Relationship between Genetic Algorithms
and Ant Colony Optimization Algorithms

Osvaldo Gémez and Benjamin Baran

Centro Nacional de Computacién
Universidad Nacional de Asuncién
Paraguay
{ogomez, bbaran}@cnc.una.py
http://www.cnc.una.py

Abstract. Genetic Algorithms (GAs) were introduced by Holland as a
computational analogy of adaptive systems. GAs are search procedures
based on the mechanics of natural selection and natural genetics. Ant
Colony Optimization (ACO) is a metaheuristic inspired by the forag-
ing behavior of ant colonies. ACO was introduced by Dorigo and has
evolved significantly in the last few years. Both algorithms have shown
their effectiveness in the resolution of hard combinatorial optimization
problems. This paper shows the relationship between these two evolu-
tionary algorithms inspired by different nature phenomena.

1 Introduction

A Genetic Algorithm (GA) is a randomized search method modeled on evolution
and introduced by Holland [1]. GAs are being applied to a variety of problems
and becoming an important tool in combinatorial optimization problems [2]. Ant
Colony Optimization (ACO) is a metaheuristic inspired by the foraging behavior
of ant colonies [3]. In the last few years, ACO has empirically shown its effec-
tiveness in the resolution of several different NP-hard combinatorial optimization
problems [4]. So, GAs and ACO are evolutionary algorithms inspired by different
nature phenomena. One example of a well known NP-hard combinatorial opti-
mization problem is the Traveling Salesman Problem (TSP). This paper uses
the TSP as a case study problem as previous works did [3, 5, 6].

The present work is organized as follows. The TSP is summarized in Section
2. In Section 3, the Simple Genetic Algorithm (SGA) and the Omicron Genetic
Algorithm (OGA) are described. New strategies for OGA are proposed in Section
4. The standard ACO approach, the Population-based ACO (P-ACO) and the
Omicron ACO are presented in Section 5. The relationship between GAs and
ACO algorithms is shown in Section 6. Finally, the conclusions are given in
Section 7.

2 Study Problem

In this paper the symmetric Traveling Salesman Problem (TSP) is used as a
case study problem for comparing the analyzed algorithms. The TSP can be

2 Osvaldo Gémez and Benjamin Bardn

represented by a complete graph G = (N, A) with N being the set of nodes,
also called cities, and A being the set of arcs fully connecting the nodes. Each
arc (i,7) is assigned a value d(i, j) which represents the distance between cities
i and j. The TSP then is the problem of finding a shortest closed tour visiting
each of the n = |N| nodes of G exactly once. For symmetric TSPs, the distances
between the cities are independent of the direction of traversing the arcs, that
is d(i,j) = d(j,4) for every pair of nodes. Suppose that r, is a TSP tour or
solution, then I(r,) denotes the length of the tour r,.

3 Genetic Algorithms

Genetic Algorithms (GAs) were introduced by Holland as a computational anal-
ogy of adaptive systems [1]. GAs are search procedures based on the mechanics
of natural selection and natural genetics. Next, the Simple Genetic Algorithm
(SGA) presented by Goldberg in [2] - which may be considered as a standard
approach - is described.

3.1 Simple Genetic Algorithm

The Simple Genetic Algorithm (SGA) has a population P of p individuals P,
representing solutions of an optimization problem. The SGA uses a binary codifi-
cation of these solutions or individuals represented by strings. In a maximization
context, the value of the objective function of every individual of P is considered
its fitness. An initial population is chosen randomly, then a set of simple opera-
tions that uses and generates successive Ps is executed iteratively. It is expected
that P improves over time until an end condition is reached.

The operators of the SGA are reproduction, crossover and mutation. Re-
production is a process in which p individuals are selected with a probability
proportional to their fitness to be parents. Crossover is a process in which 2
different parents are iteratively selected from the set of p parents to swap in-
formation between them to generate 2 new individuals (offspring). This is done
choosing randomly a point of break for the parents and swapping parts between
them. Then mutation is applied to every offspring. Mutation is the alteration of
the bits of an individual with a small predefined probability, sometimes known as
mutation coefficient (mc). These new altered individuals compose the new pop-
ulation P. Next, the main pseudocode of the SGA is presented, where comments
start with a % symbol.

