
Repeated Sequences in Linear GP Genomes

W. B. Langdon and W. Banzhaf

Computer Science, Memorial University of Newfoundland, Canada

Abstract. Biological chromosomes are replete with repetitive sequences,
microsatellites, SSR tracts, ALU, etc. in their DNA base sequences. We
discover hierarchical repeating sequences (building blocks?) are evolved
by genetic programming in linear time series prediction programs.

“DNA whose sequence is not maintained by selection will develop periodici-
ties as a result of random crossover” George P Smith, Science, 1976.

1 Introduction

It has been long noticed that there are emergent phenomena in genetic program-
ming (GP) runs unintended by the human designer of the algorithm. Early on
it was observed that code which does not change the output of the program
(i.e. non-effective code) appears in many GP runs [26,29,2]. It was also noted
that bloat affects many GP systems. Reasons for bloat and non-effective code
have been examined in years past [21,4,5] and remedies have been developed
more or less effective under particular circumstances. (e.g. [23,13,18,14]).

Here we would like to argue that non-effective code and bloat are only the
tip of an iceberg and that there is more to be discovered about “emergent phe-
nomena” in GP runs. Particularly, we would like to study repetition of patterns
in GP-evolved programs. These are instructions, or more interestingly, groups
of instructions, that occur several times in a program. In fact long sequences of
instructions which are repeated can sometimes be decomposed into shorter re-
peated sequences. Although this is interesting in itself, it parallels what has been
found in natural genomes. Biologists have long noticed the curious existence of
repeated sequences in genomic DNA.

Perhaps the reasons for emergence of repeated sequences is similar in bio-
logical and artificial evolutionary systems? What could we learn from biological
explanations, and can we transfer understanding from Evolutionary Algorithms
back into Biology? What instruments are available for observing and examining
repetitive sequences? Are there new representations of GP that might be more
conducive to evolution once the reason for emergence of repeated sequences has
been understood? Are we on the way to discover that evolution reuses code in a
very interesting, yet hardly intelligible way? Are building blocks involved in the
formation of repeated sequences? These and more questions are raised by our
observations.

We first discuss the biological background to repeated sequences. Section 3
describes the linear GP system used for our experiments and the time series
prediction task it was applied to. Section 4 presents results of our experiments
while Section 5 concludes and outlines future research.

http://links.jstor.org/sici?sici=0036-8075%2819760213%293%3A191%3A4227%3C528%3AEORDSB%3E2.0.CO%3B2-C


2 Biological Background
Biologists have discovered that there is a vast amount of repetition in the DNA
of microbes, plants and animals [10]. Given that less than 3% of a human genome
consists of protein-coding genes and about 50% of it consists of repetitive se-
quences, many of viral origin [27,25], initially Biologists concentrated upon un-
derstanding of the information content of expressed part of genomes. With whole
genome analysis becoming more prevalent in recent years, the ubiquity of repet-
itive DNA is a lively subject of research [22,31,1]. There are various forms of
repeated DNA, and the multitude speaks to the fact of a complex phenomenon:
There are satellites, mini-satellites and micro-satellites, repeats of different sizes
located next to each other along the genome, there are ALU repeats and in-
terspersed repetitive sequences, both in coding, non-coding and intercistronic
areas. Repeats are well distributed over genomes and species, and constitute a
considerable fraction of all DNA in organisms.

The search for causes began some time ago. Smith, in 1976, did numeri-
cal experiments in order to explain evolution of repeated DNA sequences [28].
His conclusion was that homologous crossover is a major factor in the emer-
gence of repeated sequences. In more recent work crossover and DNA duplica-
tion have been identified as important factors. Driven by the inaccuracy of the
DNA replication machinery, repeated sequences are both a consequence of mis-
alignments and a cause for crossover [11]. Hsieh and Lee considered a model of
bacterial genome growth working with a mechanism called “random segmental
self-copying” [15]. This model was able to explain, at a statistical level, the dis-
tribution of patterns found in bacterial genomes. They concluded that growth
processes of genomes must have taken place, as the statistical traces of these are
still visible in the distribution of DNA patterns.

