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Abstract. In order to study the dynamics of a three-sex (trisexual) mating 

system, we extend the heterogametic sex-determining mechanism, used in many 

species, to include three sexes: XX, XY and YY. In this model, non-like types 

may mate, but like-types may not mate. We compare the dynamics of this 

system to a Mendelian system under Hardy-Weinberg conditions, and coin the 

term Trisexual Equilibrium to describe a system state very similar to Hardy-

Weinberg Equilibrium. We construct computer simulations and mathematical 

models in an attempt to quantify the system’s dynamics, and conclude that 

three-sex systems are not stable over time; they are destined to converge to two-

sex systems. This conclusion is based on the fact that the less-represented 

homozygote's frequency variance (between adjacent generations) is positively 

linearly proportional to the respective frequency its self. 

 

1   Introduction 
 

"No practical biologist interested in sexual reproduction would be led to 

work out the detailed consequences experienced by organisms having 

three or more sexes; yet what else should he do if he wishes to 

understand why the sexes are, in fact, always two”       [1] 

 

Our motivation for this investigation stems from the realization that in some species, 

such as most fish, XX is female, and XY is male [2]. Under certain conditions, a YY 

individual may be produced, and in the case of fish, this usually develops into a male. 

However, for some amphibians, XX is male, XY is female, and YY is also female. It 

should be noted that in many of these species, sex is not purely chromosomally 

determined. Environmental pressures can force what would normally develop into an 

XX male, to develop into an XX female, but environmentally-influenced sex 

determination is beyond the scope of this paper. We are specifically interested in the 

emergent behavior of a hypothetical system where the YY type is not just another 

male or female, but is its own distinct sex, or “mating type”. In such a system, the 

terms “male” and “female” do not apply, so we will refer to the sexes by their 

notations XX, XY and YY. The XY sex is also referred to as the herterozygote, while 

the XX and YY sexes are sometimes referred to as the homozygotes. In this system, 

XX can only mate with XY and YY, XY can only mate with XX and YY, and YY can 
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only mate with XX and XY. We are interested in discovering the emergent 

characteristics of this “diploid trisexual mating system” (DTMS), in an attempt to 

address why such a system is not observed in nature today. Yeasts and fungi are 

known to have multiple mating types (sometimes numbering in the thousands), but the 

mechanics of these sex-determining systems are markedly different from the 

herterogametic system we are interested in studying [3]. 

 

A few authors have attempted to tackle similar problems qualitatively, but their 

models of multi-sex systems tend to be overly complicated, and are not conducive to 

reduction [4,5]. To investigate the stability of this three-sex system over time, we 

must isolate the system itself by using a perfectly flat fitness landscape. This prevents 

natural selection from acting on the population. In addition, we maintain the system 

under what we will refer to as "Hardy-Weinberg conditions" [6]: 

 

1) Each individual only lives for one generation. 

2) Each individual attempts to mate with exactly one random partner, during each 

generation. 

3) The individuals produce offspring at random, with equal probability. 

4) There is no migration out of or into the population. 

5) There is no mutation. 

6) There is no selection pressure other than that imposed by the mating system itself. 

 

For true Hardy-Weinberg Equilibrium to exist in a Mendelian system, one final 

assumption needs to be made about the population: its size must be infinite. In this 

case, all genotypes of subsequent generations have the same frequencies as the current 

generation. However, because we are interested in real world conditions, the models 

this investigation develops assume finite populations. 

 

For the rest of this paper, we will refer to a Mendelian system as one dealing with two 

alleles A and a, which can occupy one loci for a pair of chromosomes. Possible 

pairings are aa, aA and AA. The frequencies of these genotypes in the population are 

Faa, FaA and FAA, and their populations are Paa, PaA and PAA. Note that the major 

difference between the Mendelian system and the trisexual system is that the 

Mendelian system allows any individual (such as aA) to mate with any other 

individual (such as aA, aa, or AA). 

 

2   DTMS Simulation 
 

We constructed a computer model (A1) to simulate a DTMS under Hardy-Weinberg 

conditions.  