Pseudocode of the SGA

g=0 % Initialization of the generation counter
P =Initialize population() % Random generation of p individuals
REPEAT UNTIL end condition
F :Reproductz'on(P) % Selection of p parents through a roulette
S = CT‘OSSOT}GT(F) % Swap of information between different pairs of parents
M =Mutation(S) % Alteration of individuals' bits with probability mc
P =Update population(M % M is copied to P (P = M
p bop

g=g+ 1 % Increment of the generation counter

Relationship between GAs and ACO 3

3.2 Omicron Genetic Algorithm

The literature in evolutionary computation has defined a great variety of GAs
that maintain the same philosophy, varying operators and adding different prin-
ciples like elitism [2,7]. Using the Simple Genetic Algorithm as a reference, this
Section presents a new version, the Omicron Genetic Algorithm (OGA), a Ge-
netic Algorithm designed specifically for the TSP.

Codification. The OGA has a population P of p individuals or solutions, as
the SGA does. Every individual P, of P is a valid TSP tour and is determined
by the arcs (i,j) that compose the tour. Unlike the SGA, that uses a binary
codification, the OGA uses an n-ary codification. Considering a TSP with 5
cities c1, ¢2, ¢3, ¢4 and ¢5, the tour defined by the arcs (cl, ¢4), (¢4, ¢3), (€3, ¢2),
(c2,¢5) and (cb, cl) will be codified with a string containing the visited cities in
order, i.e. {cl,c4,¢3,¢2,c5}.

Reproduction. The OGA selects randomly two parents (F; and F5) from
the population P, as does an SGA reproduction. The selection of a parent is
done with a probability proportional to the fitness of each individual P,, where
fitness(P,) o 1/1(P,). Unlike the SGA, where two parents generate two off-
spring, in the OGA, both parents generate only one offspring. In the SGA, p off-
spring are obtained first to completely replace the old generation. In the OGA,
once an offspring is generated, it replaces the oldest element of P. Thus, the
population will be a totally new one in p iterations and it would be possible to
consider this population a new generation. In conclusion, the same population
exchange as in the SGA is made in the OGA, but in a progressive way.

Crossover and Mutation. The objective of the crossover in the SGA is that
the offspring share information of both parents. In the mutation, the goal is
that new information is added to the offspring, and therefore is added to the
population. In the SGA, the operators crossover and mutation are done sepa-
rately. To facilitate the obtaining of offspring who represent valid tours in OGA,
the crossover and the mutation are done in a single operation called Crossover-
Mutation (CM). Even so, the objectives of both operators previously mentioned
will stay intact.

To perform CM, the arcs of the problem are represented in a roulette, where
every arc has a weight w or a probability to be chosen. CM gives a weight w
of 1 to each arc (i,j) belonging to set A, i.e. w;; = 1 V(i,j) € A. Then, a
weight of O/2 is added to each arc (i, j) of Fy, i.e. w;; = w;; +O/2 V(i,j) € Fi,
where Omicron (O) is an input parameter of the OGA. Analogously, a weight
of O/2 is added to each arc (i,j) of F». Iteratively, arcs are randomly taken
using the roulette to generate a new offspring. While visiting city ¢, consider
N; as the set of cities not yet visited and that allows the generation of a valid
tour. Therefore, only the arcs (i,j) Vj € N; participate in the roulette, with
their respective weights w;;. Even so the crossover is done breaking the parents

4 Osvaldo Gémez and Benjamin Bardn

and interchanging parts in the SGA instead of taking arcs iteratively with high
probability from one of the parents in the OGA, the philosophy of both crossover
operators is the same.

To generate an offspring S1, an arc of one of the parents will be selected with
high probability (similar to crossover). But it is also possible to include new
information since all the arcs that allow the creation of a valid tour participate
in the roulette with probability greater than 0 (similar to mutation). The value
0/2 is used because there are two parents, and then wpe; = O + 1 can be
interpreted as the maximum weight an arc can have in the roulette (when the
arc belongs to both parents). When the arc does not belong to either parent, it
obtains the minimum weight wy,;, in the roulette, that is wy,;, = 1. Then, O
determines the relative weight between crossover and mutation.

