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Abstract. We explore the development of an exhaustive directed search
of state space based on concepts from evolutionary computation. A brief
investigation of the evolvability of an evolutionary algorithm illustrates
that evolutionary algorithms are capable of reaching optimal solutions
when the diversification operator (which may be a pseudo-operator which
acts over many different diversification steps) is capable of reaching, at
every improvement point, another, more improved population element.
Moreover, we demonstrate that the upper limit on the time to the op-
timal point is identical to that of an erhaustive directed search. This
search is exhaustive, but borrows the diversification operator from the
evolutionary algorithm and proceeds in such a way that, if left alone,
it would exhaustively search the space. However, we demonstrate that
this type of search can perform comparably with the evolutionary algo-
rithm, avoiding deceptive search tracks that might trap an evolutionary
algorithm.

1 Introduction

For nearly thirty years evolutionary systems have been under increasing inves-
tigation and scrutiny. A great deal of progress has occurred in the interven-
ing years, with a great many different algorithms and methods being proposed
and investigated [3,4,5,6]. Almost in parallel, and quite separately, optimization
methods have been under extreme study, again resulting in the production of
a number of promising methods [7]. Both groups of research papers have simi-
lar goals - general methods of performing the function optimizations, where the
function may or may not correspond to a physical system, device, or perfor-
mance. The main difference between the two approaches is the dependence on
strict provable methodologies. Those functions for which provable optimization
methods are available are limited, and some that provably work often times fail
to reach global optima in acceptable computation times. Evolutionary systems,
which may reach optima quickly, suffer from the lack of “provable” results in the
sense that a global optima has been identified and is irrefutable without external
knowledge.

In evolutionary systems, it is often assumed that provable optimization tech-
niques cannot be applied, due to the highly complex nature of the fitness func-
tions in question. As a result, a number of different methods have been used for



optimization, though a careful anaysis of the number of computations expected
is not carried out very often. Rather, an analysis of the amount of computation
actually used is performed in some studies while other studies contain analyses of
the quality of the optimization performed. However, the authors of this study are
not aware of an analysis of the absolute required computation one might expect
for a given evolutionary optimization method. Such an analysis would be very
useful in generating upper bounds on the computation time of the evolutionary
approach.

A central issue in optimization is the path through state space. Branch and
bound methods use the exclusion of large subspaces during a walk through state
space to direct the path through state space. Evolutionary methods are directed
as a result of the absolute and relative qualities of the individual states. However,
it is not currently known how one might determine whether or not a particular
set of individuals is capable of being connected, in a reasonable computation
time, to another individual with a higher state. Thus, it is not known how to
determine when to terminate the current simulation outside of using a heuristic.
Moreover, if a suitable “next step” is to be found, it is not clear that the time
required wouldn’t be comparable to that found using an exhaustive search of all
potential solutions that might come from the use of a particular diversification
1 operator.

In this paper, we examine the paths through state space taken by a simple
genetic algorithm and an exhaustive method called directed exhaustive search.
We compare the two methods in terms of their expected or maximal comple-
tion times. We demonstrate that the performance of the genetic algorithm is
comparable to that of the directed exhaustive search, though the GA’s progress
can be rerouted by deceptive evalutation functions, taking it away from possible
improvement. Section 2 will explore the expected time fo the computation. Sec-
tion 3 will examine the application of applicable algorithms to various functions
containing single maxima with deceptive and non-deceptive fitness functions.
Finally, Section 4 will offer some concluding remarks.

2 Searching Through State Space

2.1 The Evolutionary Algorithm

In general, the state of any evolutionary algorithm (EA) may be represented by
a single vector 7. This vector may be separated into various sections, each of
which carries with it a score commensurate with using that section as input to
a fitness function (for instance if the vector represents multiple elements of a
population). Under this type of formalism, the evolutionary algorithm can be
characterized by two operators: diversification and reproduction. The diversifi-
cation operator is responsible for changing the vector in a way that may include
copies, swaps, and variations. We are not immediately concerned here with the

! Here diversification is used to refer to any operation which alters an individual, which
may include crossover.



details of how one might produce any specific diversification, so we ignore this for
the remainder of the study. The second operator specifically carries out copies of
large parts of the vector commensurate with the relative scores of each of these
parts of the vector.