 

 

2.1   Algorithm A1: DTMS Simulation 

 
POPULATION_SIZE = 1000 
MAXIMUM_GENERATION = 1000 
 
Initialize POPULATION to be a random composition of XX, XY and 
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YY 
 
ITERATION = 0 
While ITERATION < MAXIMUM_GENERATION  
 Choose PARENT_PAIRS at random  
 Loop Until NEW_POPULATION is full 
  For each PARENT_PAIR, if they are not the same sex 
   Mate them and place their offspring in NEW_POPULATION 
   Break out of this For-Loop if NEW_POPULATION is full 
       EndFor 
 EndLoop 
 POPULATION = NEW_POPULATION 
 ITERATION = ITERATION + 1 
EndWhile 
 

After much experimentation, we found that on average, one of the homozygotes (XX 

or YY) tends to go extinct after roughly N/2 generations (N being the population 

size). Also, the population seemed to hover near an equilibrium of some sort, but not 

quite the Hardy-Weinberg equilibrium [6]. However, we are still left with the task of 

answering, “What is the mechanism causing these systems to converge to two-sex 

systems?” We first must quantify a DTMS more completely in order to determine the 

mathematical definition of the Trisexual Equilibrium we have observed in our 

simulations. 

 

3   Computing Trisexual Equilibrium Points 
 

Three mating types exist in the population: XX, XY and YY, each having the 

following respective frequencies: Fxx, Fxy and Fyy. Of course, Equation E1 must be 

satisfied at all times: 
  Fxx + Fxy + Fyy = 1   (E1) 
 

Knowing the mating type frequencies for the current generation, the expected 

frequencies for the subsequent generation can be predicted.  

 
Fxx’ = FxxFxy       (E2) 
Fxy’ = FxxFxy + 2FxxFyy + FxyFyy    (E3) 
Fyy’ = FyyFxy        (E4) 
 

For reference, the equivalent next-generation-frequency equations for a system 

subject to Hardy-Weinberg Equilibrium are: [Stern, 1943] 

 
Faa’ = Faa² + FaaFaA + ¼FaA² (E2-H) 
FaA’ = FaaFaA + ½FaA² + 2FaaFAA + FaAFAA (E3-H) 
FAA’ = FaAFAA + ¼FaA² + FAA² (E4-H) 
 
Faa’, FaA’ and FAA’ are inherently normalized, and do not need to be corrected by 

rescaling. However Fxx’ Fxy’ and Fyy’ are not normalized, such that their sum is equal 

to 1. Our model requires a population of fixed size from generation to generation, so 

these values must be normalized. Frequencies with a subscript of "2" refer to the 

normalized, next-generation frequencies: 

 
Fxx2 = Fxx’/(Fxx’ + Fxy’ + Fyy’)    (E5) 
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Fxy2 = Fxx’/(Fxx’ + Fxy’ + Fyy’)    (E6) 
Fyy2 = Fxx’/(Fxx’ + Fxy’ + Fyy’)    (E7) 
 
A Mendelian system under Hardy-Weinberg Equilibrium conditions, when perturbed 

away from equilibrium, will always reestablish equilibrium in a single generation 

[Stern, 1943]. For a DTMS, this is not the case. Convergence to ~99% of equilibrium 

is rather quick, on the order of fiver generations, but only truly converges as the 

number of generations approaches infinity. This makes it very difficult to compute the 

final equilibrium state of the system, given a starting state. However, one may note 

that this is a constrained system. In fact, under equilibrium, given one frequency, the 

other two frequencies are fixed quantities, and should also be computable.   

Substituting E2-4 into E5: 

 
                                                     FxxFxy 
Fxx == BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB   (E8) 
       FxxFxy + FxxFxy + 2FxxFyy + FxyFyy + FyyFxy 

 
              Fxy 
2 == BBBBBBBBBBBBBBBBBBBBB     (E9)    
     FxxFxy + FxxFyy + FxyFyy 

 
 

1 == Faa² + 2FaaFaA + FaA² + 2FaaFAA + 2FaAFAA + FAA² (E9-H) 
 

Therefore, if our “litmus test” equality (E9) is satisfied, then the system is in Trisexual 

Equilibrium, and all subsequent generations will have the same sex frequencies as the 

current generation (for a sufficiently large population). We derived the equivalent 

Hardy-Weinberg test, E9-H, for comparison. In a further continuation of the above 

development, we can also compute Trisexual Equilibrium points directly. For 

notational brevity, Let a = Fxx, b = Fxy, c = Fyy, and x = the unknown frequency.  

 
                   x 
2 == BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB   (E10)    
     ax + a(1 - a - x) + x(1 - a - x) 
 
