
Genetic Programming for Guiding Branch and
Bound Search

Konstantinos Kostikas and Charalambos Fragakis

Department of Computational Mathematics and Computer Programming
School of Mathematics, Physics and Computational Sciences

Faculty of Technology
Aristotle University of Thessaloniki

54006 Thessaloniki, Greece
{kostikas, fragakis}@gen.auth.gr

Abstract. We propose how Genetic Programming (GP) can be used
for developing, in real time, problem-specific heuristics for Branch and
Bound (B&B) search. A GP run, embedded into the B&B process, ex-
ploits the characteristics of the particular problem being solved, evolving
a problem-specific heuristic expression. The evolved heuristic replaces
the default one for the rest of the B&B search. The application of our
method to node selection for B&B based Mixed Integer Programming
is illustrated by incorporating the GP node selection heuristic generator
into a B&B MIP solver. The hybrid system compares well with the un-
modified solver utilizing DFS, BFS, or even the advanced Best Projection
heuristic when confronted with hard MIP problems from the MIPLIB3
benchmarking suite.

1 Introduction

The solution of large scale hard combinatorial optimization problems is one of the
areas where today’s state of the art algorithms and computer machinery reach
their limits. Logistics, high tech manufacturing and computational biology are
only but a few of the application domains where such problems are routinely
encountered. Consequently, improved algorithmic techniques which enable the
execution of even larger problem instances are highly desirable.

Optimal or good enough solutions to problems of combinatorial nature can be
obtained by applying exact algorithmic methods as well as non-exact techniques
like Genetic Algorithms and Tabu Search, frequently described as metaheuristics.
Often the combination of these two seemingly distinct approaches, that is exact
with non-exact methods, yields the best results [1]. For example, in Branch-
and-Bound (B&B), the most widely used technique for solving combinatorial
optimization problems, metaheuristics are repeatedly used for obtaining fast a
feasible solution, and thus for providing the algorithm with a lower bound, which
is exploited for speeding up the search.

Apart from how fast a good early lower bound is found, two other sources of
uncertainty exist in all branch and bound algorithms: branching, which decides



2 Konstantinos Kostikas and Charalambos Fragakis

how the solution space is subdivided into subproblems, and node selection. Both
of them greatly affect how efficiently the solution space is traversed. For that
reason, heuristic functions are often used, trying to exploit problem domain
specific knowledge in order to perform educated guesses as to where the search
should be directed to next.

Branching and node selection heuristics, although extremely efficient at times,
are not however guaranteed to perform well in all cases. In their study on heuris-
tics for B&B Mixed Integer Programming, Linderoth and Savelsbergh demon-
strate for example that no branching or node selection method outperforms all
others when a variety of MIP problems is concerned [2]. The reason for that
is that heuristic functions, however robust, cannot be equally effective in all
problem instances. This gave rise to our idea: what if we employ the power
of metaheuristics and machine learning for assisting B&B decision making by
evolving customized, problem instance-specific heuristics?

In this paper we present how Genetic Programming (GP) [3], an evolution-
ary computation technique with rich expressive power, can be applied to the
automatic generation of node selection heuristics for B&B MIP. Static, as well
as dynamic, that is in runtime , evolution of node selection expressions via GP
is discussed and a prototype realization of the latter on B&B based MIP is
demonstrated.

The rest of this paper proceeds as follows: The remaining of this section
briefly outlines related work. Section 2 is an introduction to Branch and Bound
in general and to B&B based MIP in particular. Section 3 talks about how GP
can be integrated into B&B for the automated evolution of heuristics and the
issues related with the construction of the training set. Section 4 briefly discusses
generation of B&B heuristics in vitro, Sect. 5 describes the experimental param-
eters of our study, Sect. 6 presents the obtained results, and Sect. 7 summarizes
our conclusions.

1.1 Related Work

The field of metaheuristics for the application to combinatorial optimization
problems is a rapidly growing field of research. A recent, general “overview and
conceptual comparison” is [4]. Abramson and Randall [5][6] utilize Simulated
Annealing, Tabu Search and other metaheuristics for building a ’general pur-
pose combinatorial optimization problem solver’; [6] and [1] are also good refer-
ences for related work. Mitchell and Lee [7] cite several references regarding the
application of metaheuristics in MIP.