In recent years, quantitative analysis tools have become available in molecular
biology that allow a closer look at these phenomena [7,8,30]. This will provide the
opportunity to observe even more closely how many different repetitive patterns
emerged during evolution of a particular genome. At the same time, genetic
applications of repetitive sequences are beginning to appear [16] which promise
to facilitate research in experimental settings.

3 The Linear Genetic Programming System

A standard linear genetic programming system (GPengine) was used for our
experiments. Sections 3.1 to 3.5 describe its operation. Section 3.6 describes the
benchmark used (predicting the chaotic Mackey-Glass time series). Cf. Table 1.

3.1 Tournament Selection and Steady State Population
GPengine uses a steady state population and tournament selection. Four distinct
individuals are chosen at random1 from the population. The fitness of the first
two are compared, giving a winner and a looser. In the event they have identical
root mean squared (RMS) error, the tie is broken arbitrarily. The second pair
are compared in the same way to give a second winner and looser.
1 GPengine uses the C rand function.

2



Table 1. GP Mackey-Glass Parameters

Objective: Evolve a prediction for a chaotic time series

Function set: + − × ÷ (operating on unsigned bytes) If 2ndarg = 0,÷ = 0.
Terminal set: 8 read-write registers, constants 0..127. Registers are initialised with his-

torical values of time series. R0 128 time steps ago, R1 64, R2 32, R3 16,
R4 8, R5 4, R6 2 and finally R7 with the previous value. Time points
before the start of the series are set to zero.

Fitness: Root mean error between GP prediction (final value in R0) and actual
(averaged over 1201 time points).

Selection: Steady state, tournament 2 by 2
Initial pop: Random program’s length uniform chosen from 1..14
Parameters: Population 500, Max Program Size 500, 90% crossover, 40% mutation
Termination: 125500 individuals evaluated

Arg 1
R0..R7

Output
R0..R7

Arg 2
Opcode

0...127

R0..R7
or+ − * /

Fig. 1. Format of a GPengine instruction.

The offspring produced from the two winners (by crossover, mutation or
copying (cloning)) replace the two losers. Note each tournament always produces
exactly two children and the same method is used to produce both children.

Using this form of tournament selection in a steady state population means
the best in the population cannot get worse. However the best individual is not
immortal. If more than one individual has the smallest RMS error, the best
individual may by chance be deleted (and replaced by the offspring of one of the
other individuals which also had the smallest error).

3.2 GP Representation and Evaluation

Each individual consists of a linear sequence of instructions. Each instruction
takes two inputs, performs its calculation and writes the output to a register.
The first input is always a register. The second can either be a constant (0..127)
or a register. Figure 1 describes a single instruction. We use eight 8-bit read-
write registers. Before the individual is executed, all the registers are initialised
with data for the current fitness case. The sequence of instructions is obeyed
from the start of the individual to its end. The final value in register R0 is the
GP’s output, i.e. its prediction.

3.3 Crossover

90% of tournaments are followed immediately by crossover of the two winners,
yielding two children which overwrite the two losers. In the other 10% of cases,
the losers are overwritten by copies of the winners. Two-point crossover is used
(see Figure 2) however GPengine appends to the end of first parent if the code
to be copied from the second does not overlap the first. For this to happen the

3



Fig. 2. Two instructions are ran-
domly chosen in each parent (top two
genomes) as cut points. If the code to
be inserted from the second parent at
least partially overlaps the first, it is
inserted in the normal way to give the
child (lower chromosome). With head-
less chicken crossover, the inserted code
is randomly generated.

