2:

( TIMES2 CODE.QUOTE ( 2 INTEGER.* ) CODE.SET )

Push3:

( TIMES2 EXEC.DEFINE ( 2 INTEGER.* ) )
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Executing a subroutine has been simplified by two instruc-
tions. The bound symbol is now executed directly (the bind-
ing is copied to the EXEC stack), instead of being loaded onto
the CODE stack with CODE.GET and executed with CODE.DO:

Push2:

( TIMES2 CODE.GET CODE.DO )

Push3:

( TIMES2 )

Push3’s scheme is considerably more parsimonious. Al-
though none of the examples in this paper make non-trivial
use of names, these improvements presumably increase the
chances that systems that evolve Push code will be able to
make use of named variables and subroutines.

4. EXAMPLES
The following examples were produced using PushGP, a

genetic programming system that is generic aside from its
representation of evolving programs in the Push program-
ming language. Versions of PushGP implemented in Lisp
and C++ are freely available online,4 as is a version of
the Breve simulation environment that includes an embed-
ded PushGP system (based on the C++ implementation).5

PushGP is a generation-based system that uses tournament
selection and nearly-standard genetic operators.6 Evolu-
tion across multiple processors is supported through asyn-
chronous migration of selected individuals between “demes”
that run independently, one per node of a computer cluster.

In the runs that produced the results presented below a
variety of control parameters were used, with populations
ranging from 5, 000 to 230, 000 (distributed over up to 23
CPUs), tournament sizes ranging from 5 to 7, mutation and
crossover rates each ranging from 40% to 45% (with the
remainder of each generation produced by straight repro-
duction and/or immigration), and numbers of generations
ranging from 200 to 350. The possibility of unbounded re-
cursion or iteration requires the imposition of execution-step
limits (set between 150 and 1000) and program size limits
(typically between 100 and 250). Instructions that would
violate the program size limit act as no-ops. When a pro-
gram exceeds the execution-step limit a fitness penalty may
be imposed; in some of our runs we imposed a severe penalty
(ensuring that no violating program would ever produce
offspring) while in others we imposed a mild penalty (al-
lowing violating programs to reproduce, but preferring non-
violating programs) or no penalty at all (in which cases a
non-terminating program could count as a solution—we note
any such cases explicitly below). We used large, general-
purpose Push instruction sets, usually excluding only the
RAND instructions (which produce random numbers, ran-
dom code fragments, etc.), some of the higher level code-
manipulation instructions (such as CODE.SUBST), and instruc-
tions associated with the FLOAT data type (since none of the
examples involved floating-point numbers).

4http://hampshire.edu/lspector/push.html
5http://www.spiderland.org/breve
6The operators differ slightly from those of standard genetic
programming because Push’s syntax involves no distinction
between function and argument positions. Some implemen-
tations of PushGP also provide “size fair” genetic operators
[4].

For many of the problems discussed here PushGP pro-
duced large numbers of solutions that used a variety of
algorithms based on different Push instructions. In many
cases it was possible to coerce the system to produce dif-
ferent styles of solutions by making particular instructions
available or unavailable. In particular, most of the prob-
lems could be solved without any of the explicit iteration
instructions (EXEC or CODE versions of DO*TIMES, DO*COUNT,
and DO*RANGE), but most of those solutions were convoluted
and did not generalize beyond the inputs used for fitness
evaluation.

We simplify the programs produced by PushGP using a
simple hill-climbing algorithm that repeatedly performs a
random simplification (e.g. the removal of an instruction or
expression) and retains the simpler program if it is equally
good.

4.1 Reversing a list
For this problem we provide a list of integers, of length

between 10 and 30, as input on the CODE stack. A correct
program is one that leaves a list with the same elements
but the opposite order on top of the CODE stack. We seek a
program that correctly reverses any input list, of any length.
A similar problem was studied by Olsson in the ADATE
system [16]. We used a fitness test with 10 random inputs
and based fitness values on the number of elements in the
proper positions in the final list.

The following is an evolved, 100% correct, general solu-
tion:

(CODE.DO*TIMES (CODE.DO* CODE.LIST

(((INTEGER.STACKDEPTH EXEC.DO*TIMES)

(BOOLEAN.YANKDUP CODE.FROMINTEGER))

CODE.FROMINTEGER INTEGER.SWAP)

(CODE.YANKDUP INTEGER.% (BOOLEAN.AND)

CODE.STACKDEPTH EXEC.DO*TIMES)) (CODE.CONS)