As far as the automatic generation of B&B heuristics is concerned, it was
mentioned to us that the possibility of applying learning techniques in branch
selection for Integer Programming was first suggested by Glover in [8]1, with no
implementation. However, to our knowledge, there exists no previous attempt
of utilizing metaheuristics or evolutionary computation techniques for evolving

1 We didn’t manage to get hold of the actual paper.



Genetic Programming for Guiding Branch and Bound Search 3

node selection methods. We are also not aware of previous uses of Genetic Pro-
gramming in MIP.

2 Background

2.1 Branch and Bound

Branch and Bound is more of a framework than a specific algorithm; this was
firstly recognized by Lawler and Wood in [9], which contains also a problem
independent description of B&B. A presentation of the most important models
of B&B and the related references can be found in [10]. Although the B&B
framework is not tied to any particular description, B&B methods are most
often described as generating search trees [11]: roughly speaking, each node
corresponds to a subset of the feasible solution set. A subproblem associated
with a node is either solved directly, or its solution set is split, and for each
subset a new node is added to the tree. The process is improved by computing
a bound on the solution value a node can produce. If the bound is worse than
the value of the best solution found so far, the node cannot produce a better
solution, and, hence, it can be excluded from further examination.

B&B is an enumeration method; under most circumstances it is guaranteed
that the optimal solution will be eventually found. However, as it was already
mentioned, the choices made when the algorithm is branching or selecting a node
for visiting next make a big difference on how fast this will happen. For that
reason, heuristics are used for predicting the outcome of these choices. Especially
in cases where the amount of computation performed in each node of the tree is
significant, as is the case in B&B MIP, it pays off to spent some time estimating
what node should be visited next.

2.2 B&B based Mixed Integer Programming

A mixed integer program (MIP) is an optimization problem stated mathemati-
cally as follows:

Maximize zMIP =
∑
j∈I

cjxj +
∑
j∈C

cjxj (1)

subject to
∑
j∈I

aijxj +
∑
j∈C

aijxj ≤ bi i = 1, . . . m (2)

lj ≤ xj ≤ uj j ∈ N

xj ∈ Z j ∈ I

xj ∈ R j ∈ C,

where I is the set of integer variables, C is the set of continuous variables, and
N = I∪C. The lower and upper bounds lj and uj may take on the values of plus



4 Konstantinos Kostikas and Charalambos Fragakis

or minus infinity. Thus, a MIP is a linear program (LP) plus some integrality
restriction on some or all of the variables [2].

Although other methods also exist, B&B is the predominant technique for
solving MIP, employed in most commercial solvers [2]. To precisely define how
B&B can be applied for solving MIP problems, some definitions are needed.
We use the term node or subproblem to denote the problem associated with a
certain portion of the feasible region of MIP. Define zL to be a lower bound on
the value of zMIP . For a node N i, let zi

U be an upper bound on the value that
zMIP can have in N i. The list L of problems that must still be solved is called
the active set. Denote the optimal solution by x∗. The algorithm in Table 1,
adopted from [2], is a Linear Programming-based Branch and Bound algorithm
for solving MIP.

Table 1. Branch and Bound Algorithm for Linear Programming based MIP

0. Initialize. L = MIP. zL = −∞. x∗ = Ø.
1. Terminate? Is L = Ø? If so, the solution x∗ is optimal.
2. Select. Choose and delete a problem N i from L.
3. Evaluate. Solve the LP relaxation of N i. If the problem is infeasible, go to

step 1, else let zi
LP be its objective function value and xi be its solution.

4. Prune. If zi
LP ≤zL, go to step 1. If xi is fractional, go to step 5, else let

zL = zi
LP , x∗ = xi, and delete from L all problems with zj

U ≤zL.
Go to step 1.

5. Divide. Divide the feasible region of N i into a number of smaller feasible
regions N i1, N i2, . . . , N ik such that ∪k

j−1N
ij = N i. For each j = 1, 2, . . . , k,

let zij
U = zi

LP and add the problem N ij to L. Go to 1.

2.3 Node Selection in B&B MIP

A plethora of methods, or “strategies”, exist for node selection in MIP. [2] is
a good survey of lots of them. All such methods, except from pure DFS and
BFS, employ in their core an expression which assigns a numerical value to all
active nodes of the tree. The node which achieves the highest score is selected
by B&B for being visited next. This rating is often the estimated value of the
best obtainable solution from the specific node. Characteristic example of an
estimation method is the popular Best Projection method [12], which is employed
in GLPK, the MIP solver we used for our experimentation (see Sect. 5.1) as the
default node selection heuristic. In the next section we explain how GP can be
utilized for evolving problem domain or problem instance specific node selection
expressions.