Formally, while visiting city i, the probability of choosing an arc (,5) to
generate the offspring S; is defined by equation (1).

wi; e .
ZVhENi Wik ifj € N

Pij = (1)
0 otherwise.

Next, the main pseudocode of the OGA is presented.
Pseudocode of the OGA (version 1)

g=0 % Initialization of the generation counter
P =Initialize population() % Random generation of p individuals
REPEAT UNTIL end condition

REPEAT p TIMES

{Fi1, F5} =Reproduction(P) % Selection of 2 parents through a roulette
Sl = CM({FI, Fg}, 1) % Generation of 1 offspring using { F'y, Fo}
P =Update population(S;) % Sy replaces the oldest individual of P
g=g9g+1 % Increment of the generation counter

The above version was designed to emphasize the similarity with the SGA.
However, the next version is simpler and completely equivalent.

Pseudocode of the OGA (version 2)

u=20 % Initialization of the iteration counter
P =Initialize population() % Random generation of p individuals
REPEAT UNTIL end condition
{F1, FQ} :Reproduction(P) % Selection of 2 parents through a roulette
S1 = CM({Fl, FQ}, 1) % Generation of 1 offspring using { F'1, Fa }
P =Update population(Sy) % S1 replaces the oldest individual of P
u=u+1 % Increment of the iteration counter

Example of an OGA’s Iteration. To clarify the previous procedure, an ex-
ample considering the TSP with 5 cities mentioned above is presented next.
O =4 and p = 4 are considered for this case.

Relationship between GAs and ACO 5

Reproduction: The example assumes an initial population P = {P,} com-
posed of 4 randomly selected individuals with their respective fitnesses f,. This
initial population is presented next.

First randomly chosen individual: P, = {c1,c4,¢3,¢2,¢5} with f1 = 10

Second randomly chosen individual: P> = {cl,¢3,¢2,¢5,c4} with fo =8

Third randomly chosen individual: P; = {¢3,¢b,cl, 2,4} with f3 =1

Fourth randomly chosen individual: Py = {¢2,¢5,c4,cl,¢3} with fs =5

Two parents are randomly selected through a roulette, where the weights of
the individuals in the roulette are their fitness. It is assumed that individuals P;
and Py are selected to be parents.

Fy ={cl,c4,c3,c2,c5} = {(cl, cd), (c4,3), (3, 2), (¢2,cb), (c5,cl) }

Fy, ={c2,¢5,c¢4,cl,c3} = {(c2,¢5), (5, c4), (¢4, cl), (c1,¢3),(c3,c2)}

CM. Iteration 1: First, an initial city is randomly chosen to perform CM.
c4 is assumed as the initial city. Then, A4 is composed by {cl, 2,3, c5}, i.e.
the set of not yet visited cities. The arc (¢4, ¢2) has a weight of 1 in the roulette
because it does not belong to either parent. Arcs {(c4, ¢3), (¢4, ¢5)} have a weight
of 1+ % = 3 in the roulette because they belong to one parent. Finally, the
arc (c4,cl) has a weight of 1 + O = 5 in the roulette because it belongs to
both parents. It is assumed that the arc (¢4, ¢3) is randomly chosen through the
roulette.

CM. Iteration 2: N3 is composed by {cl,c2,¢5}. The arc (c3,¢5) has a
weight of 1 in the roulette because it does not belong to either parent. The arc
(c3,cl) has a weight of 1 + € = 3 in the roulette because it belongs to one
parent. Finally, the arc (¢3,¢2) has a weight of 1+ O = 5 in the roulette because
it belongs to both parents. It is assumed that the arc (¢3, ¢2) is randomly chosen
through the roulette.

CM. Iteration 3: NV, is composed by {cl, ¢5}. The arc (c2, c1) has a weight
of 1 in the roulette because it does not belong to either parent. Finally, the
arc (¢2,c5) has a weight of 1 + O = 5 in the roulette because it belongs to
both parents. It is assumed that the arc (¢2,cl) is randomly chosen through the
roulette.

CM. Iteration 4: N, is composed by {c5}. The arc (c1,c5) has a weight
of 1+ % = 3 in the roulette because it belongs to one parent. The arc (cl, ¢5) is
chosen because it is the unique arc represented in the roulette.