0 == (-1)x² + (½ - a)x + (a - a²) (E11) 
 
     1 - 2Fxx + (-12Fxx² + 12Fxx + 1)½ 
Fxy = BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB   (E12) 
                    4 
 
      3 - 2Fxx - (-12Fxx² + 12Fxx + 1)½ 
Fyy = BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Where 0 ≤ Fxx ≤  ½ (E13) 
                    4 
 
For comparison, we derived the equivalent equations to E12 and E13, for a Mendelian 

system under Hardy-Weinberg Equilibrium: 

 
FaA = 2Faa½ - 2Faa (E12-H) 
FAA = 1 - (2Faa½ - Faa) (E13-H) 
 

It will be useful to us later if we take a moment to compute the bounds for Fxy, under 

Trisexual Equilibrium conditions. First, when Fxx = 0 and Fxx = ½, then Fxy = ½. 
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However, we will need to compute the zero of Fxy’s derivative with respect to Fxx in 

order to find the maximum value realized by Fxy under Trisexual Equilibrium, which 

happens to occur at the system’s balance point (Fxx = Fyy): 

 
dFxy    3 - 6Fxx - (-12Fxx² + 12Fxx + 1)½  
BBBB = BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB  = 0 
dFxx          (-12Fxx² + 12Fxx + 1)½  
 
Fxx = (3 - 3½)/6 ~ 0.2113 @ Fxy’s maximum 
 
Plugging this into for Fxx in E13 yields: max(Fxy) = 3½/3 ~ 0.5774, so our 

bounds for Fxy are:    ½ = Fxy = 3½/3. Similarly, for Fxy known, find Fxx: 
 
                         1 - Fxy + (1/Fxy² - 3)½ 
Fxx or Fyy = BBBBBBBBBBBBBBBBBBBBB    (E14) 
   2 
 
            1 - Fxy - (1/Fxy² - 3)½ 
Fyy or Fxx = BBBBBBBBBBBBBBBBBBBBB  Where ½ ≤ Fxy ≤ 3½/3     (E15)                            

2 
 

Note that equations E14 and E15 are ambiguous as to which frequency they refer. 

This is due to the symmetry of the system. If an arbitrary value is chosen for Fxy, there 

are two possible values for Fxx, and the same two possible values for Fyy. Of course, 

E16 and E17 are analogous to E12 and E13: 

 
      1 - 2Fyy + (-12Fyy² + 12Fyy + 1)½ 
Fxy = BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB   (E16) 
                     4 
 
      3 - 2Fyy - (-12Fyy² + 12Fyy + 1)½ 
Fyy = BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Where 0 = Fyy =  ½ (E17) 
                     4 
 

Figures 1 and 2 illustrate the nature of the curves (E12 - E17) graphically. Figure 2 

also includes the curves for a Mendelian system under Hardy-Weinberg Equilibrium 

(computed using E12-H and E13-H).  



http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

 

   

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Fxx and Fyy as functions of Fxy

Fxy

F
x
x
 a
n
d
 F
y
y

Fxx

Fyy

 
Fig. 1. Fxx and Fyy plotted as functions of Fxy, under Trisexual Equilibrium 

conditions 
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Fig. 2. Fxx, Fxy and Fyy plotted as functions of Fxx, under Trisexual Equilibrium 

conditions, compared to the equivalent frequencies under Hardy-Weinberg 

Equilibrium 

As a quick aside, it is easy to show that the mating efficiency of the trisexual system 

is ~ 57.7%, significantly more efficient than that of an equivalent two-sex system 

(50%). Note that as the three-sex system drifts away from the balance point, towards 

the extinction of one of the homozygotes, the mating efficiency decreases towards 

50%. For a trisexual system to have a significant advantage over a two-sex system, a 
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mechanism is needed to push the system back towards the balance point if it drifts 

away. From our experimentation thus far, it seems that such a mechanism does not 

exist in the system, and the rest of this paper is dedicated to showing just that. 