3 Evolving B&B Heuristics using Genetic Programming

If one was able to devise a heuristic method customized for the specific prob-
lem at hand, maybe considerable performance gains could be realized. Manually
building dataset-specific heuristics doesn’t make practical and economical sense;



Genetic Programming for Guiding Branch and Bound Search 5

however, GP offers the means for doing exactly that: By embedding in the B&B
algorithm a Genetic Programming run, customized heuristics can be evolved,
which will be consequently used for the rest of the B&B search. In other words,
our suggestion is that GP can be used for evolving problem instance specific
heuristics in real time. Obviously, Genetic Programming is not the only machine
learning technique capable for performing this task; it is however highly conve-
nient, because it directly evolves executable expressions which can be used as
heuristics without further modification. The approach consists of three distinct
stages:

B&B Stage1 begins with the start of the search and lasts until a criterion is
met, i.e. until a specified number of solutions have been found, or until a specified
number of nodes have been visited2. Stage 1 is ordinary B&B search, employing
standard heuristics if necessary, with the addition that some extra data needs
to be maintained, reflecting the progress of the search.

GP Stage is where the GP search takes place: Initially the training set is
constructed (Sect. 3.2), and after that the GP run is performed. At the end of
the run, the best evolved expression, that is the fittest individual, is selected
and becomes the heuristic to be used for the rest of the B&B search. If a static
heuristic was used in B&B Stage1, this is replaced by the evolved one.

B&B Stage2 resumes the execution of B&B, which was paused in the previous
stage, and continues the search by utilizing the GP evolved expression for guiding
the B&B search.

Further GP Stages. In our prototype implementation, the loop starting with
B&B Stage1 and finishing with B&B Stage2 is executed once, i.e. only one GP
Stage is used during the life-cycle of the B&B search. We believe further GP
stages would improve the quality of the evolved heuristics significantly: in many
problem domains the ’structure’ of the search space changes dramatically as the
search proceeds [1]. In such cases periodic GP stages might be necessary in order
to ’maintain’ efficient heuristics. This is also related with the quality of the GP
training set, see Sect. 3.2.

Finally, it is worth pointing out that the above approach can be used for
evolving more than one type of heuristics at the same time, for example node
selection as well as branching heuristics.

3.1 Building Blocks

Since heuristics make use of the special characteristics and the distinct attributes
of the problem domain, the choice of the terminal set needs obviously to reflect
2 Or, in our case, until the specified number of “dives” have been performed, see Sect.

3.2.



6 Konstantinos Kostikas and Charalambos Fragakis

the nature of the problem. In our experimental implementation of a GP-enhanced
B&B MIP solver, the terminals used are common primitives of node selection
methods for MIP, like for example lp solNi which is the upper bound at the
’parent’ of node N i. The terminals we used are listed in Table 2. They are
quite simple in comparison to the ingredients of advanced MIP node selection
methods. More advanced terminals would probably improve the capabilities of
our GP-enhanced solver.

Table 2. GP Terminals for node selection method construction. Constant Terminals
involve general characteristics of the MIP problem and information regarding the so-
lution of the LP relaxation of the problem. Dynamic Terminals concern the specific
B&B node being evaluated.

Property Description

Dynamic Terminals

ii sumNi si ≡
∑

j∈I
min

(
xi

j − bxi
jc, 1−

(
xi

j − bxi
jc
))

Sum of integer infeasibilities of

the relaxation solution zi
U at the parent of node Ni

ii countNi Count of integer infeasibilities at the parent of node Ni

lp solNi Value of the solution of the linear programming relaxation of the parent of
node Ni

tree depth Ni Depth of the tree at node Ni

Constant Terminals
intvar count Number of integer variables of the problem (including binary variables)
binvar count Number of binary variables of the problem
totvar count Total number of variables of the problem (integer and continuous)
ii sumN0 Sum of integer infeasibilities at the root node of the Branch and Bound tree

(i.e. of the linear relaxation solution of the MIP problem)
ii countN0 Count of integer infeasibilities at the root node of the Branch and Bound tree