Let us suppose, for concreteness, that the vector @ is the open product of
N other vectors Z7. Le.

V=T QT - QIN. (1)

We may assume that each vector Z} is a complete system vector, representing a
potential solution to the problem at hand. In a uniform population, all elements
77 will be identical. Now, let us suppose that all elements are part of a degenerate
class C; of identical or nearly identical fitness. The immediate question is the
number of iterations required to move to another higher, potentially degenerate
class of elements. For this to occur, one of the vector regions must transition
to the next class. Let us assume that the probability of transferring to the next
class Ciy1 is Tji41- Then, the expected number of changes to an individual sub-
1

vector T} required for a change to the next class is (T) = T The number of

iterations required is thereby (N;) =
still <Ne> = T;

i1

Now, suppose that we have a set of M different classes, each of which has
a probability of transitioning to the next class given by Tj ;11. Then the total
expected number of evaluations required to complete the entire set of transitions
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~7—— while the number of evaluations is
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M-1 1
T; = 2
< total) ; Tz’,i—i—l ( )

This gives the total expected time that the evolutionary algorithm should take
assuming that each step is capable of being reached with a single diversification.
This, of course, assumes that all states are ordered, or that each state leads
exactly to the next. Moreover, this assumes that no other competing states are
present.

Let us assume that the diversification operator is discrete, and so the set of
vectors capable of being reached by the diversification operator can be enumer-
ated. Let us define the diversification set of a class C; as the set of all vectors
such that may be reached by an element of C; by a single diversification. Let us
denote this as S (D, C;) where D represents the diversification operator. Then,
it is trivially the case that

Ci CS(D,C;). 3)

Let Bg(p,c;),c; represent the set of all elements in S (D, C;) whose fitness exceeds
that of C;. Now, let us assume that the diversification operator is unweighted.
Then, the probability of a diversification leading to a new vector whose fitness
exceeds that of the original vector is

_ |Bs(p,cy).c:

Tt = 5D, 0] )



where |e| represents the cardinality of the set. Thus, in particular, if each set C;
overlaps only C;_1 and C;;1 then

'S (D,Ci) )

Ttotal

As an example, in the case that we have binary vectors of length 50 elements,
single point mutation, no crossover, and fitness values equal to the size of a block
of ones starting from the most significant bit, this would reduce to

(Tiotat) = Z TO = 49 % 50 = 2450 (6)
assuming that the population started uniformly from a binary set containing
only zeros.

2.2 Directed Exhaustive Search

In actuality, the power of the evolutionary algorithm comes from two differ-
ent areas. First, the evolutionary algorithm is capable of exploring a number
of different areas which may be remote from the current areas using diversity
operators that are not necessarily bounded by locality. Second, the evolutionary
algorithm is capable of focusing exploration on areas of relatively high fitness,
or basing exploration on areas of relatively high fitness. Together, this can allow
the algorithm to find optima that are remote from the given starting point, and
to relatively quickly find those optima whose location in state space is close in
mutation space to the current set of vectors.

Thus, in order to develop an exhaustive search algorithm, it is important
to try to create an algorithm that is similar to the evolutionary algorithm in
the sense that it can explore remote areas of the state space and that it can
concentrate its efforts on areas that seem to be promising. It is also advantageous
to correct the two main flaws with evolutionary algorithms: it cannot be proven
that there are no other states that will improve the state of the algorithm, and so
the algorithm will continue running until a “convergence condition” is reached;
the evolutionary algorithm has no memory, and so when led down deceptive
paths, has no way to recover?.