Fig. 3. XOA crossover. If there is no
length overlap between code selected
in second parent and the first parent
(top), the selected code fragment is ap-
pended to the whole of the code from
the first parent. (I.e. the middle portion
of the first parent in not removed.)

second parent must be longer than the first (see Figure 3). In a second set of
experiments this append variation was disabled (and insertion was used in all
cases). If the chosen crossover points would mean the potential offspring would
exceed the maximum size (500 instructions) then the crossover is aborted and
the looser is not overwritten. Note the length checks are made independently, so
the other crossover may proceed. Even if the looser is not replaced by crossover,
it may still be changed by mutation.

Note that in GP we take it for granted that the parent programs are aligned at
their starts. This provides a huge degree of both syntactic and semantic homology
for free. This is similar to Nature, where chromosomes are crossed on a like-for-
like basis. But at the detailed level where natural crossover occurs, Nature has
to work to find matching DNA sequences to establish crossover points.

3.4 Variable length Mutation – Headless Chicken Crossover

The initial programs are quite short. In order to study if crossover was uniquely
responsible for repeating sequences we used a mutation operator which could
change program lengths. We introduce headless chicken crossover (HCX) [3] to
linear GP. Although described as a crossover operation, only the length of the
second parent has any influence on the child. Initially HCX works in the same
way as two point crossover (see Figure 2) except that instead of inserting a code
fragment taken from the second parent a randomly generated sequence of code
of the same length is inserted.

GPengine does not write protect its inputs, this means a long sequence of ran-
dom instructions will eventually overwrite all the registers. Since the instructions
are not reversible, each overwrite destroys information. If the random sequence is
long enough it is virtually guaranteed to destroy all information in the registers.

4



Once that happens a program’s initial conditions cannot affect its subsequent
behaviour. Such programs are useless at predicting and so have large RMS er-
rors. Assuming each overwrite is 100% destructive, a random sequence of about
8(log 8 + γ) ≈ 21.3 instructions will render the offspring useless [19]. The ex-
pected size of the crossover fragment is 1

l

∑l−1
i=0

1
2 (l − i) = (l + 1)/4, where l is

the number of instructions in the second parent. Hence we anticipate runs with
only headless chicken crossover will not bloat much above 84 instructions.

When the second program is long enough, headless chicken crossover becomes
like a supersonic jet nozzle. Flow downstream of the nozzle is independent of
that upstream. Similarly program outputs (which are downstream of the ran-
dom code) are independent of inputs. I.e. they are disconnected from upstream
perturbations.

3.5 GP Mutation

After two children have been produced by crossover or by simply copying their
parents (cloning), there is a 40% chance that they will be mutated. Mutation
consists of choosing uniformly at random exactly one instruction in the individual
and changing it. Each of the four fields in the chosen instruction (cf. Figure 1) is
equally likely to be changed. Apart from ensuring the new instruction is different,
the mechanism is the same as that used to create the initial population. Note
this means the second argument is approximately equally likely to be a constant
(0..127) or a register (R0..R7). The other three fields are chosen uniformly from
their legal values.

3.6 Mackey-Glass Benchmark

Since the goal was to study the long term behaviour of an evolving population of
programs we need a moderately difficult task. The population should continually
improve and neither get stuck because the problem is too hard nor quickly find
the optimal solution. We chose the problem of time series prediction as this is
both hard and interesting. Indeed it has applications in scientific, medical and
financial modeling [24]. We used the IEEE benchmark Mackey-Glass chaotic
time series (http://neural.cs.nthu.edu.tw/jang/benchmark/, τ = 17, 1201
data points, sampled every 0.1)). Mackey-Glass is a continuous problem. The
benchmark converts it to discrete time and we digitised the continuous data
to give byte sized integers (by multiplying by 128 and rounding to the nearest
integer). See Figure 4.

The task for the GP is, given historical data, to predict the next value2. The
GP is given eight values from earlier in the series. Arguably the most useful is
that from the previous time step (which is loaded into R7) but values 2 time
steps ago, 4, 8, 16, 32, 64 and 128 time periods back are also available. As with
the benchmark, values before the start of the sequence are set to zero. Note that
the GP system only has eight byte registers, and if it needs scratch registers, it
may have to sacrifice one or more inputs to store intermediate results.
2 Since the series is chaotic this cannot be done exactly.