(i.e. of the linear relaxation solution of the MIP problem)
lp solN0 Value of the solution of the linear programming relaxation of the MIP problem
bonly TRUE if the problem contains only Binary integer variables, FALSE otherwise

3.2 Training Sets

Evolving a problem-specific node selection method using Genetic Programming
means that a problem-specific training set is required as well. The training set
has to make use of data generated during B&B Stage1, in order to allow GP to
evolve a node selection method which will successfully ’guide’ the B&B search in
Stage2. The scheme we devised for automatically constructing the training cases
is based on the observation that B&B search can be thought of as a collection
of “dives”: each dive di is a path starting at a non-leaf node of the B&B tree
and finishing at a leaf node. Dives are formed in a sequential manner, in case of
DFS based exploration, or in parallel in any other case. Each dive performed is
essentially an attempt of the search to reach a solution. Given the above, our
training set is constructed in GP Stage as follows:

1. The dive is re-created, based on node-state information collected in B&B
Stage1.

2. It is decided if the dive will enter the training set or not.



Genetic Programming for Guiding Branch and Bound Search 7

3. If yes, it is assigned a score, by applying to it a rating function R and it is
inserted into the training set.

Of course, the problem is how to rate each dive: in our experimentation we
used the following rating function:

Ri =

(
si

start − si
finish

di
finish − di

start

)
Vbonus (3)

where si
start is the sum of integer infeasibilities (see Table 2) at the node

where the dive starts, si
finish at the node where it ends, di

finish and di
start is

the depth of the B&B tree at the finishing and starting node respectively, and
Vbonus is a bonus factor applied if the dive results in a full integer feasible MIP
solution. Our rational was that fast reduction of integer infeasibility denotes
a promising dive; in addition, dives resulting in full integer feasible solutions
deserve to be rewarded with the Vbonus factor3. Finally, all dives performed in
B&B Stage1 were inserted into the training set, except from the length-one dives
whose unique (leaf) node was an unfeasible LP relaxation.

We believe that the above scheme, used by us in a rather straightforward
manner, is quite powerful: For one, sophisticated domain specific rating meth-
ods can be utilized. Even more important, arbitrary metrics, like for example
cumulative CPU time spent at each dive or main memory allocated, can be
used. This appears especially appealing to us because it allows the generation of
heuristics tuned for the particular combination of hardware/software platform,
algorithmic implementation and problem data set at hand. Such customized
heuristics are probably beyond the reach of a human-originated design.

4 Evolving Heuristics Offline

Genetic Programming has been used in standalone mode for heuristic generation
in domains other than B&B search. A representative recent example is [13] where
GP is used “to optimize the priority functions associated with register allocation
as well as branch removal via predication”. A number of benchmark programs
were used as the training set. Such a route for heuristic generation is probably
applicable to B&B as well. In the case of B&B MIP, benchmark problems from
MIPLIB3 [14] like the ones used for our experimentation (Sect. 6) can be utilized
as the training set.

An issue with the above approach is the excessive computational time re-
quired. However, in the case of B&B heuristics at least, ’brute force’ does not
need to be the only choice: as discussed in Sect. 2.3, common node selection
heuristics in B&B MIP are expressions that provide an estimate of the best so-
lution obtainable from each node of the tree. In an experiment, we calculated
the best solution obtainable from each one of the 984 nodes comprising the B&B
tree formed during the solution of problem MISC03 of MIPLIB3 by our MIP

3 For all the experiments we used Vbonus = 3.0 for integer feasible solutions worst than
the lower bound and Vbonus = 5.0 for solutions better than the lower bound.



8 Konstantinos Kostikas and Charalambos Fragakis

solver, GLPK; the calculated values were used as the training set4 in GP runs
aimed at evolving node selection heuristics. The same GP control parameters
as for dynamic heuristic generation were used (Tables 2 and 3), except from
a reduced function set. Although not extended experimentation was performed,
the evolved heuristics seemed to constantly outperform the Best Projection node
selection method at predicting the best solution obtainable from a node. Similar
trials performed on MIP problem formulations for Minimax Robust Regression
Estimators [15] produced also positive results. Further experimentation is of
course required in order to assess the method.