In conclusion, the new offspring is S; = {4, €3, ¢2,¢1,c5} = {(c4, ¢3), (3, ¢2),
(c2,cl), (c1,cb), (cb,cd4)}. Notice that S; has 3 arcs of Fy {(c4,c3), (¢3,¢2),
(c1,¢5)} and 2 arcs of Fy {(¢3,¢2),(c1,¢5)}. Also, S has an arc {(¢2,c1)} that
does not belong to either parent. This shows that the objectives of the operators
(crossover and mutation) have not been altered.

Population Update: The new individual S; replaces the oldest individual
P;. Next, the new population is shown.

P, ={c4,c3,¢2,cl,¢5} with f1 =7

P, ={cl,¢3,¢2,c5,c4} with fo =8

P; ={c3,c5,cl,c2,c4} with f3 =1

Py ={c2,c¢5,c¢4,cl,c3} with f4 =5

6 Osvaldo Gémez and Benjamin Bardn

The entire procedure above is done iteratively until an end condition is satis-
fied. Note that OGA is another version of GA like many other published versions.

4 New Strategies for OGA

New strategies referred to crossover, population update and heuristic information
are proposed for OGA. Considering that the most relevant aspect mentioned

above is the crossover of multiple parents, this new version is called Multi-Parent
OGA (MOGA).

4.1 Crossover

This Section considers the generation of the offspring through the crossover of
multiple parents. This idea is not new and it was proposed before [7]. More
specifically, this strategy proposes that the p individuals of P are parents with-
out any roulette intervention. Obviously, this crossover of p parents eliminates
competition among individuals during reproduction. Nevertheless, the new pop-
ulation update strategy proposed in the next Section will solve this competition
problem. Considering that there are p parents instead of 2, a weight of O/p is
added to each arc (i, j) belonging to every Fy, i.e. wij = wi; +O/p V(i,j) € F.
This way, when an arc belongs to the p parents, the weight of the arc will be
Wmaee = O + 1. When an arc does not belong to either parent, the weight of
the arc will be w,;,, = 1. This is done to maintain the weight limits (w4, and
wmin)-

4.2 Population Update

To reduce the possibilities that a bad individual enters the population, a com-
petition strategy among offspring is considered. This new strategy replaces the
most traditional parent competition strategy. This strategy consists on the gen-
eration of ¢ offspring {Si, ..., St} in one iteration. Only the offspring with the
best fitness (Spest € {S1,..-,St}) is chosen to enter P. As in the OGA popu-
lation update strategy, Spes: replaces the oldest individual of the population.
Notice that the same effect is obtained (competition among individuals) with a
different strategy.

4.3 Heuristic Information

Good TSP tours are composed with high probability by arcs with short length.
Thus, it seems a good idea to give them better weights in the roulette. Then,
considering the heuristic information n;; = 1/d(i, j), the probability of choosing
an arc (i, j) to generate the offspring S; is now defined by equation (2).

o, B
WM .]
EvneN- w}h'nfh itje Ni-

0 otherwise.

Relationship between GAs and ACO 7

Where the input parameters o and 3 are defined as the relative influence
between the weight of genetic information and the heuristic information 7. Next,
the main pseudocode of the MOGA is presented.

Pseudocode of the MOGA

u=20 % Initialization of the iteration counter
P =Initialize population() % Random generation of p individuals
REPEAT UNTIL end condition
S = CM(P, t) % Generation of ¢ offspring using P as parents
Shest = best element of S
P = Update population(Sbest) % Shest replaces the oldest individual of P
u=u-+1 % Increment of the iteration counter

So far several versions of GAs have been analyzed. Before the relationship of
both algorithms is presented, ACO versions are considered in the next Section.

5 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of
ant colonies [3]. In the last few years, elitist ACO has received increased attention
by the scientific community as can be seen by the growing number of publications
and its different fields of application [4]. Even though there exist several ACO
variants, the one that may be considered a standard approach is presented next
[8].