5

http://neural.cs.nthu.edu.tw/jang/benchmark/


32

48

64

80

96

112

128

144

160

176

0 200 400 600 800 1000 1200

Time steps

Fig. 4. Discrete Mackey Glass chaotic time series

Table 2. Best Mackey Glass prediction error at end of runs: using two point
crossover with append (XOA), without append (2XO) and headless chicken
crossover crossover (HCX). With and without fitness selection.

RMS error Means

XOA 2.85 2.30 3.56 3.34 3.68 4.30 2.24 5.37 2.38 4.40 3.44
no selection 29.40 6.26 30.20 30.17 30.18 8.03 30.07 30.17 19.17 30.22 24.39

2XO 3.53 3.47 1.60 4.27 5.37 2.43 3.81 5.37 5.37 2.72 3.79
no selection 8.60 12.59 7.66 33.32 14.40 19.62 6.23 17.37 29.85 23.63 17.33

HCX 4.03 4.04 3.64 4.06 3.93 3.61 3.73 3.20 3.78 3.94 3.80
no selection 9.95 6.32 9.95 11.71 16.59 15.83 7.92 7.37 10.71 8.60 10.49

4 Experimental Results

Three pairs of two groups of ten independent runs were made. In the first pair
GPengine crossover (i.e. with append, XOA) was used. In the second pair two-
point crossover (without append, 2XO) was used. In the second of each pair
selection was turned off by deciding which individuals win or loose each tourna-
ment entirely at random. Finally, the last pair used headless chicken crossover
(HCX). All runs use point mutation.

In all 3× 10 runs with selection, fitness improved and for many generations
large parts of the population had the same fitness. Figure 5 shows the evolution
of prediction error for the first of ten runs (the others are similar). Cf. Table 2.

Figure 6 shows the evolution of program size. Initially programs are between
one and fifteen instructions long, with a mean of seven. However, in runs with
fitness selection and crossover (XOA and 2XO) length quickly increases and
the longest program is either 500 or very near to this limit. Such bloat was
expected [21]. As predicted in Section 3.4, in mutation only runs (HCX) with
selection the increase in size is less dramatic. However it was a surprise to see
bloat in runs without selection when using crossover with append (XOA) [20].
An initial thought was that this was due to the asymmetric append variation
of the crossover operation. This appears to be correct, since when the variant
is removed and normal two-point crossover linear GP [6] is used instead, bloat
does not appear without fitness selection. (See lower lines in Figure 6.)

6



1

10

100

1000

0 50 100 150 200 250

R
M

S
 E

rr
or

Generation equivalents

Median random 63.1035

Best random 10.1744

Quarter population 

Third quarter 

Worst 

Median
First Quartile

Best

Fig. 5. Evolution of Mackey Glass prediction error (first of ten runs). Note the
population chases after the best (lowest) fitness. For many generations at least
25% of the population have the same best fitness. (Sometimes more than half)

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250

M
ea

n 
pr

og
ra

m
 le

ng
th

Generation equivalents

Mean ten XOA runs
XOA (no selection)

Mean ten 2XO runs
2XO (no selection)

Mean ten HCX runs
HCX (no selection)

Fig. 6. Evolution of mean program size and variation between runs. Except for
the two-point crossover with append (XOA) runs, selection is required for bloat.
With crossover (XOA or 2XO) the mean population size appears to increase
exponentially, until constrained by the maximum size limit (500).

7



4.1 Fourier Analysis

Fourier analysis has been applied to DNA sequences. E.g., [12] proposed using
the FFT for sequence alignment. But when we calculated the power spectra of a
number of programs which contained many repeated sequences, the spectra were
similar to those of totally random programs. Only a few frequencies rise above
the maximum noise level. Further investigation, perhaps on longer programs, is
needed.