(BOOLEAN.SHOVE (CODE.EXTRACT EXEC.S

(EXEC.FLUSH CODE.IF BOOLEAN.YANK

(CODE.FROMINTEGER CODE.ATOM (CODE.SWAP

BOOLEAN.SHOVE (INTEGER.MAX) (CODE.QUOTE

CODE.APPEND CODE.IF)) ((CODE.ATOM CODE.SHOVE

EXEC.POP (CODE.DO*TIMES BOOLEAN.SHOVE) INTEGER.ROT)

(INTEGER.> BOOLEAN.AND CODE.DO* INTEGER.ROT)

CODE.CONS INTEGER.ROT ((CODE.NTHCDR) INTEGER.ROT

BOOLEAN.DUP) INTEGER.SHOVE (CODE.FROMNAME

(CODE.CONS CODE.FROMINTEGER)))) CODE.LENGTH

INTEGER.MAX EXEC.Y)) (BOOLEAN.= (CODE.QUOTE

INTEGER.SWAP) CODE.POP) INTEGER.FLUSH))

This solution can be simplified to the following:

(CODE.DO* INTEGER.STACKDEPTH EXEC.DO*TIMES

CODE.FROMINTEGER CODE.STACKDEPTH EXEC.DO*TIMES

CODE.CONS)

In this program the CODE.DO* instruction “executes” the
input list which has the effect of placing all of its elements
onto the INTEGER stack. Then the sequence “EXEC.DO*TIMES
CODE.FROMINTEGER” moves all of the values onto the code
stack and the sequence “CODE.STACKDEPTH EXEC.DO*TIMES

CODE.CONS” creates a list of all of the elements. Three loops
are used in this solution. The first is really the “execution”
of the input list, which is bounded by the length of the input.
The second and third are implemented with EXEC.DO*TIMES,
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which takes its bound in both cases from the depth of a stack
(first the INTEGER stack and later the CODE stack).

4.2 Factorial
In this problem we provide an input integer on the INTEGER

stack and we seek a program that leaves the factorial of the
input on top of the INTEGER stack. Fitness values were the
sum of the errors over all cases (with lower being better).
We assessed programs on inputs from 0 to 8, but sought
programs that gave correct answers for all possible inputs.

In one of our runs we found a solution that simplified to
the following concise, 100% correct, and general program:

(1 EXEC.DO*RANGE INTEGER.*)

This runs a loop with a counter running from the input
down to 1, with each execution of the loop pushing the
counter (this is part of the definition of EXEC.DO*RANGE)
and then executing the body of the loop, which is simply
INTEGER.*. The fact that EXEC.DO*RANGE is so well suited
to the computing of factorials is a happy coincidence, but
the system also found alternative expressions. For exam-
ple, it found another 100% correct and general solution that
simplified to the following:

(INTEGER.* INTEGER.STACKDEPTH CODE.DO*RANGE

INTEGER.MAX)

This program relies on the fact that Push programs are
pushed onto the CODE stack prior to execution, which gives
a program access to its own code for the sake of manipu-
lation, recursive execution, and the like. In this case the
program uses the CODE.DO*RANGE instruction to call itself
the appropriate number of times, executing an INTEGER.*

each time and using an INTEGER.MAX each time to pull the
product out from under the result of INTEGER.STACKDEPTH,
which is used the first time through to produce the 1 which
forms the lower bound on the loop counter. The calls to
CODE.DO*RANGE within the recursive calls have no effect be-
cause the CODE stack is empty at that point.

4.3 Fibonacci
In this problem, versions of which have been explored with

several other approaches [9, 14, 12, 13, 37], we provide an
input integer on the INTEGER stack and we seek a program
that leaves the corresponding element of the Fibonacci se-
quence on top of the INTEGER stack. We assessed fitness on
inputs ranging from 1 to 12, with the following input/output
pairs: (1 1) (2 1) (3 2) (4 3) (5 5) (6 8) (7 13) (8 21) (9 34)
(10 55) (11 89) (12 144).

Fitness values were the sum of the errors over all cases
(with lower being better) and we sought programs that gave
correct answers for all possible inputs.

One evolved (100% correct, general) solution simplified to
the following:

(EXEC.DO*TIMES (CODE.LENGTH EXEC.S)

INTEGER.STACKDEPTH CODE.YANKDUP)

This solution uses an EXEC.DO*TIMES loop in conjunction
with the EXEC.S combinator to build an expression on the
EXEC stack that contains the instruction INTEGER.STACKDEPTH

exactly Fibonacci(N) times. When the expression is then
executed, each time the INTEGER.STACKDEPTH instruction is

encountered it looks at the depth of the INTEGER stack and
pushes that value onto the INTEGER stack, thus implement-
ing a simple counter mechanism.

