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ABSTRACT 
This paper describes a genetic algorithm (GA) that evolves 
optimized sets of coefficients for one-dimensional signal 
reconstruction under lossy conditions due to quantization. 
Beginning with a population of mutated copies of the set of 
coefficients describing a standard wavelet inverse transform, the 
genetic algorithm evolves a new set of coefficients that 
significantly reduces mean squared error (relative to the 
performance of the selected wavelet) for various classes of one-
dimensional signals. 
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1. INTRODUCTION 
Wavelets [5] have been shown to achieve high compression ratios 
without significant information loss. For many practical problems, 
however, it is necessary to represent a given signal using a smaller 
range of possible values. Quantization [2] is the process of 
mapping signals to a smaller number of bits. 

Errors introduced into a transformed signal via quantization 
may have an unacceptably adverse effect upon the quality of that 
signal when subsequently reconstructed via the wavelet inverse 
transform. A growing amount of empirical evidence suggests that 
non-traditional inverse transformations may do a better job of 
compensating for the negative effects of quantization, resulting in 
higher fidelity signal reconstruction. In particular, recent studies 
suggest that the use of adaptive and/or non-standard filters may 
significantly reduce quantization error by exploiting 
characteristics common to specific classes of signals. 

The goal of this investigation was to develop a GA capable 
of modifying the coefficient sets describing a standard wavelet 
inverse transform to evolve a novel inverse transform exhibiting 
significantly reduced mean squared error (MSE) for a given class 
of reconstructed one-dimensional signals. In particular, this GA 
automatically compensated for errors introduced into the original 
signal by quantization.  
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2. RESULTS 
I conducted a series of tests to demonstrate the performance of 
GA-evolved transforms relative to that of the Daubechies-4 
(Daub4) wavelet inverse transform [1], which is described by the 
following sets of floating-point coefficients: 

h2 = {0.4830, 0.8365, 0.2241, -0.1294} 
g2 = {-0.1294, -0.2241, 0.8365, -0.4830} 

Previous research suggested that the solution space in the 
immediate neighborhood of the Daub4 wavelet was rich with 
potentially superior combinations of coefficients for novel inverse 
transforms. For this reason, my GA initialized each of the g2 and 
h2 coefficients for each inverse transform in generation 0 of each 
test to a randomly mutated version of the corresponding 
coefficient from the Daub4 wavelet. Every individual evolved 
during this investigation thus consisted of two vectors (g2 and 
h2), each of which contained exactly four floating-point values. 

Each test was characterized by a particular combination of 
the following parameters: 
1. SIGNAL CLASS. Signal classes used in this study included 

ramp functions and sine waves. 
2. G specified the (maximum) number of generations executed 

by the GA. For each of the tests performed for this study, G 
= 10000. 

3. M specified the number of candidate solutions in each 
generation. For each of the tests performed for this study, M 
= 500. 

4. PC specified the percentage of individuals in the next 
generation subjected to the crossover operator. For each of 
the tests performed for this study, PC = 100% * (M-1)/M = 
99.8%. 

5. PM specified the probability of mutation. 
6. N specified the size of the training population (i.e., the 

number of signals used to train the GA). 
The GA copied the best individual from the current generation 
into position 0 of the next generation. The GA selected the 
remaining M-1 individuals from the current generation via 
tournaments of three randomly-selected individuals. These 
individuals were then probabilistically subjected to the crossover 
operator according to PC. To complete crossover, the GA 
randomly selected two parent individuals; identified separate 
crossover points for the g2 and h2 vectors; and exchanged the 
coefficients from each parent individual located at or beyond each 
vector’s crossover point.  

Finally, each coefficient of these M-1 individuals was 
subjected to a mutation operator with probability PM, which was 
allowed to vary dynamically between 0% and 10%, according to 
evolutionary progress. The mutation operator multiplied a selected 
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coefficient by a small factor F randomly selected from a Gaussian 
distribution between 0.97 and 1.03; on rare occasion, the mutation 
operator also negated the coefficient. Restricting the magnitude of 
the mutation operator in this manner biased the GA to explore the 
space of non-wavelet transforms immediately adjacent to the 
Daub4 wavelet. 
 