4.2 Repeated Program Instruction Sequences

In the random initial programs there are no repeated sequences. They are over-
welmingly unlikley to arrive by chance. However, as crossover, mutation and
selection get to work and programs grow, instructions start to become repeated.
Initially just single instructions are repeated but the length and number of re-
peats increases (see Figure 7).

All the best programs in the final population of the ten runs with the ap-
pend crossover variant (XOA) contained repeated sequences (see Figure 8). The
longest sequences contained from 12 to 62 instructions. All of these occurred
twice, however the programs also contained other, distinct, shorter sequences
which occurred multiple times. Again the XOA runs without selection throw
up a surprise: eight of the ten best programs3 contain sequences of instructions
which are repeated. All ten runs with two-point crossover without the append
variation (2XO), produce repeated sequences, however none of the ten 2XO runs
without fitness selection produced repeated instructions.

Figure 8 plots the variation of maximum length of repeated instructions in
each of the 4 × 10 best of run programs against their size. As alternative to
saying that repetitive sequences are due to the crossover operator, Figure 8
suggests that the length of the programs (i.e. bloat) is more important. To some
extent this is born out by the runs with headless chicken crossover. The ten
runs with selection produced best predictors of between 18 and 76 instructions
(those without selection contained 2–21 instructions). None contained repeated
instructions.

4.3 Effective Code

Rapid increase in length is characteristic of bloat [21]. Analysis (using [9, Algo-
rithm 2]) of the best predictors at the end of XO runs indicates the vast majority
of instructions have no impact on the output of the programs. I.e they are inef-
fective code (introns). Figure 9 shows the distribution of instructions which could
affect the prediction along the length of one program. (The other bloated best
of 2XO runs are similar but in three runs the best predictors are much shorter
and contain only one effective instruction, which is near their end.) There is no
obvious correlation between whether an instruction is effective and how many
times it is repeated.
3 Even in the absence of selection one can observe quality of programs by evaluating

the fitness function.

8



0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250

Lo
ng

es
t R

ep
ea

tin
g 

S
eq

ue
nc

e

Generation equivalents

Longest repeated sequence
Program length/10

Fig. 7. Evolution of length of longest repeated sequence of instructions in the
best Mackey Glass prediction program produced by first run with two-point
crossover (2XO) and fitness selection. The length of the programs is also shown.

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450 500

S
eq

ue
nc

e 
Le

ng
th

Program Length

Ten XOA runs
Ten XOA runs (no selection)

Ten 2XO runs
Ten 2XO runs (no selection)

Fig. 8. Length of longest repeated sequence of instructions in the best Mackey
Glass prediction program produced by 4 × 10 runs. With fitness selection both
types of crossover evolved repeating sequences. As do 8 of 10 XOA runs without
fitness selection but no 2XO runs do when tournaments are random.

9



0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450 500

Lo
ng

es
t R

ep
ea

te
d 

In
st

ru
ct

io
n

Position along Program Length

Length of repeat
Effective code (63 instructions)

Fig. 9. Distribution of repeated sequences along length of best predictor at end
of first XO run. It achieves an RMS error 3.53406 using only data from 1 and
8 previous time steps. The solid line highlights the location of its 63 effective
instructions. Click here for animations.

4.4 Entropy and Information Content

There are 8 × 8 × 4 × (128 + 8) = 34816 legal instructions (cf. Figure 1) Since
log2 34816 = 15.087463, a randomly chosen instruction contains slightly more
than 15 bits of information. Using this measure suggests that as the population
bloats each predictor contains more information. A crude way of estimating ac-
tual information content is to compress the programs using gzip [17]. Figure 10
shows information content increase over time but as programs contain more re-
peated sequences, gzip’s Lempel-Ziv algorithm is able to compress the programs,
yielding a lower estimate of information content (i.e. higher entropy). Figure 10
shows that gzip (with default parameters and a simple ASCII text format) ini-
tially imposes an overhead of about 100 bytes. After about generation 150, gzip
is able to recognise patterns in the programs and use them to compress it. For
comparison our Mackey-Glass benchmark, without compression, contains 8576
bits (1072 bytes) of information (1201× log2 141 = 8576). I.e. Kolmogorov com-
pression is possible.