% In order to have an idea of how damaging this last point might be, we can consider
the completion of a complex evolution from a single starting point. If there are NV
branching points along the “correct” evolutionary path leading either down the path
or down a dead-ending path, then the probability of choosing the correct path is p”,
assuming that each decision has a probability of p of going in the right direction. This
means that the likelihood of making it to the optimal design falls off exponentially
with increasing complexity, and any algorithm incapable of retracing its steps once
the end of an incorrect path has been reached is increasingly unlikely to make it
to the end. If there are only two choices per branching point, ten branching points



We define a directed exhaustive search (DES) in the following way. As with the
EA, we assume the existence of a diversification operator D. Such an operator,
we assume, has a countable number of potential states to which a vector may
be mapped. As a result, all the states may be enumerated, and the operator’s
effects cycled through. We represent the set of all vectors which may be reached
by D in a single mutation by S (D, 7). Now, as before, we suppose the existence
of a set of vectors whose fitness exceeds that of the vector ¥, and denote this
by Bg(p,v), 7"

The exhaustive search proceeds as follows:

1. The first vector is placed on a stack. The mutation number of the vector is
initialized to zero.

2. If the mutation number is at the maximal mutation, the vector is popped of
the stack and discarded. Go to step 3 otherwise go to Step 6.

3. If the stack is empty, stop. The maximum cannot be reached.

4. A vector is produced from the top vector on the stack using the vector’s
mutation number. If this has the maximum value, stop. The maximum has
been reached.

5. If the new vector’s fitness exceeds the top vector, it is added to the stack
in order of its fitness. The new vector’s mutation number is set to zero, and
the stack pointer is reset to the top. If the maximal vector has been reached,
stop.

6. The stack pointer is moved down.

7. Go to step 2.

Now, if a second vector is to be found, the number of evaluations cannot exceed
|S (D, ?)|— |BS(D )T ‘ Thus, if a path containing an optimium is found, the
number of computations required to reach the end of the path is bounded by
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where N is the number of states on the path. The two will be comparable depend-

ing on the relative size of |BS( D.T)T! ‘ If the size of this set is relatively large,
then the evolutionary algorithm can be expected to converge significantly faster

than the exhaustive search algorithm; that is, if the dispersion of BS( D m}) T

in S (D, »t) is concentrated in a region that is unlikely to be found, the evolu-
tionary algorithm may converge more quickly. Moreover, if the sizes of the sets

mean that the probability of making it to the end is less than 1073, This means that
1000 complete runs need to be implemented in order to be able to expect a single
run to succeed.



S (D, w}) are identical (which depends on the nature of the diversity operator),
then equation (7) reduces to

Ttotal < (M - 1) |S (D; 7z)| . (8)

This is a hard upper limit on computation. As indicated above, the perfor-
mance as compared to the expected performance of the evolutionary algorithm
depends on the size of Bs( D E’) i In fact, the two are related by

<Ttotal> _ |S(DJCZ)|
S(D,’U,‘)|‘

)

Tiotat  |Bs(p,cy).c:

This gives the expected relative performance of the two algorithms. As the size
of Bg(p,c;),c; is defined by the fitness function, and those of S (D,v;) and
S (D, C;)are defined by the diversity operator D, the relative performance is
strongly affected by the diversification operator. Put another way, as the sizes
of S(D,v;) and S (D, C;) increase, the relative advantage, if any, of the evolu-
tionary algorithm decreases significantly, particularly if the growth of S (D, C;)
outstrips that of Bg(p,c;),c;, which is likely to be the case.

3 Comparing Performance

We examine the performance of the two methodologies using a very simplistic
GA and the DES algorithm. We choose as our sample space a binary search
space of vectors of length fifty (50), one hundred (100), and one hundred fifty
(150) digits. We choose a particularly simple diversification operator so that
enumeration of the mutations is straightforward. In our case, this operator is a
single point mutation operator. The use of a genetic algorithm which does not
include crossover allows us to explore the effects in directly comparable ways.
Our genetic algorithm utilizes a mutation probability of 10%, fifty individuals,
and proportional selection.