5 Experimentation Setup

5.1 Infrastructure

The MIP solver we based our experimentation on is GLPK (Gnu Linear Pro-
gramming Kit) [16]. GLPK doesn’t provide the plethora of options found in
commercial software like CPLEX [17][18], but it contains a solid implementa-
tion of the simplex method, and, most importantly, comes with full source code.
GLPK adopts a backtracking method for node selection: it goes depth first as
much as possible, and then backtracks by selecting a node using DFS5, Breadth-
First-Search (BFS), or Best Projection. The necessary hooks were placed into
GLPK in order to cater for collecting data during B&B Stage1, for performing
the GP run, and for replacing the default backtracking method with the one
evolved. Except from the node selection method utilized, the default settings
were applied in all cases. For Genetic Programming we used strongly typed
lilgp[19][20], which was integrated with the GLPK infrastructure.

5.2 GP Run Parameters

The GP parameters we used in our tests are listed in Table 3. GP Stage evolves
1000 individuals for 50 generations. All individuals constituting the first gen-
eration are randomly created, and each subsequent generation is formed using
individuals resulting from crossover operations, with 88% probability, mutation,
with 10% probability, and reproduction with 2% probability. Tournament selec-
tion with size seven is used. Each individual is restricted to 75 nodes, with no
restriction to tree depth. Finally, the standard arithmetic and boolean logical
and comparison primitives listed in Table 3 are used.

6 Results

In our experimentation, our goal was twofold. For one, we wanted to find out if
the hybrid system, containing GP as node selection heuristic generator, would
4 Actually 685 training cases out of the 984 nodes were made because at the remaining

nodes no integer feasible solution could be found.
5 DFS selects a node using LIFO: this results in B&B spending most of its time

evaluating nodes found to the bottom of the tree; such a strategy is good at finding
solutions, but is likely to get stuck in specific areas of the search space.



Genetic Programming for Guiding Branch and Bound Search 9

Table 3. Control Parameters for B&B Stage1 and the GP Stage.

Objective: evolve LP based Branch and Bound node selection heuristic
specialized for MIP problem instance

Function set: ADD SUB MUL PDIV AND OR NOT IFTRUE IFGTE
IFLTE IFEQ

Terminal set: B&B and LP related runtime data, see Table 2
Fitness cases: dynamically created based on data obtained in B&B Stage1

(5, 15 and 35 dives)
Fitness function: standardized fitness, based on mean error over the fitness

cases
Population size: 1000
Initial population: initialization method: full (50%), grow (50%) initial depth:

4-6
Crossover probability: 88 percent
Mutation probability: 10 percent
Selection: fitness-proportionate
Termination: generation 50
Maximum nodes of tree: 75
Parameters for B&B Stage1: stage ends when 5, 15 or 35 dives have been performed

be able to compete with standard GLPK using BFS and DFS node selection
methods, or the advanced Best Projection heuristic. In addition, we wanted to
assess how the size of the training set would affect the quality of the generated
heuristic, and thus its the capability to effectively guide B&B towards good
solutions.

For the above purposes we used for experimentation problems from the stan-
dard MIPLIB3 library [14]. Easy (fully solved to optimality in less than 300
seconds by the unmodified solver) and very difficult problems (no solution of
the initial LP relaxation found in the available time) were excluded. In addition,
problems with small B&B search trees were excluded, because not enough dives
for building the training set were performed in B&B Stage1. The remaining 13
problems were presented to unmodified GLPK, utilizing best projection, BFS
and DFS as the node selection method, and to the GP-enhanced GLPK, using
training sets of 5, 15 and 35 dives. The time available for each run was set to
300 seconds. 5 runs were performed under each case for standard GLPK, and
25 runs (5 repetitions for 5 random initial populations) for the hybrid solver.
All tests were performed in the same hardware/software system (Pentium 4 at
2.4GHz with 768Mb Ram running Linux 2.4). The best (minimum, since all are
minimization problems) solution obtained by each method is presented in Table
4. For the GP based methods, the mode of the solutions obtained is reported.

As it is apparent from Table 4, no node selection method fully outperforms
the others. This is typical for node selection heuristics, and in accordance with
[2]. Two methods stand out however as being the most capable of obtaining
good integer feasible solutions at the available time: best projection and GP-35
(training set comprised of 35 dives): best projection was able to find the best
overall solution in 6 cases, whereas GP-35 in 5 cases. In the remaining two cases,
problems modglob and p2756, the best solutions were found by GP-5 and DFS
respectively.