 

4   Generation-to-generation bias 
 

Our end goal is to discover, at the ground level, what is the fundamental pressure that 

forces a DTMS to converge to a two-sex system. One possible mechanism could be 

that for the less-represented heterozygote, a slight bias causes a higher probability of 

its frequency to decrease in the next generation, and for the more-represented 

heterozygote, an opposite bias might exist pushing it towards fixation. To gather 

evidence to this effect, we have modified with the model used in Algorithm A1 to see 

if, when started at an arbitrary Trisexual Equilibrium point, there is any such bias in 

the system. It begins with an Fxx of 0, computes the equilibrium Fxy and Fyy, then 

constructs the population based on these frequencies. It then allows mating to occur to 

construct the new population. Then Fxx is incremented, and the whole process is 

repeated until Fxx is equal to the maximum allowed value. The goal is to construct a 

dataset, from which the generation-to-generation statistics can be measured. Upon 

analyzing the mean generation-to-generation changes, no biases were observed, 

weighting for or against the less-represented homozygotes. 

 

To illustrate how strongly the DTMS system hovers near Trisexual Equilibrium, 

Figure 3 shows all three frequencies plotted as the system converges to two sexes 

(using Algorithm A1). The corresponding equilibrium frequencies are overlaid as dark 

black lines. The equilibrium frequencies were computed based on the actual Fxx for 

that generation, using equations E12 and E13. This validates our method for 

computing generation-to-generation statistics by repetitively starting the system at an 

equilibrium point and observing the change in the next generation. 

 

5   Lone remaining X homozygote 
 

To further explore this idea, we now examine the simplified situation where the less-

represented mating type has a frequency of 1/POP_SIZE. In other words, regardless 

of the population size, only one individual remains of that particular type. We are only 

referring to the homozygotes in this case, since it should be intuitively obvious that 

even if no XY members remain in the population, they will immediately become 

reconstituted by pairings between the XX and YY members. However, if only one XX 

member remains in a sea of XY and YY members, there is a finite chance that in the 

next generation, none of its offspring will carry the XX type, and from then on, no XX 

individuals will arise from subsequent pairings of XY and YY individuals. What, 

then, is the probability of this extinction, with a sole remaining XX individual? 
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Fig. 3. DTMS hovering near Trisexual Equilibrium, Converging 

 

In such a setup, E12 and E13 tell us that Fxy and Fyy  approach ½ and ½ as Fxx 

approaches 0. Because XX is the only mating type with which XX is incompatible, 

the lower its frequency, the higher its probability of mating success (as it probably 

will not be paired with an incompatible type). Therefore, the probability of the last 

XX being paired with a compatible mate approaches 1, but in order for XX to have a 

chance of being represented in the subsequent generation, it must be paired with XY, 

not YY. The probability of the last XX being paired with an XY approaches ½.  

 

There will also be a pairing inefficiency induced by the high concentration of YY and 

XY mating types in the population. Only ½ of YY’s parings will be with XY, 

resulting in successful mating, and only ½ of XY’s pairings will be with YY. The 

implications of this mean that each successful pairing must produce four children in 

order for the subsequent population to be of the same size. Therefore, the expected 

children from a pairing of an XY with an XX are two XXs and two XYs. However, 

because this pairing can only be expected to occur ½ of the time, the expected number 

of XX in the subsequent generation becomes 1, and the probability of extinction is 

therefore ½. 

 

This result also shows no hint of a pressure pushing the lesser homozygote towards, or 

away from, extinction. For large populations, it seems to be neutral with respect to 

mating type frequencies. This might seem proof enough that nothing is pushing the 

system towards the extinction of the less-frequent mating type, but we know from 

experience that these systems do converge to two-sex systems. 

 

Perhaps a less obvious way of approaching this problem involves the generation-to-

generation frequency variance. What we have not shown yet is how easily a loss in 
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frequency can be recovered. For instance, in a scenario where Fxx (0.10) decreases by 

0.01, with ½ probability, and increases by 0.01 with the same probability, in the next 

iteration it may have fallen to 0.09. In the following generation, it would again have 

the same probability of increasing or decreasing, but due to the nature of the 

probability distribution, it may have a smaller variance, and therefore is likely to 

change by a value less than the original change of 0.01. So even if it increases in the 

following generation, it may not completely recoup its losses. This can be thought of 

as a "two steps back, one step forward" mechanism. We are merely hypothesizing at 

this point, but a mechanism like this could prove to be the one which causes the 

eventual extinction of a third sex in a DTMS.  