We choose as our fitness functions two minimally deceptive functions and
one very deceptive function. The functions are described as follows:

1. This function returns values equal to the size of the block of ones beginning
at the most significant bit.

2. This function returns the value of the largest block of ones in the vector.

3. This function returns the size of the block of ones beginning at the most sig-
nificant bit, up to half the size of the string. However, if the most significant
bit-half of the number is populated by zeros, it returns a number equal to
twice the number of one’s beginning at the least significant bit. We refer to
this function as the “Narrow Peak” function.

The first two functions are remarkably simple, though the first function has fewer
paths to the maximum than does the second. The third is particularly deceptive,
with the basin of attraction shrinking exponentially as a function of the overall



search space size. We compare the overall performance when the algorithms
are initialized with random vectors and when they are initialized with all-zero
vectors. Because of their simple form, we can analyze the performance in terms
of the convergence time and the percentage optimized, and compare these values
to predicted expected completion times.

As indicated earlier, we can make rather specific predictions as to the number
of expected evaluations needed for optimality for rather simple functions. In the
case of function 1, we estimate forty-nine steps between the zero vector and the
maximum vector. According to the analysis in Section 2.1, this should yield an
average of 2450 evaluations for the maximal state to be reached with a stochastic
algorithm. Moreover, predicted values for 100 and 150 elements are 9900 and
22350, respectively. Table 1 gives the actual evaluation times, and Fig.1 gives
histograms of completion times for both the exhaustive and GA paradigms with
random and non-random initial points. Note that Fig.1 excludes the uniformly
distributed initial state for DES. This is because only one vector can be expected
to be created using this algorithm, and so no interesting detail can be found
about this performance from the graph.

Table 1. Performance of the DES and the GA on the first function for different vector
sizes, with comparisons to predicted values for EA performance. The GA performance
is very close to the predicted values (within one standard deviation). In this case, the
DES does very well, finding the final values much faster than the GA. We initialize
DES uniformly with a zero vector.

|Bits|Pred. Eval.| DES | GA |
50 2450 1275 | 2639 + 332

100 9900 5050 | 9840 £+ 1012
150 22350 |11325|21570 + 1864

This agreement between the GA completion times and the EA expectation
times is striking. In each case, the average value is less than one standard de-
viation away from the predicted value. The DES algorithm performs very well
on function 1, producing completion times (from an initial vector containing all
zeros) well under both the predicted EA and actual EA performance.

Figure 2 illustrates similar data for function 2.

The Narrow Peak Function has a very different behavior than the other
functions. This is because for a random sampling of vectors, it is very unlikely
that the basin of attraction for the highest peak will be found. In fact, if the
function has N components, then, N 2% elements in a space of 2Vare in the
basin of attraction. That means that the relative size is N 2*%, which falls off as
N increases. It is the case that for moderate values of IV, it is very unlikely that
this basin will be reached. Moreover, the probability of a single element from a
GA reaching the basin of attraction is NP if the distance from the basin is p.



Speed of Optimal Vector Identification (Fitness Evaluations)
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‘/"{Mm‘“\ 50 Bits| 100 Bits 150 Bits|

Uo Fitness Evaluations 563 0 Fitness Eval uations 1663 0 Fitness Evaluations 323
Random GA Initidization Random GA Initiaization Random GA Initialization
50 Bits 100 Bits 150 Bits
UO ‘Fitness Evalations 563 00 FitnessEvaluations  1ge3 00 FitnessEvaluations  37¢3
Random DES Initialization Random DES Initialization Random DES Initialization
50 Bits 100 Bits 1508Bits|

L

0 [o)
100  Fitness Evauations 4100 0 Fitness Evaluations ~ 6e3 0 Fitness Evaluations

Fig. 1. This Figure illustrates the completion time of the algorithms on differently
sized instances of Functionl

As we’ve seen, this translates to an expected time to reach the basin (from static
vectors) to NP, which, for moderate values of N and p can be quite large.