Where the GP evolved heuristics stand our however, is in their consistency:
All GP evolved heuristics managed to acquire solutions in all problems in all the



10 Konstantinos Kostikas and Charalambos Fragakis

Table 4. Best solutions found in the available time (300 seconds). Bestp, BFS and DFS
are standard node selection methods. GP35, GP15 and GP5 are methods dynamically
evolved by GP using a training set of 35, 15 and 5 cases (dives) respectively. ’NF’ means
that no solution was found. Overall best values are printed bold with the faster method
preferred in case of ties. For the GP methods, the mode of the solutions obtained is
reported, or the median value (in italics) if no mode exists.

Problem Bestp BFS DFS GP35 GP15 GP5
10teams 928 948 934 926 928 984
fiber 415629 426301 531856 524332 447136 426301
gesa2 25977000 26401200 26523800 26541200 26423100 26402600
gesa2o 26070200 26243900 26416200 26035700 26282500 26314900
gt2 31582 21166 31023 21166 31023 31023
mod011 -53548200 -49444800 -48489400 -52369800 -50108800 -45495900
modglob 20931300 21033600 21442800 20992000 21054400 20920400
p2756 NF NF 3844 4222 26267 10532.5
pk1 11 17 17 16 17 17
qiu -132.873 -27.6516 102.332 -132.873 -119.654 -14.4329
rout NF NF 1353.75 1167.17 1213.33 1231.25
set1ch 60342.8 63350 64744.2 63373.5 64744.2 64744.2
vpm2 13.75 14.5 14.25 14.5 15 14.5

Best Sols 6 - 1 5 - 1
Avg Rank 2.54 3.62 4.69 2.46 3.62 4.23

runs that were performed, whereas Best Projection and BFS found no solution
at all in two of them, p2756 and rout. DFS found also solutions to all problems,
although not as good as the solutions found by the GP methods, especially by
GP35.

The obtained results are also quite illustrative on how the size of the training
set, that is of the number of dives performed in B&B Stage1, affects the the
quality of the heuristic evolved; GP-35, enjoying a bigger training set in GP-
Stage consisting of 35 training cases, evolves significantly better heuristics than
GP-15 and GP-5 which employ 15 and 5 training cases respectively. This is
reflected in the average rank of the methods, shown in Table 4.

Table 5. Best and worst solutions obtained for the GP-enhanced MIP solver.

GP-35 GP-15 GP-5
Problem Best Run Worst Run Best Run Worst Run Best Run Worst Run
10teams 924 928 928 928 934 984
fiber 524299 558087 418318 1153830 418318 1104800
gesa2 26502300 26557500 26363000 27338200 26402600 26746300
gesa2o 26035700 26037800 26258000 26373100 26078000 26548500
gt2 21166 35328 21166 37142 31023 31023
mod011 -52632100 -52369800 -50108800 -50108800 -45659000 -45495900
modglob 20920400 21240400 20895000 21054400 20920400 21400300
p2756 4222 48124 15520 36249 3505 73564
pk1 16 17 14 17 17 17
qiu -132.873 -115.248 -119.654 -119.654 -132.873 33.0187
rout 1077.56 1270.63 1142.75 1318.13 1167.17 1367.94
set1ch 63373.5 63373.5 62426 64744.2 64744.2 64744.2
vpm2 14.5 14.5 14.5 15 14 15.5



Genetic Programming for Guiding Branch and Bound Search 11

Table 6. Average time in seconds used for B&B Stage1 and for GP Stage. The time
spend in each stage increases in proportion to the size of the training set.

GP-35 GP-15 GP-5
Problem B&B Stage1 GP Stage B&B Stage1 GP Stage B&B Stage1 GP Stage
10teams 117.30 5.73 69.58 2.91 24.12 1.59
fiber 9.96 5.78 5.56 2.98 2.54 1.62
gesa2 12.14 4.98 4.75 2.83 2.53 1.62
gesa2o 10.30 5.82 3.32 3.24 1.66 1.62
gt2 0.27 5.58 0.20 2.98 0.18 1.70
mod011 146.04 6.19 81.95 3.03 42.75 1.70
modglob 2.38 6.08 1.39 3.25 0.94 1.64
p2756 5.11 5.69 2.53 2.65 0.53 1.46
pk1 0.70 5.71 0.29 2.95 0.12 1.52
qiu 16.72 5.91 9.78 3.04 5.02 1.63
rout 13.38 6.09 4.75 3.16 1.51 1.65
set1ch 0.97 5.40 0.86 2.69 0.80 1.18
vpm2 1.98 5.17 0.97 2.39 0.38 1.31

Table 5 depicts the best and worst solutions obtained by each GP setup and
Table 6 shows how the size of the training set affects the time spent in B&B
Stage1 and in GP Stage. It is worth mentioning that GP-35, supported by a
larger training set, manages to do best despite the significantly less time spent
in B&B Stage26, in comparison to all other methods.