 

Figure 4 verifies our suspicion of a variance that is proportional to frequency. A 

conclusion can immediately be drawn from Figure 4: The frequency variance can be 

very closely approximated by ½•Frequency•PopulationSize for a homozygote. Note 
the striking resemblance between Figure 4 and Figure 2 (for the homozygotes). 
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Fig.  4. Frequency change variance from one generation to the next 
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Fig. 5. - Binomial distributions compared to the experimental next-generation 

change distributions 
 

We hypothesized that the binomial distribution could pose as a reasonable model for 

the generation-to-generation homozygote frequency probability distribution. Using it, 

with the knowledge that the homozygote's generation-to-generation variance seemed 

to be equal to ½•Frequency•PopulationSize, we plotted the actual observed 
generation-to-generation frequency change distributions (with a bin size of 40) against 

their respective binomial distributions. The results can be seen in Figure 5, and a 

pretty close match between the distributions is observed. 

 

All of this certainly indicates that we are on to something, with respect to looking at 

the system's variance rather than its average generation-to-generation behavior, so to 

see if this phenomenon is actually capable of producing convergence, we constructed 

an extremely simple simulation, which merely forces a binomial distribution to use its 

last value as its mean, and ½ of its last value as its variance. This is outlined under 

Algorithm A3.  

 

The simulation is started with a Pxx that is very close to the theoretical Trisexual 

Equilibrium midpoint, with an Fxx of 0.211, translating into a Pxx of 211 for a 

population of 1000. Its behavior is compared (graphically) to the simulation described 

in Algorithm A1, with a population of 1000. These comparisons are shown in Figure 

6.  
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5.1   Algorithm A3 - Binomial Distribution With Variance-Feedback 

 
POPULATION_SIZE = 1000 
MAX_GENERATIONS = 1000 
 
Pxx = 211 
GENERATION = 0 
 
While GENERATION < MAX_GENERATIONS 
 Pxx = Binomial(Pxx,½Pxx) 
 GENERATION = GENERATION + 1 
EndFor 
 

Note that Binomial(u,v) produces a random number, according to the binomial 

distribution, with mean u and variance v. 

 

The plots in Figure 6 are just a few random samples of the many runs we performed, 

and are shown side by side simply to illustrate the strikingly similar behavior between 

the frequency of the lesser homozygote in Algorithm A1, and the emulated frequency 

in Algorithm A3. In fact, not only do the behaviors look very similar, but A3 even 

converges roughly as quickly as A1 (near N/2 iterations). You will note that no 

extinction is shown for YY, and this is simply because we chose to only show the 

plots where XX went extinct. YY and XX went extinct with equal probability, and in 

fact, Figure 3 shows an example of YY extinction. 

 

The similarity in convergence behavior with our DTMS simulation's homozygote 

extinction behavior provides a strong piece of evidence supporting our hypothesis. 

Coupled with the striking similarity between the binomial distribution and the intra-

generation change distribution, we are forced to conclude that variance-feedback is, 

indeed, the extinction-driving mechanism. 
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Fig. 6. Binomial Distribution with feedback compared to actual DTMS 
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6   Conclusion 
 

We began this investigation asking whether or not a three-sex mating system would 

always converge to two sexes. We chose a diploid, chromosomally-determined 

mating system as a representative model for a possible three-sex mating system, and 

constructed a simulation to explore its dynamics. The simulation showed very strong 

evidence that such a system, with no outside pressures, would always converge to a 

two-sex system, and we were left to answer the question of "why?". We broke the 

problem down, first mathematically, by deriving the equations that define Trisexual 

Equilibrium. We then performed a simulation to determine if there was a higher 

probability of the lesser homozygote decreasing after each generation, and found no 

evidence of this. We looked at the statistics of a lone remaining homozygote in the 

population, and found its expected representation in the population to be 1, thus also 

showing no bias against lesser homozygotes in subsequent generations. Finally, we 

looked into the generation-to-generation frequency variance, and found that it is 

closely approximated by ½•Frequency•PopulationSize. This led us to hypothesize 
that the decreasing variance with decreasing frequency is the fundamental mechanism 

driving the extinction of the less-represented homozygote. We compared the binomial 

distribution to the frequency-change distribution, and found a striking similarity, so 

we used the binomial distribution in a feedback algorithm to determine if variance-

feedback alone could cause a system to converge. All of our simulations showed that 

this, indeed, is a very reliable phenomenon, and we conclude that variance-feedback is 

the primary mechanism causing the extinction of one of the homozygotes in a diploid 

trisexual mating system. 
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