2.1 Class 1: Ramp Signals 
Ramp signals are important for a variety of applications [3]. Tests 
1, 2, and 3 populated the training set with N ramp signals, each of 
which contained 50 sampled values. Table 1 summarizes the 
performance (as measured by the total MSE for N reconstructed 
signals) of each novel inverse transform described by a GA-
evolved best-of-run coefficient set. These test results demonstrate 
the following key points: 
a) Novel inverse transforms exist that outperform the Daub4 

wavelet inverse transform for reconstructing arbitrary ramp 
signals subjected to quantization error. 

b) The GA is capable of automatically optimizing coefficient 
sets for these novel inverse transforms. 

 
2.2 Class 2: Sine Waves 
The detection of periodic behavior in one-dimensional signals 
continues to be a research topic of considerable importance [4]. 
Tests 4 through 12 populated the training set with various types of 
sine waves characterized by three parameters: frequency (f), gain 
(g), and offset (d). For these tests, each vector v consisted of 50 
sampled values. Table 2 summarizes the performance of GA-
evolved best-of-run coefficient sets optimized under conditions 
described by various combinations of f, g, and d, relative to that 
of the Daub4 wavelet described above. Tests 4, 5, and 6 
demonstrated that the GA was capable of identifying coefficients 
for inverse transforms that significantly outperformed the Daub4 
inverse transform for the task of reconstructing sine waves 
characterized by different f values. For this signal class, GA-
optimized transforms were capable of reducing MSE in the 
reconstructed signal by up to 97.2%.  

Tests 7, 8, and 9 showed that, when the training set consisted 
of sine waves that differed only according to the offset d, little 
advantage was to be gained from evolving novel coefficients for 

inverse transforms. For these three tests, the performance of the 
inverse transforms described by the evolved coefficient sets 
improved upon that of the Daub4 inverse transform by an average 
of only 2.17%. 

Tests 10, 11, and 12 demonstrated the GA’s ability to evolve 
coefficients for inverse transforms that significantly outperformed 
the Daub4 inverse transform for the task of reconstructing sine 
waves that differed only in the gain value g. For this class of 
signal, GA-optimized inverse transforms were capable of reducing 
MSE in the reconstructed signal by 90.6% or more. 
 
3. CONCLUSIONS 
Collectively, the results of this study suggested that the number of 
coefficient sets capable of producing high-fidelity signal 
reconstructions under lossy conditions may be much larger than 
previously believed. The novel coefficient sets evolved during this 
study violated wavelet properties required for perfect 
reconstruction, such as invertibility and non-redundancy. 
Nevertheless, the corresponding inverse transforms consistently 
outperformed the Daub4 inverse transform, producing 
significantly higher fidelity reconstructions of periodic signals, as 
measured by the percentage reduction in the MSE of each 
reconstructed signal. The results of this study strongly encouraged 
the identification and use of evolved inverse transforms for signal 
reconstruction under lossy conditions subject to quantization. 
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Table 1. Ramp Signal Test Results 
 

     Test          N    MSE (Daub4)   MSE (evolved)  % Improvement 
1 100 5505.1  4838.9  12.1% 
2 25 1376.0  1215.0  11.7% 
3 10 552.4  522.9  5.35% 

 
 

Table 2. Sine Wave Test Results 
 

   Test               N          g              d         f         MSE (Daub4)     MSE (evolved)     % Improvement 
4 100 128 256 0...999 1096.19 86.69 92.1% 
5 25 128 256 0...999 269.00 20.18 92.5% 
6 10 128 256 0...999 124.55 3.55 97.2% 
7 100 128 0...255 1000 5207.62 5034.13 3.33% 
8 25 128 0...255 1000 1203.68 1182.69 1.74% 
9 10 128 0...255 1000 403.67 397.82 1.45% 
10 100 0...127 256 1000 1123.89 88.19 92.2% 
11 25 0...127  256 1000 274.49 24.90 90.9% 
12 10 0...127 256 1000 108.94 10.30 90.6%
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