
Evolutionary Change in Developmental Timing

Kei Ohnishi
Kyushu Institute of Technology

680-4 Kawazu, Iizuka,
Fukuoka 820-8502, JAPAN

k ohnisi@pluto.ai.kyutech.ac.jp

Kaori Yoshida
Kyushu Institute of Technology

680-4 Kawazu, Iizuka,
Fukuoka 820-8502, JAPAN

kaori@ai.kyutech.ac.jp

ABSTRACT
This paper presents a mutation-based evolutionary algo-
rithm that evolves genotypic genes for regulating develop-
mental timing of phenotypic values. The genotype sequen-
tially generates a given number of entire phenotypes and
then finishes its life at each generation. Each genotypic
gene represents a cycle time of changing probability to de-
termine its corresponding phenotypic value in a life span of
the genotype. This cycle time can be considered to be a
sort of information on developmental timing. Furthermore,
the algorithm has a learning mechanism for genotypic genes
representing a long cycle time to change the probability
more adaptively than those representing a short cycle time.
Therefore, it can be expected that the algorithm brings dif-
ferent evolution speed to each phenotypic value. The experi-
mental results show that the algorithm can identify building
blocks of uniformly-scaled problems sequentially and also
that a population size required for solving the problems is
quite small but the number of function evaluations required
is sub-exponential scale-up with the problem size.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms

Keywords
developmental timing, genotype-phenotype-mapping

1. INTRODUCTION
Genetic and evolutionary algorithms (GEAs) evolve sev-

eral spatial patterns at different levels such as a genotype,
a phenotype, and a population by using genetic and evo-
lutionary operators. Those spatial patterns as objects of
evolution are related to structures of optimization problems
that GEAs solve. Therefore, genetic and evolutionary oper-
ators have to be adapted to spatial patterns that optimiza-
tion problems involve. For instance, fixed recombination op-
erators that do not adapt linkage of building blocks (BBs)

Copyright is held by the author/owner.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

have been shown to be inadequate and scale-up exponen-
tially with the problem size [5].

Since the problems that GEAs must overcome are related
to spatial patterns, a lot of effort has been made to develop
methods for directly handling spatial patterns. However, a
temporal element also exists in GEAs, which is a generation.
Although a generation is just a general idea independent of
the structures of optimization problems and not an object
of evolution, only it can give timing of genetic and evolu-
tionary events to individuals. As steady-state and genera-
tional genetic algorithms show different convergence proper-
ties [4], controlling relationships between timing of genetic
and evolutionary events and actual events occurring should
contribute to change and control of the spatial patterns.

In biological development, appropriate temporal patterns
of developmental events that interact with each other such
as gene expressions and cell divisions produce appropriate
forms. When biological evolution occurs in some species, a
developmental system must change to another. Since bio-
logical evolution is continuous, the change of developmental
systems should also be continuous. Heterochrony is a bi-
ological term that refers to changes in timing and rate of
developmental events, and it is insisted that heterochrony is
one of the key ideas to explain biological evolution [3].

In case of structure optimization problems such as trees
and networks, since all possible structures can be evaluated,
temporal elements as in biological development can be used
by considering growth of structures to be a process like bio-
logical development. Therefore, genotype-phenotype-mapping
including interactions between multiple decoding processes
(developmental events) [1] can be used for structure opti-
mization problems.

In this paper we seek to bring temporal elements as in
biological development to GEAs for optimization problems
with a fixed structure.

2. EVOLUTIONARY ALGORITHM
We present a mutation-based evolutionary algorithm that

evolves genotypic genes for regulating developmental timing.

2.1 Individual
We introduce a life span within a generation into individ-

uals. The individual generates several phenotypes during its
life span and finishes its life. The individual consists of two
kinds of vectors. One is a vector whose element represents a
cycle time of changing probability to determine a phenotypic
value. This vector is a primary object that evolutionary op-
erators are applied to, and its elements can be considered

1561



to be a sort of information on developmental timing. We
call this vector and its element a genotype and a genotypic
gene, respectively. The other is a vector whose element is
probability to determine a phenotypic value. For instance,
in case of bit optimization, probability to generate zero at a
certain phenotypic position is an element of the vector. The
length of the genotype and probabilistic vector is the same
as that of a phenotype. Each position in those two vectors
corresponds to the same position in a phenotype.

2.2 Individual’s Development
A time within a life span of the individual is denoted by

n ∈ [1, N ], where N is the algorithm parameter representing
the end of life of the individual. Also, let (t1, t2, · · · , t�)
and (p1, p2, · · · , p�) be the genotype and probabilistic vector,
respectively, where ti is an integer within [1, N − 1] and pi is
a real value within [0, 1]. The genotype does not vary within
a life span of the individual but the probabilistic vector vary
within it.