Another evolved (100% correct, general) program exploited
the same trick of using the EXEC.S combinator to generate
Fibonacci(N) instances of something, in this case copies
of the NAME.= instruction on the CODE stack. It then uses
CODE.STACKDEPTH to produce the appropriate output. This
program simplified to the following:

(EXEC.DO*COUNT EXEC.S CODE.QUOTE NAME.=

CODE.DO*COUNT CODE.YANKDUP CODE.DO*COUNT

CODE.CONS CODE.STACKDEPTH)

4.4 Parity
In this problem we seek solutions to the general even par-

ity problem: given a list of any number of Boolean values
on the CODE stack, we seek a BOOLEAN answer of TRUE if an
even number of the provided values are TRUE, and an answer
of FALSE otherwise.

We used a random selection of 64 inputs of length 8. In
one run that included no penalty for non-termination we
evolved a solution that simplified to the following:

(CODE.DO* EXEC.Y BOOLEAN.=)

This program does not terminate until it hits the execu-
tion step limit. It solves the even parity problem for even
length inputs, and the odd parity problem for odd length
inputs. CODE.DO* places all of the inputs onto the BOOLEAN

stack. EXEC.Y then triggers an infinite loop of BOOLEAN.=,
which hits the evaluation limit but leaves the proper output
on the top of the stack.

Because we sought solutions that generalize for all input
lengths we conducted additional runs in which the inputs
were randomly padded with up to 4 additional FALSEs. We
also imposed mild penalties for non-termination.

One evolved (100% correct, general, terminating) solution
simplified to the following:

((((CODE.POP CODE.DO BOOLEAN.STACKDEPTH)

(EXEC.DO*TIMES) (BOOLEAN.= BOOLEAN.NOT))))

In this program CODE.POP removes the program itself from
the CODE stack, onto which it was pushed prior to execu-
tion. CODE.DO then takes the input values from the CODE

stack and, by executing them, places them on the BOOLEAN

stack. BOOLEAN.STACKDEPTH then puts the number of in-
puts on the INTEGER stack, which provides the bound for the
EXEC.DO*TIMES loop that uses BOOLEAN.= and BOOLEAN.NOT

to produce the correct answer.

4.5 Expt(2,n)
Push3’s built-in iteration instructions allow for concise so-

lutions to several of our test problems, but we were also in-
terested in seeing how some of the other control structure
primitives might be used to solve essentially iterative prob-
lems. We therefore conducted runs on the problem of deter-
mining 2n from an input of n without the use of either the
EXEC or CODE versions of DO*TIMES, DO*COUNT, or DO*RANGE.
Although we did not find any solutions that generalized be-
yond the fitness cases in this particular set of runs, we did
find several novel approaches to the computation required
for error-free performance on the fitness cases (n = 1 to
n = 8). One such approach is embodied in the following
evolved solution:
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((INTEGER.DUP EXEC.YANKDUP EXEC.FLUSH 2

CODE.LENGTH) 8 (2 8 INTEGER.* INTEGER.DUP)

(EXEC.YANK 8 INTEGER.* ((CODE.IF (EXEC.ROT))

BOOLEAN.DEFINE EXEC.YANK)))

This first duplicates the input argument and then uses
the EXEC.YANKDUP instruction to push onto the EXEC stack
a duplicate of an element deep in the EXEC stack. The code
that is “yanked” depends on the input:

• case 1: It will yank and then execute “2” (and then,
because of the EXEC.FLUSH, it will halt).

• case 2: It will yank and then execute “CODE.LENGTH,”
pushing the top-level length of the program (4), and
then halt.

• case 3: It will yank and then execute “8” (and then
halt).

• case 4: It will yank and then execute “(2 8 INTEGER.*

INTEGER.DUP),” pushing 16 (twice), and then halt.

• case 5–8: For all of these cases EXEC.YANKDUP will yank
out a copy of the large expression on the bottom of the
stack, transforming the EXEC stack to:

(EXEC.YANK 8 INTEGER.* ((CODE.IF (EXEC.ROT))

BOOLEAN.DEFINE EXEC.YANK)) EXEC.FLUSH 2

CODE.LENGTH 8 (2 8 INTEGER.* INTEGER.DUP)

(EXEC.YANK 8 INTEGER.* ((CODE.IF (EXEC.ROT))

BOOLEAN.DEFINE EXEC.YANK))

Cases 5–8 then continue as follows:

• case 5: It will yank the CODE.LENGTH, put it in front of
“8 INTEGER.*, and as CODE.LENGTH is 4 it will put 32
on the stack. Later EXEC.ROT will take the EXEC.FLUSH
and put it before the EXEC.YANK which would otherwise
pop the result 32 from the INTEGER stack

• case 6: Instead of CODE.LENGTH, it will yank 8 and do
the same as with case 5 (i.e. multiply by 8).