5.1 Standard Approach

ACO uses a pheromone matrix 7 = {7;;} for the construction of potential good
solutions. The initial values of T are set 7;; = Tinit V(i,7), where 7 > 0. It
also takes advantage of heuristic information using 7;; = 1/d(i, j). Parameters
a and B define the relative influence between the heuristic information and the
pheromone levels. While visiting city 4, A; represents the set of cities not yet
visited and the probability of choosing a city j at city ¢ is defined as

i je N,
(3)
0 otherwise

At every generation of the algorithm, each of the m ants constructs a complete
tour using (3), starting at a randomly chosen city. Pheromone evaporation is
applied for all (4, j) according to 7;; = (1 — p) - 7;, where parameter p € (0, 1]
determines the evaporation rate. Considering an elitist strategy, the best solution
found so far rpes; updates 7 according to 7;; = 73 + Ar, where At = 1/1(Tpest)
if (i,7) € rpest and A7 = 0 if (4,5) ¢ Tpest- For one of the best performing
ACO algorithms, the MAX-MZIN Ant System (MMAS) [6], minimum and
maximum values are imposed t0 T (Timin and Timaz)-

8 Osvaldo Gémez and Benjamin Bardn

5.2 Population-based ACO

The Population-based ACOs (P-ACOs) were designed by Guntsch and Mid-
dendorf [8] for dynamic combinatorial optimization problems. As the standard
approach, the initial values of 7 are set 7;; = Tinit V(¢,5), where 754 > 0. The
P-ACO approach updates in a different way the pheromone information than
the standard approach. The P-ACO derives the pheromone matrix through a
population @ = {Q.} of ¢ good solutions or individuals as follows. First, at
every iteration each of the m ants constructs a solution using probabilities given
in equation (3), the best solution enters the population (). Whenever a solution
Qin enters the population, then 7;; is updated according to 7;; = 735 + A7, where
At = Aif (i,5) € Qin and A7 = 0if (4,5) ¢ Qin. After the first ¢ solutions
enter (), i.e. the initialization of the population is finished, one solution Qg
must leave the population at every iteration. The solution that must leave the
population is decided by an update strategy. Whenever a solution @, leaves
the population, then 7;; = 7;; — A7, where AT = A if (4, §) € Qout and AT =0 if
(4,7) ¢ Qout- P-ACO replaces the pheromone evaporation used by the standard
approach in this way. The value A is a constant determined by the following
input parameters, size of the population ¢, minimum or initial pheromone level
Tinit and maximum pheromone level 7,,4,. Thus, A = (Tas — Tinit) /4 [8]-

FIFO-Queue Update Strategy. The FIFO-Queue update strategy was the
first P-ACO strategy designed [8], trying to simulate the behavior of the stan-
dard approach of ACO. In the FIFO-Queue update strategy, Q.. is the oldest
individual of (). Next, the main pseudocode of the P-ACO FIFO-Queue is pre-
sented.

Pseudocode of the P-ACO FIFO-Queue

u=~0 % Initialization of the iteration counter
Q =Initialize population() % Generation of g individuals
REPEAT UNTIL end condition
T = Update pheromone matriz(Q) % Update 7 using Q
T =Construct solutions(t) % Generation of m solutions using T
Thest = best solution of T
Q = Update population(Tyest) % The st replaces the oldest individual of Q
u=u+1 % Increment of the iteration counter

Quality Update Strategy. A variety of strategies was studied in [9], one of
them is the Quality update strategy. The worst solution (considering quality)
of the set {Q, Qin} leaves the population in this strategy. This ensures that the
best solutions found so far make up the population.

5.3 Omicron ACO

In the search for a new ACO analytical tool, Omicron ACO (OA) was developed
[5]. OA was inspired by MMAS, an elitist ACO currently considered among

Relationship between GAs and ACO 9

the best performing algorithms for the TSP [6]. It is based on the hypothesis
that it is convenient to search nearby good solutions [6].