Initialization of the individuals is done as follows. The
genotypes are randomly generated. All elements of the prob-
abilistic vectors are set 0.5 in case of bit optimization prob-
lems, which stands for probability with which zero is gen-
erated. A phenotype is generated using the probabilistic
vector at each time within a life span of the individual. Af-
ter every generation of a phenotype, it is checked whether
or not it is a time to change probability for generating each
phenotypic value by comparing a current time, n, and each
element of the genotype, ti. If n is equal to ti, pi is modified.

Modification of the elements of the probabilistic vector
is done as follows. Suppose that the i-th genotypic gene is
ti ∈ [1, N − 1]. Modification of the i-th element of the prob-
abilistic vector, pi, is carried out every ti time step during
development of the individual. When time is a × ti, the
modification is done using the phenotypes generated within
(a − 1) × ti to a × ti and their fitness values. For example,
when ti is 2, if the phenotypic values at the i-th position in
the phenotypes generated within time 1 to 2 are 1 and 0,
and also if the phenotypic value at the i-th position in the
phenotype with the best fitness value between those two,
pvb, is 0, the probability with which 0 is generated on the
i-th position in the phenotype, pi, gets increased in propor-
tion to the number of 0 within the two phenotypic values
generated, num0. If pvb is 1, pi gets decreased in propor-
tion to the number of 1, num1. The new probability, pnew

i ,
is determined by the following equation:

pnew
i =

j
pi + C × num0 if pvb = 0,
pi − C × num1 if pvb = 1,

where C is a constant and the algorithm parameter. That
can be regarded as a kind of a learning process.

The best fitness value among the generated phenotypes’
during a life span of the individual is set the fitness value of
the individual and then the individual proceeds to a selection
phase.

2.3 Mutation and Selection Operators
The mutation operator is applied to each element of both

the genotype and probabilistic vector. The mutation rate
for the i-th element of both of them, pmi, is the same, and
it is determined using the i-th element of the genotype, ti ∈
[1, N − 1]. The mutation rate, pmi, is determined by the

following equation:

pmi = 1 − ti

N

This equation means that the smaller a cycle time is, the
bigger the mutation rate is, and the mutation rate is always
greater than 0.

The mutation to the genotype randomly changes an el-
ement’s value. The mutation to the probabilistic vector
sets an element’s value 0.5. Using the mutation operator,
a parent-individual generates M child-individuals. When a
population size is P , M ×P child-individuals are generated
within a generation.

The selection operator selects P individuals with better
fitness values from among M × P child-individuals plus P
parent-individuals as the next population.

3. EXPERIMENTS AND CONCLUSIONS
The key point of the presented evolutionary algorithm is

to allow each phenotypic value to adapt at different speed
within a generation and consequently evolve at different
speed over generations. This characteristic would be suit-
able for solving hard uniformly-scaled problems sequentially.
Therefore, we experimentally examine the performance of
the evolutionary algorithm to 4-bit trap deceptive functions
with tightly linked m BBs [2] and loosely linked m BBs.

The experimental results showed that the presented evo-
lutionary algorithm can solve the sub-problems sequentially
and also that the scale-up is sub-exponential with the prob-
lem size in terms of the number of function evaluations. The
results suggest that control of temporal patterns of devel-
opmental events help GEAs with a learning mechanism to
sequentially identify BBs of optimization problems with a
fixed structure.

4. ACKNOWLEDGMENTS
This work is sponsored by Ministry of Public Manage-

ment, Home Affairs, Post and Telecommunications.

5. REFERENCES
[1] A. Cangelosi. Heterochrony and adaptation in

developing neural networks. In Proceedings of the
Genetic and Evolutionary Computation Conference
1999, pages 1241–1248, San Francisco, CA, 1999.
Morgan Kaufmann Publishers.

[2] K. Deb and D. E. Goldberg. Analyzing deception in
trap functions. Foundations of Genetic Algorithms,
2:93–108, 1993.

[3] S. J. Gould. Ontogeny and Phylogeny. Harvard Univ.
Press, Oxford, 1977.

[4] G. Syswerda. A study of reproduction in generational
and steady state genetic algorithms. In Foundations of
Genetic Algorithms, pages 94–101, San Mateo, CA,
1991. Morgan Kaufmann.

[5] D. Thierens and D. E. Goldberg. Mixing in genetic
algorithms. In Proceedings of the 5th International
Conference on Genetic Algorithms (ICGA-93), pages
38–45, 1993.

1562