5 Conclusion

We have observed the evolution of long repeated sequences of instructions. The
chances of them being found purely at random are infinitesimal. However, while
we anticipate these sequences to occur widely, so far we have only observed them
in one problem domain. We plan to investigate other examples. Of course it is

10

http://www.cs.ucl.ac.uk/staff/W.Langdon/gecco2004lb/


0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250

In
fo

rm
at

io
n 

co
nt

en
t (

by
te

s)

Generation equivalents

Best in population
Gzipped

Fig. 10. Evolution of information content in the best Mackey Glass prediction
program produced by first run with two-point crossover (2XO) and fitness selec-
tion (as measured by gzip). For comparison the length of the programs are also
plotted (but normalised so as to give their pre-compressed information content).

interesting to see whether the same happens in tree GP. Most importantly, can
these observations be used to help us build better systems in the future? Finally,
could experiments of this type in artificial evolution give insight for Biologists
concerned about natural evolution?

Acknowledgments

The linear genetic programming system, GPengine, was given by Peter Nordin.
We would like to thank Paul Gillard, Marian Wissink and Dick Furnstahl. Sup-
port was provided by a grant from the visitor program of Memorial University.

References

1. G. Achaz, E. P. C. Rocha, P. Netter, and E. Coissac. Origin and fate of repeats in
bacteria. Nucleic Acids Research, 30:2987–2994, 2002.

2. L. Altenberg. Emergent phenomena in genetic programming. In A. V. Sebald and
L. J. Fogel, eds., Evolutionary Programming, pp 233–241, 1994. World Scientific.

3. P. J. Angeline. Subtree crossover: Building block engine or macromutation? In
J. R. Koza, et al., eds., Genetic Programming 1997, pp 9–17. Morgan Kaufmann.

4. P. J. Angeline. Subtree crossover causes bloat. In J. R. Koza, et al., eds., Genetic
Programming 1998, pp 745–752. Morgan Kaufmann.

5. W. Banzhaf and W. B. Langdon. Some considerations on the reason for bloat.
Genetic Programming and Evolvable Machines, 3(1):81–91, Mar. 2002.

11

http://dynamics.org/~altenber/PAPERS/EPIGP/
http://www.natural-selection.com/Library/1997/gp97a.zip
http://dx.doi.org/10.1023/A:1014548204452


6. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming
– An Introduction. Morgan Kaufmann, 1998.

7. G. Benson. Tandem repeats finder: A program to analyze DNA sequences. Nucleic
Acids Research, 27:573–580, 1999.

8. J. W. Bizzaro and K. A. Marx. Poly: a quantitative analysis tool for simple
sequence repeat (SSR) tracts in DNA. BMC Bioinformatics, 4:22–28, 2003.

9. M. Brameier and W. Banzhaf. A comparison of linear genetic programming and
neural networks in medical data mining. IEEE Trans. EC, 5(1):17–26, Feb. 2001.

10. R. J. Britten and D. E. Kohnen. Repeated sequences in DNA. Science, 161:529–
540, 1968.

11. O. Elemento, O. Gascuel, and M. P. Lefranc. Reconstructing the duplication his-
tory of tandemly repeated genes. Molec Biology and Evolution, 19:278–288, 2002.

12. J. Felsenstein, S. Sawyer, and R. Kochin. An efficient method for matching mucleic
acid sequences. Nucleic Acid Research, 10(1):133–139, 1982.

13. F. D. Francone, M. Conrads, W. Banzhaf, and P. Nordin. Homologous crossover in
genetic programming. In W. Banzhaf, et al., eds., GECCO, pp 1021–1026, Orlando,
13-17 July 1999. Morgan Kaufmann.