• case 7: It will yank “(2 8 INTEGER.* INTEGER.DUP),”
which produces 16, multiply by 8, and then proceed as
before.

• case 8: It will yank out the large expression on the
bottom of the stack again, the cumulative effect of
which (through a chain of events too convoluted to
recount in detail) will be to calculate the answer 256
and to finish with EXEC.FLUSH.

Note that cases 5, 6 and 7 use the same code for getting
the values out as is used for cases 2, 3 and 4. This program
uses several forms of code self-manipulation, indexing, and
re-use (cases 2, 3 and 4 are applied to 5, 6 and 7). The
program also uses the EXEC instructions in interesting ways:
EXEC.YANK and EXEC.YANKDUP are used as gotos or subrou-
tine calls, EXEC.ROT is used to manipulate execution flow,
and EXEC.FLUSH (which empties the stack) is used to halt
the program and to prevent the result from being deleted.

4.6 Sorting a list
The problem of sorting is an interesting one with a his-

tory in the literature (for a recent survey see [1]). In an
initial attempt to evolve a sort program we provided inputs,
which were lists of consecutive but scrambled integers start-
ing with 0, on the CODE stack and looked for the output
on the CODE stack after program execution (as was done for
the “reversing a list” problem above). We found the follow-
ing program, which is completely dependent on our peculiar
choice of fitness cases:

(CODE.LENGTH CODE.POP EXEC.DO*COUNT

(CODE.FROMINTEGER CODE.APPEND))

This program actually ignores the input, aside from its
length, and generates a list of consecutive integers of the
appropriate length. While clever, this was clearly not what
we wanted. We used a more diverse set of fitness cases but
found that the problem was difficult in the form in which
it was presented. We conjectured that this was because the
representation demanded fairly sophisticated list processing;
for example one has to ensure that no items are lost and that
the list’s length is maintained while using list-manipulation
instructions that can easily violate these constraints. We
had better success with an alternative scheme (see [1]) in
which we stored the list to be sorted in an external data
structure upon which the following instructions could oper-
ate:

• INTEGER.LIST-SWAP: Takes 2 integers indices, which
are interpreted modulo the list length (as are all indices
below), and swaps the indexed elements.

• INTEGER.LIST-LENGTH: Pushes the length of the input
list (which is constant for each fitness case) onto the
INTEGER stack.

• INTEGER.LIST-GET: Takes an integer index and pushes
the indexed number onto the INTEGER stack.

• INTEGER.LIST-COMPARE: Takes two indices and re-pushes
the one that indexes the greater element.

Under this re-formulation sort algorithms emerge quite
readily. One of the evolved solutions simplified to the fol-
lowing:

(INTEGER.LIST-LENGTH INTEGER.SHOVE

INTEGER.STACKDEPTH CODE.DO*RANGE

INTEGER.YANKDUP INTEGER.DUP EXEC.DO*COUNT

INTEGER.LIST-COMPARE INTEGER.LIST-SWAP)

This solution was evolved using fitness cases between 4
and 8 elements long but it is 100% correct and it general-
izes to arbitrary lists of arbitrary length. For an input of

length n it executes exactly n ×
(n−1)

2
comparisons, which

makes it equivalent to many commonly used sort routines
(e.g. bubble sort and linear insertion sort). With the addi-
tion of an efficiency component to the fitness function it may
be possible to evolve novel O(n× log(n)) sorting algorithms.

5. CONCLUSIONS
The Push3 EXEC stack supports powerful and parsimo-

nious control regimes through explicit manipulation of the
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stack of expressions that are queued for execution. These
control regimes include standard iteration, several forms of
recursion based on code manipulation, combinators, and
named subroutines, and less conventional strategies that are
difficult to classify. A straightforward genetic programming
system that produces Push3 programs (PushGP) can rou-
tinely produce solutions that incorporate a range of these
control regimes; examples were provided here for revers-
ing and sorting lists and for computing factorials, Fibonacci
numbers, powers of 2, and parity. Application of these tech-
niques to real-world problems is currently in progress.

The examples presented here demonstrate the range and
novelty of the results that Push3 can routinely produce, but
this paper does not provide specific comparisons to other
approaches. Comparisons with respect to certain aspects of
performance have been provided elsewhere for earlier ver-
sions of Push (e.g., scalability and modularization in [28]);
the extension of these studies for Push3 is a topic for future
work. The primary contributions of Push3, however, con-
cern the overall range of the results that it can produce and
the comparative elegance and generality of the mechanisms
by which it can produce them. Comparative assessment of
these contributions may be best performed after a larger
body of results has been produced.

Implementations of the Push programming language and
the PushGP genetic programming system are available freely
from the Push project home page.7
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