The main difference between the MMAS and the OA is the way the algo-
rithms update the pheromone matrix. In the OA, a constant pheromone matrix
70 with 79 = 1, ¥i,j is defined. OA maintains a population Q@ = {Q} of ¢
individuals or solutions, the best unique ones found so far. The best individual
of) at any moment is called *, while the worst individual Q. ors¢-

In the OA the first population is chosen using 7°. At every iteration a new
individual @, is generated, replacing Qorst € @ if Qneqw is better than Q. orst
and different from any other @, € Q. In other words, if Qnew ¢ @ = Qnew
replaces the worst element of @, where Q% = {Q, Qnew }- After K iterations, 7
is recalculated using the input parameter Omicron (O). First, 7 = 7°; then, O/q
is added to each element 7;; for each time an arc (i,j) appears in any of the ¢
individuals present in (). The above process is repeated every K iterations until
the end condition is reached. Note that 1 < 7;; < (1 + O), where 7;; = 1 if arc
(4,7) is not present in any @, while 7;; = (1 + O) if arc (¢,) is in every Q.

Even considering their different origins, OA results similar to the P-ACO
algorithms described above [8,9]. The main difference between the OA and the
Quality Strategy of P-ACO is that OA does not allow identical individuals in
its population. Also, OA updates 7 every K iterations, while P-ACO updates 7
every iteration. Next, the main pseudocode of the OA is presented.

Pseudocode of the Omicron ACO

u=~0 % Initialization of the iteration counter
Q =Initialize population() % Generation of g individuals
REPEAT UNTIL end condition
7 =Update pheromone matriz(Q) % Update T using Q
REPEAT K TIMES
Qnew =Construct a solution(t) % Generation of 1 solution using 7
Ir Qnew ¢ Q
Q = Update population(Qnew) % Qnew replaces the worst individual of QF
u=u+1 % Increment of the iteration counter

6 Relationship between GAs and ACO

Considering a P-ACO FIFO-Queue and a MOGA with the same population size
(i.e. ¢ = p), the same number of ants or offspring (i.e. m = t) and the same
Tij, Wi limits (i.e. Tyee = O +1 and Tjni = 1), the amount of pheromones
an ant deposits and the genetic weight of an individual are the same also (i.e.
(Tmaz — Tinit)/q@ = O/p). Paying attention to the pheromone matrix update and
the roulette generation explained before, it is easy to see that both procedures
are identical. Besides, the solution construction procedures and probabilities for
both algorithms, shown by equations (2) and (3), are the same.

Although the initialization of the population of the P-ACO FIFO-Queue is
not entirely at random as the MOGA, this aspect is irrelevant for these algo-

10 Osvaldo Gémez and Benjamin Bardn

rithms main functionality. Consequently, both algorithms are the same as it is
shown in the next pseudocodes, where the CM is divided in two stages.

Pseudocode of the MOGA

u=20 % Initialization of the iteration counter
P =Initialize population() % Random generation of p individuals
REPEAT UNTIL end condition
R =Generate roulette(P) % Generation of the roulette using P as parents
S = CM(R, t) % Generation of ¢ offspring through the roulette
Shest — best element of S
P =Update population(Sbest) % Shest replaces the oldest individual of P
u=u+1 % Increment of the iteration counter

Pseudocode of the P-ACO FIFO-Queue

u=~0 % Initialization of the iteration counter
Q =Initialize population() % Generation of ¢ individuals
REPEAT UNTIL end condition
7 = Update pheromone matriz(Q) % Update T using Q@
T =Construct solutions(T) % Generation of m solutions using 7
Tpest = best solution of T
Q = Update population(Tyest) % Thes: replaces the oldest individual of Q
u=u+1 % Increment of the iteration counter

6.1 New Strategy for MOGA

In this Section a new population update strategy for MOGA is proposed. Con-
sider that Spes: replaces the worst element of the set {P, Spes:} instead of the
oldest individual, i.e. if fitness(Spest) is smaller than fitness(Pyorst) then Spes
replaces Pyorst in P, where Py,opst is the worst individual of P. This new strat-
egy can be seen as a super-elitism due to the fact that P is composed by the
best individuals found so far. Thus, this version is called Super-Elitist MOGA
(EMOGA). At this point it is easy to conclude that EMOGA is equivalent to
the Quality version of P-ACO.

6.2 New Strategy for EMOGA

An undesired characteristic of EMOGA is that one very good individual can
dominate the population. In this way, the genetic diversity, a desirable property
of GAs, is strongly reduced. A simple way to avoid this problem is to modify the
population update strategy. So, in this new strategy Spes: replaces Py ors only if
it is different to the whole population. Due to the competition among individuals
imposed by this population update strategy, the offspring competition is useless
and will be eliminated. Besides, because of the little dynamism caused by this
population update strategy, the roulette will be generated every H iterations
without significant consequences.

