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Abstract.  In this paper, we propose Genetic Network Programming (GNP) 
Architecture using Automatically Defined Groups. GNP is a kind of new 
evolutionary method inspired from Genetic Programming (GP). While GP has a 
tree architecture, GNP has a network architecture, with which an agent works in 
the virtual world. Because only one network architecture is evolved for agents 
in a system in previous works, every agent takes actions in the same way. In this 
paper, we apply a coevolution model called Automatically Defined Groups 
(ADG) to an evolutionary process of GNP, so that several GNP architectures are 
evolved in order to develop a cooperation among multiple agents. By computer 
simulation, we show that multi-agent cooperation can be developed by our GNP 
architecture with the ADG model. 

1  Introduction 

Recently many researchers have investigated on automatic design of complex systems 
using evolutionary computation (EC) techniques. Genetic Programming [1] is one of 
well-known EC techniques that uses a tree structure to describe solutions of numeral 
problems, combination optimization problems, and action control problems for agents. 
However, GP is known to have difficulty to converge in one near-optimal solution or 
to search an optimal structure efficiently because it has a large solution space. When it 
is applied to dynamic problems such as action control problems, some actions should 
be selected in a chain of actions. That is, an action should be selected not only by the 
current situation but also the actions already taken. A designer of GP can define a 
node for previous information, but it is difficult to define the number of previous 
actions to be considered to take an action. 

In order to cope with such problems, a new architecture called Genetic Network 
Programming (GNP) has been proposed [2]. It is inspired from GP, but it does not 
have a tree architecture, but has a network architecture. While Evolutionary 



Programming (EP) [3] also has a network architecture, it may be difficult to predefine 
all transitions in advance. GNP can work with only problem-dependent nodes like GP 
so that the designer predefine only a small number of nodes. 

In GNP, we apply the Michigan approach where each action rule is represented by 
an individual. That is, each agent takes actions according to a set of action rules 
developed by GNP. In GNP [2], every agent takes actions using an identical set of 
rules. It can be called a homogeneous model. In GP research works, however, various 
methods have been proposed for heterogeneous model [4-6]. Luke and Spector [4] 
showed that the heterogeneous model performs better than the homogeneous model 
because the ability of agents becomes higher and agents performs more complex 
cooperative behaviors, while the search efficiency for GP becomes worse as its 
searching space increases. In the previous studies [4,5], the number of agents was 
restricted to two to four. 

In order to obtain multiple roles for a number of agents, Hara and Nagao [7,8] have 
proposed a combined model of the homogeneous and the heterogeneous model. In 
their model, there are several roles for agents. They develop several trees by GP, and 
the agents with the same role refer the same tree. They proposed a model called 
Automatically Defined Groups (ADG) [7]. In their ADG model, the number of roles 
does not have to be predefined, but it is obtained automatically through evolutionary 
process. They showed their effectiveness for a load transportation problem [7,8] and 
the tile world problem [9]. 

Because the ADG model was proposed mainly for GP, we apply that model to 
develop networks of GNP in this paper. Using the load transportation problem [7,8], 
we show that the GNP can obtain better rules than the GP, and the ADG model for the 
GNP can develop appropriate roles for cooperative multiple agents. 

2  GNP: Genetic Network Programming 

2.1 Basic Architecture of GNP 

In this section, we describe the basic architecture of GNP [2,10,11]. GNP uses a 
network architecture instead of using a tree architecture. Fig. 1 shows the basic 
structure of GNP. In GNP, we have three types of nodes: start node, judgment node 
and processing node. In Fig. 1, the start node, the judgment node and the processing 
node are denoted by a square, a diamond and an open circle, respectively. The start 
node is like a root node in GP. The other two nodes, the judgment node and the 
processing node, correspond to the function node and the terminal node, respectively. 
Therefore we can employ the same function node and the terminal node used in GP as 
the judgment node and the processing node in GNP. Main difference between GP and 
GNP lies in the terminal node or the processing node. As shown in Fig. 2, the terminal 
node of GP can not have a further connection that is why it is called as “terminal” 
node. On the other hand, the processing node in GNP can connect other nodes. 
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Fig. 1  Basic Structure of GNP. 
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Fig. 2  Basic Structure of GP. 
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Fig. 3  Representation for the node. 