As aresult, we examine the performance of two different regimes on this func-
tion. The first is the random initial vector regime, and the second is the uniform
zero vector regime. We report in Table 2 the performance of both algorithms on
these regimes.

Table 2. performance of the DES and GA on the uniform initial state regime. While
the GA runs faster than the DES when it finishes, owing to its not wasting time
exploring the dead end, it moves toward the higher peak fewer times

DES| GA
Comp | Comp
50 | 2200 | 100% |67.8% | 1439 + 252
100| 8775 | 100% |38.5% | 5403 + 723
150 | 19725 | 100% |33.4% |11707 £ 1261

Bits|DES It. GA TIt.

As we can see in the table, the GA performance is faster than that of the DES,
but less reliable. Moreover, the increase in speed seems to be less than a factor of



Speed of Optimal Vector Identification (Fitness Evaluations)
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Fig. 2. This Figure illustrates the completion time of the algorithms on differently
sized instances of Function 2

two in this case, which is an indication of the number of tracks traversed by the
DES. On the other hand, the overall computation of the DES seems to decrease
with increasing dimension (which is an indicator of problem complexity). Thus,
in order to reach the final correct maximum, it would seem that the DES has a
competitive advantage.

One interesting fact is that, as expected, neither the GA nor DES were able
to find the optimum at all for N > 10. This is a reflection of the small basis of
attraction.

4 Discussion and Concluding Remarks

This paper has primarily explored a single small detail in evolutionary systems.
That is, that evolutionary systems have a specific amount of computation re-
quired to reach a global maximum, and that this computation time is predictable
in the general sense. This is a very useful detail because it helps us understand
how long one might expect an evolutionary algorithm to take before reaching a
global maximum. Our suprising result is that it is possible to take an exhaus-
tive approach using the genetic operators from evolutionary systems to explore
the entire space that the evolutionary system is likely to reach. This exploration
seems to require an amount of computation that is comparable (the same or-
der of magnitude) to that required by an evolutionary algorithm to find the



maximum, but does not seem to suffer from premature convergence, or trapping
from deceptiveness. Moreover, while the method explores a limited search space,
which may be slightly more limited than that explored carefully by the EA, the
method is provable in the sense that one can be certain that at the completion
of the search, the vector found is the optimum capable of being found by the
diversification operator in question using the initial population of the EA.

The method can be compared to other exhaustive or directed methods, such
as tabu search [2] or branch-and-bound [1] methods. In the first, certain steps
in state space become taboo for a period of time based on their effectiveness in
producing better vectors. This is meant to guarantee that the search algorithm
moves beyond the local global maxima, and explores other maxima. The main
weakness with this method is that once the taboo is removed, the vectors can
come back to the same area, and there is no guarantee that the entire search
space will be explored. Branch and bound methods require the development
of a bounding condition which, at best, works for a small subset of potential
problems. In our case, there is no limitation on which problems this may be
applied to, and the method is not redundant in the sense that it creates loops
which the system may go through as temporary restrictions are lifted.

Another criticism which may be levied against this method is its inability to
handle neutral mutations, which have been seen to be very useful and important
in evolutionary systems. However, it is indeed the case that the dependance on
neutral mutations is, in effect, a dependence on an extended diversification op-
erator which can take many more steps than the specific diversification operator
in use. The remedy for handling such mutations is to create a more robust muta-
tion operator capable of the desired number of mutations. As we have seen, the
expected delivery time is not significantly lengthened by using the exhaustive
method over strict evolutionary methods, so the potential increase in computa-
tion would seem to be unimportant.

We have also seen that the analysis presented here is capable of making
rather accurate predictions of the behavior of the system under the action of a
GA. However, this predictive power comes primarily from a knowledge of the
fitness function, which gives us the number of vectors yielding improvements.
Without this knowledge, the prediction of the behavior of the system’s con-
vergence time could not be done. Thus, it is an important consideration when
designing evolutionary systems; limiting the number of plateaus would seem to
be a requirement for quick convergence.
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