Relationship between GAs and ACO 11

This new version is called Diversified EMOGA (DEMOGA) because it forces
genetic diversification. The main pseudocode of the DEMOGA and the OA are
presented next to show that both algorithms are similar.

Pseudocode of the DEMOGA

u=~0

P =Initialize population()

REPEAT UNTIL end condition
R =Generate roulette(P)

REPEAT H TIMES
S1 =CM(R,1)
Ir Sl ¢ P

P =Update population(S;)

u=u+1

Pseudocode of the Omicron ACO

u=~0

Q =Initialize population()

REPEAT UNTIL end condition

T = Update pheromone matriz(Q)

REPEAT K TIMES

Qnew = Construct a solution(t)

Ir Qnew ¢ Q

Q = Update population(Qnew)

u=u+1

To clarify the origins and equivalences
chart is presented in Figure 1.

% Initialization of the iteration counter

% Random generation of p individuals

% Generation of the roulette using P as parents

% Generation of 1 offspring using the roulette

% S replaces the worst individual of { P, S1}

% Increment of the iteration counter

% Initialization of the iteration counter

% Generation of ¢ individuals

% Update 7 using Q

% Generation of 1 solution using T

% Qnew replaces the worst individual of QF

% Increment of the iteration counter

of so many versions, a summarized

SGA OGA MOGA EMOGA DEMOGA
ACO MMAS P-ACO P-ACO OA
FIFO Queus Quality r

Fig. 1. Summarized chart for the versions of GAs and ACO

12

7

Osvaldo Gémez and Benjamin Bardn

Conclusions

This work shows that a version of Genetic Algorithm - MOGA -, designed sim-
ilarly to many others in the literature, is the same algorithm as a Population-
based ACO algorithm, called P-ACO FIFO-Queue. Besides, this paper explains
that the Omicron ACO is a Genetic Algorithm with multiple parents, super
elitism and forced genetic diversity.

Finally, it can be concluded that GAs and ACO algorithms use the same

principles to succeed in the combinatorial optimization problem TSP.

References

. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan

Press, Ann Arbor, MI (1975)

Goldberg, D. In: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley (1989)

Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-Heuristic. In Corne,
D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill, London
(1999) 11-32

Dorigo, M., Stiitzle, T.: The Ant Colony Optimization Metaheuristic: Algorithms,
Applications, and Advances. In Glover, F., Kochenberger, G., eds.: Handbook of
Metaheuristics. Volume 57 of International Series in Operations Research and Man-
agement Science. Kluwer Academic Publishers (2003)

Gémez, O., Bardn, B.: Arguments for ACO’s Success. In Cantid-Paz, E., Foster, J.A.,
Deb, K., Davis, D., Roy, R., O’Reilly, U.M., Beyer, H.G., Standish, R., Kendall, G.,
Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A.C.,
Dowsland, K., Jonoska, N., Miller, J., eds.: Genetic and Evolutionary Computation
— GECCO-2004. LNCS, Seattle, Springer-Verlag (2004) to appear

Stiitzle, T., Hoos, HH.: MAX-MZIN Ant System. Future Generation Computer
Systems 16 (2000) 889-914

Miihlenbein, H., Voigt, HM.: Gene Pool Recombination in Genetic Algorithms.
In Osman, I.H., Kelly, J.P., eds.: Proceedings of the Meta-heuristics Conference,
Norwell, USA, Kluwer Academic Publishers (1995) 53-62

Guntsch, M., Middendorf, M.: A Population Based Approach for ACO. In Cagnoni,
S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G., eds.: Applications of Evolution-
ary Computing, Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP, EvoSTim.
Volume 2279., Kinsale, Ireland, Springer-Verlag (2002) 71-80

Guntsch, M., Middendorf, M.: Applying Population Based ACO to Dynamic Opti-
mization Problems. In: Ant Algorithms, Proceedings of Third International Work-
shop ANTS 2002. Volume 2463 of LNCS. (2002) 111-122