 
The difference between GNP and GP lies only in their architectures, but it brings 

great difference between them. For example, because the action of an agent is 
determined only in the terminal node in GP, the agent should return to the root node to 
take a next action. On the other hand, an agent in GNP acts when it finds a processing 
node, and it does not have to return to the start node after making decision. 

As for another disadvantage of GP, the performance of the tree may change greatly 
if the sub tree is exchanged by genetic operations at the node near to the root node in 
GP. On the other hand, the node exchange in GNP does not have such a great 
influence on the performance of the network. 

2.2 Chromosome Representation 

In order to generate a network as an individual in GNP, we assign 1+N  nodes for 
one network randomly. The representation of each node is shown in Fig. 3. Each node 
has its ID number i ( Ni ,...,2,1,0= ). As shown in Fig 3, each node consists of two 
parts: node gene and connection gene. In the node gene, iNT  shows the type of the 
node i: “0” denotes the processing node and “1” denotes the judgment node. iID  
indicates the function of the node. If 0=iNT  and there are P types of the processing 
node, iID  varies from 0 to 1−P . In the case of 1=iNT  and there are J types of 
the judgment node, iID  varies from 0 to 1−J . According to the values of iNT  
and iID , the function of the node i is defined. As for the start node, we do not assign 

0NT  and 0ID  in the node gene. 
In the connection gene, ijC  indicates the j-th connection from the node i, and 

ark
in  shows the number of connections from the node i. If 0=iNT , 1=ark

in  
because the processing node has only one connection. When 1=iNT , 2≥ark

in  



because a judgment node has several connections according to its condition. The 
value of the ijC  indicates the ID number of the node connected from the node i. 

In the initial generation, we first generate the N  nodes by assigning iNT  and 

iID  for Ni ,...,1=  randomly. To the generated N  nodes, we randomly assign the 
connection gene ijC  for each individual to form a population with the specified 
number of individuals. Therefore, the node gene of each individual has the same iNT  
and iID , but the connection gene has different connections among N  nodes. 

2.3 Genetic Operations for GNP 

GNP has the two types of genetic operations: crossover and mutation. Fig. 4 shows a 
crossover operation in this paper. The procedure of the crossover is as follows: 
 
[Crossover in GNP] 
Step 1: Using the tournament selection, select two networks for crossover. 
Step 2: Select nodes randomly in one network. 
Step 3: Exchange the selected nodes between two networks. 
Step 4: Repeat Step 1 through 4 until the prespecified number of offspring is 

generated. 
 
As shown in Fig. 4, the connections of the randomly selected nodes are exchanged by 
this crossover. 
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Fig. 4  Crossover in GNP. 
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Fig. 5  Mutation for connection 
gene in GNP. 



Fig. 5 shows a mutation operation for connection gene [12]. The procedure of the 
mutation for the connection gene is as follows: 
 
[Mutation in GNP] 
Step 1: Select a network randomly. 
Step 2: According to the mutation probability mP , select a connection. 
Step 3: Turn the value of the selected connection to another node ID. 

2.4 Algorithm of GNP 

Using the initialization process and the genetic operations in Subsections 2.2 and 2.3, 
we form the following algorithm for GNP. 
 
[GNP Algorithm] 
Step 1 (Initialization) 

Initialize the population with popN  individuals. 
Step 2 (Fitness evaluation) 

Calculate the fitness value of each individual, and find an elitist individual with the 
best fitness value in the population. 

Step 3 (Genetic operations) 
Step 3-1 (Selection): Select parents for crossover by the tournament selection. 
Step 3-2 (Crossover): Apply the crossover operator to the selected parents. 
Step 3-3 (Mutation):  Apply the mutation operator to the connection genes. 
Step 3-4 (Elite strategy): Preserve the elitist individual found in Step 2 or Step 5. 

Step 4 (Replacement) 
Replace the newly generated population with the previous population. 

Step 5 (Fitness evaluation) 
Calculate the fitness value of each individual, and find an elitist individual with the 
best fitness value in the population. 

Step 6 (Termination Condition) 
Terminate the algorithm if the specified condition is satisfied. Otherwise return to 
Step 3. 