7 Conclusions and Further Research

We used Genetic Programming as a component in a Branch and Bound frame-
work, where GP is utilized for generating the node selection heuristic for MIP.
We believe that the experimental results obtained by our prototype implementa-
tion show that the hybrid B&B-GP approach we introduce portrays significant
potential: supported by a properly constructed training set of adequate size,
problem-instance specific heuristics can be evolved, capable of consistently guid-
ing B&B towards promising areas of the search space.

Concerning our future research efforts, these will be directed in two fronts:
The first one is to incorporate multiple GP Stages in our design, as well as to
experiment with more elaborate GP structures and techniques like ADFs and
Interval Arithmetic. The second one will be to increase our understanding of how
the training set construction method adopted in the GP Stage affects the search
in B&B Stage2. In addition to the above, we would like to apply our approach
to more domains where B&B heuristic-based search is used.

References

1. Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristics. Springer-Verlag
(2002)

6 The duration of B&B Stage2 equals the total run time minus the duration of B&B
Stage1 and of GP Stage.



12 Konstantinos Kostikas and Charalambos Fragakis

2. Linderoth, J., Savelsbergh, M.: A computational study of search strategies for
mixed integer programming. INFORMS Journal on Computing 11 (1999) 173 –
187

3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys 35 (2003) 268–308

5. Abramson, D., Randall, M.: A simulated annealing code for general integer linear
programs. Annals of Operations Research 86 (1999) 3–24

6. Randall, M., Abramson, D.: A general metaheuristic based solver for combinato-
rial optimisation problems. Kluwer Journal on Computational Optimization and
Applications 20 (2001)

7. Mitchell, J., Lee, E.K.: Branch-and-bound methods for integer programming. In
Floudas, C.A., Pardalos, P.M., eds.: Encyclopedia of Optimization, Kluwer Aca-
demic Publishers (2001)

8. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research (1986) 533–549

9. Lawler, E., Wood, D.: Branch-and-bound methods: a survey. Operations Research
14 (1966) 699–719

10. A. de Bruin, G.A.P. Kindervater, H.T.: Towards an abstract parallel branch and
bound machine. Technical report, Erasmus University, Department of Computer
Science (1995)

11. Robert, S.: Algorithms. Addison-Wesley (1983)
12. Mitra, G.: Investigation of some branch and bound strategies for the solution of

mixed integer linear programs. Mathematical Programming 4 (1973) 155–173
13. Stephenson, M., O’Reilly, U.M., Martin, M.C., Amarasinghe, S.: Genetic program-

ming applied to compiler heuristic optimization. In Ryan, C., Soule, T., Keijzer,
M., Tsang, E., Poli, R., Costa, E., eds.: Genetic Programming, Proceedings of
EuroGP’2003. Volume 2610 of LNCS., Essex, Springer-Verlag (2003) 245–257

14. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed
integer programming library: MIPLIB 3.0. Optima 58 (1998) 12–15

15. Zioutas, G.: Quadratic mixed integer programming models in minimax robust
regression estimators. In: Statistics for Industry and Technology. Verlag (2004)

16. GLPK: (www.gnu.org/software/glpk)
17. CPLEX: (www.ilog.com/products/cplex)
18. Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: Theory

and practice – closing the gap. In: System Modelling and Optimization: Meth-
ods, Theory, and Applications. Volume 174 of IFIP INTERNATIONAL FED-
ERATION FOR INFORMATION PROCESSING. Kluwer Academic Publishers,
Boston (2000) 19–49

19. Zongker, D., Punch, B.: lilgp 1.01 user’s manual. Technical report, Michigan State
University, USA (1996)

20. Luke, S.: (Strongly typed lilgp, www.cs.umd.edu/users/seanl/gp/patched-gp/)