14. J. V. Hansen. Genetic programming experiments with standard and homologous
crossover methods. GP and Evolvable Machines, 4(1):53–66, Mar. 2003.

15. L. C. Hsieh and H. C. Lee. Model for the growth of bacterial genomes. Modern
Physics Letters, 16:821–827, 2002.

16. Z. Izsvak, Z. Ivics, and P. B. Hackett. Repetitive elements and their applications
in zebrafish. Biochemical Cell Biology, 75:507–523, 1997.

17. W. B. Langdon. Genetic Programming and Data Structures. Kluwer, 1998.
18. W. B. Langdon. Size fair and homologous tree genetic programming crossovers.

Genetic Programming and Evolvable Machines, 1(1/2):95–119, Apr. 2000.
19. W. B. Langdon. Convergence rates for the distribution of program outputs. In

W. B. Langdon, et al., eds., GECCO 2002, pp 812–819. Morgan Kaufmann.
20. W. B. Langdon and R. Poli. Foundations of GP. Springer, 2002.
21. W. B. Langdon, T. Soule, R. Poli, and J. A. Foster. The evolution of size and

shape. In L. Spector, et al., eds., Advances in GP 3, pp 163–190. MIT Press, 1999.
22. J. R. Lupski and G. M. Weinstock. Short, interspersed repetitive DNA sequences

in procaryotic genomes. Journal of Bacteriology, 174:4525–4529, 1992.
23. P. Nordin, F. Francone, and W. Banzhaf. Explicitly defined introns and destructive

crossover in GP. In P. J. Angeline et al., eds., Advances in GP 2, pp 111–134. 1996.
24. H. Oakley. Two scientific applications of genetic programming. In K. E. Kinnear,

Jr., ed., Advances in GP, pp 369–389. MIT Press, 1994.
25. C. Patience, D. A. Wilkinson, and R. A. Weiss. Our retroviral heritage. Trends in

Genetics, 13:116–120, 1997.
26. A. Singleton. Walter Tackket’s PhD thesis citing Andy Singleton “personal com-

munication” as proposing the “intron” explanination for bloat in GP trees., 1994.
27. A. F. A. Smit. The origin of interspersed repeats in the human genome. Current

Opinions in Genetics and Development, 6:743–748, 1996.
28. G. P. Smith. Evolution of repeated DNA sequences by unequal crossover. Science,

191(4227):528–535, 13 Feb 1976.
29. W. A. Tackett. Recombination, Selection, and the Genetic Construction of Com-

puter Programs. PhD thesis, EES, University of Southern California, 1994.
30. A. Taneda. Adplot: detection and visulization of repetitive patterns in complete

genomes. Bioinformatics, 5:701–708, 2004.
31. G. Toth, Z. Gaspari, and J. Jurka. Microsatellites in different eukaryotic genomes:

Survey and analysis. Genome Research, 10:967–981, 2000.

12

http://www.amazon.com/exec/obidos/tg/detail/-/155860510X/ref=pd_sim_books_1/102-2181477-2299352?v=glance&s=books
http://www.biomedcentral.com/1471-2105/4/22
http://ls11-www.informatik.uni-dortmund.de/people/banzhaf/ieee_taec.pdf
http://www.cs.mun.ca/~banzhaf/
http://dx.doi.org/10.1023/A:1021825110329
http://www.wkap.nl/prod/b/0-7923-8135-1
http://dx.doi.org/10.1023/A:1010024515191
ftp://cs.ucl.ac.uk/genetic/papers/wbl_gecco2002.pdf
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-42451-2#english
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://links.jstor.org/sici?sici=0036-8075%2819760213%293%3A191%3A4227%3C528%3AEORDSB%3E2.0.CO%3B2-C
ftp://cs.ucl.ac.uk/genetic/ftp.io.com/papers/watphd.tar.Z

	Repeated Sequences in Linear GP Genomes