3  GNP in the ADG Model 

3.1 ADG: Automatically Defined Groups 

We employ the Automatically Defined Groups (ADG) model [7,8] for developing 
several roles of agents. According to its role, each agent refers to the action control 
rules described by GNP. In the concept of the ADG model, each agent has its own role, 
and the agents with the same role take actions under the identical set of rules. This is 
likened to social insects such as bees and ants. They have several specialized classes 



among them such as queens, drones, workers and so on. It is considered that a number 
of workers take action under the identical rules. While these rules of a class is 
developed by GP in [7,8], we develop rules for a class by GNP in this paper. In the 
ADG model, a set of several classes is considered as one individual to be governed by 
genetic operations. That is, a set of several networks of GNP is considered as an 
individual. We refer this individual including several networks as an ADG individual 
in this paper. 

In our ADG model, each agent belongs to one of the classes of the network. 
Therefore each ADG individual has three information: the class structure according to 
the number of roles of agents, a network structure for each class in the ADG 
individual, and the class IDs for all agents. 

3.2 Genetic Operations for the ADG model 

Genetic operations for the ADG model aim to acquire several classes according to the 
number of roles of agents. There are two tasks to attain this aim: 
 
1) Acquire the number of roles, and develop a network of GNP for each role. 
2) Acquire the correspondence between each agent and each role. 
 
In order to attain these tasks, Hara and Nagao [7,8] proposed a group mutation and a 
crossover for ADG individuals. They proposed a group mutation to change the 
members of a class (or a group) as follows: 
 
[Group Mutation in ADG] 
Step 1: According to the group mutation probability gmP , select an ADG individual. 
Step 2: For the selected ADG individual, select an agent, and identify the class (or 

the group) of the selected agent. 
Step 3: Change the class ID of the selected agent randomly. 
Step 4: If the class ID randomly specified in Step 3 is the same class ID to which the 

agent belonged, generate a new network only for the selected agent. The 
structure of the newly generated network is the same one to which the agent 
belonged. Then go to Step 5. If the class ID chosen in Step 3 is different, go 
to Step 5. 

Step 5: Return to Step 1 until the mutation is applied to all the ADG individuals. 
 
By this mutation, the class structure is modified before the crossover operation. 

After applying the group mutation to each ADG individual, the following crossover 
is applied to the population of the ADG individuals. 
 
[Crossover in ADG] 
Step 1: According to the crossover probability gcP , select two ADG individuals 

among the ADG population. 
Step 2: Select one agent randomly. 
Step 3: Identify the network of GNP to which the selected agent refer in each of the 

selected ADG individuals. Let Net  and tNe ′  denote the networks of the 



selected ADG individuals. 
Step 4: Identify the set of agents )(NetA  that refer to the network Net  as action 

control rules. Identify )( tNeA ′ , too. 
Step 5: Apply the crossover operator for GNP (see Subsection 2.2) to the selected 

networks Net  and tNe ′ . 
 
In Step 5, the following three relations between )(NetA  and )( tNeA ′  are examined 
and the merger or the division of the classes is implemented before applying the 
crossover operator. 
 
(Type a) )()( tNeANetA ′= , 
(Type b) )()( tNeANetA ′⊂  or )()( tNeANetA ′⊃ , 
(Type c) Otherwise. 
 
In the case of Type a, the crossover for GNP is applied to Net  and tNe ′  without 
the merger or the division of the classes. If )(NetA  and )( tNeA ′  is in the relation 
of Type b, the division of the class is occurred in the larger set. On the other hand, the 
merger of the classes is taken place when )(NetA  and )( tNeA ′  are neither the 
same set nor the inclusion relation. Using Figs. 6 - 8, we explain these three cases. 

In Figs. 6 - 8, two ADG individuals are already selected for the crossover operator, 
and Agent 2 is selected in Step 2 of the crossover operation for the ADG model. 
 
 

 agent 
1,2 3 3,44 1,2

1,2 3 3,44 1,2

{1,2} = {1,2}

Crossover 

agent 

agent agent 

 
 

Fig. 6  Crossover for ADG in the case of )()( tNeANetA ′=  (Type a). 
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Fig. 7 Crossover for ADG in the case of )()( tNeANetA ′⊂  or 
)()( tNeANetA ′⊃   (Type b). 
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Fig. 8 Crossover for ADG in the case of no inclusion of )(NetA  and )( tNeA ′   
(Type c). 

 
(Type a) 
In this case, there is no change among the class structure in an ADG individual since 
Agent 2 is a member of the set {1, 2} in both the ADG individuals in Fig. 6. Apply the 
crossover for GNP in Subsection 2.3 to the selected networks. 
 
(Type b) 
When Agent 2 is selected in Step 2, it is a member of the set {2} in the left parent, and 
a member of the set {1, 2, 3, 4} in the right one in Fig. 7. If the network for the set {1, 
2, 3, 4} in the right parent is modified with the network in the left by the crossover, 
Agents 1, 3, 4 are also influenced by the modification. In order to restrict the 
influence of the network for Agent 2 in the left parent, the same network of {1, 2, 3, 
4} is newly generated in the right and Agent 2 is assigned to the newly generated 
network. After that, apply the crossover to the network of the left parent and the 
newly generated network in the right parent. 
 
(Type c) 
In this case, Agent 2 is included in {1, 2} in the left parent, and in {2, 3} in the right 
one. Since these two sets are not included each other, the union of these two sets is 
assigned to the networks generated by the crossover as shown in Fig. 8. 

3.3 Overall Algorithm of GNP with the ADG Model 

Using the ADG model, we develop networks of GNP by the following algorithm: 
 
[Algorithm for GNP with the ADG Model] 
Step 1 (Initialization) 

Initialize the population with ADG
popN  ADG individuals. 

Step 2 (Fitness evaluation) 
Calculate the fitness value of each ADG individual, and find an elitist individual 
with the best fitness value in the population. 

Step 3 (Genetic operations) 
Step 3-1 (Group Mutation): Select 1−ADG

popN  ADG individuals by the 
tournament selection, and apply the group mutation to ADG individuals 



according to the group mutation probability. 
Step 3-2 (Crossover): Apply the crossover operator in Subsection 3.3 to the 

selected parents. 
Step 3-3 (Mutation):  Apply the mutation operator for GNP to the connection 

genes. 
Step 3-4 (Elite strategy): Preserve the elitist individual found in Step 2 or Step 5. 

Step 4 (Replacement) 
Replace the newly generated population with the previous population. 

Step 5 (Fitness evaluation) 
Calculate the fitness value of each ADG individual, and find an elitist individual 
with the best fitness value in the population. 

Step 6 (Termination Condition) 
Terminate the algorithm if the specified condition is satisfied. Otherwise return to 
Step 3. 

4  Computer Simulations on Load Transportation Problem 

In this chapter, we employ a simple load transportation problem [7,8] to show the 
effectiveness of GNP comparing to GP. Later, the effectiveness of the ADG model is 
shown by comparing it with the heterogeneous model using the same problem. 

4.1 Load Transportation Problem 

In the load transportation problem, there are two types of loads that differ in weight. 
Each of the two types loads is placed in a point in a two-dimensional grid world. That 
is, the heavy loads are placed in the point H in the environment, and the light ones are 
placed in the point L. The number of agents is 20, and there are only 5 agents that can 
bring either load among them. The other 15 agents can carry only a light load. 

The aim of this problem is to carry as many loads as possible to the goal point in a 
constant time period. The fitness of a team of 20 agents is measured by how many 
loads are transported to the goal point within the allotted time. The score of a heavy 
load is 5 and that of light one is 1. We allow 100 time steps for each agent. During 
that time steps each agent can bring a load back to the goal point three times if it 
moves in a shorter way. Thus 3)15155(120 ××+×=  is the best fitness of a team. 

4.2 Comparison between GNP and GP 

In this section, we compare the performance of GNP and GP using the load 
transportation problem. We employed the homogeneous model. That is, the algorithm 
in Subsection 2.4 is used for GNP. In order to compare the performance of GNP with 
GP, we employ the same judgment (function) and processing (terminal) nodes in both 
the algorithms. Table 1 shows two judgment nodes and four processing nodes. 



Table 1  Nodes used for GNP and GP. 
 

Name Description 

if_carrying_load Carry load or not 

if_load_here There is a load or not 

Pick_up Pick up load at the current position 

Move_goal Move to the goal point 

Move_heavy_load Move to the heavy load 

Move_light_load Move to the light load 

Table 2  Average results of 
GNP and GP. 

 
Fitness GNP GP 

Max 120 75 

Average 105.8 75.0 

Min 75 75 

 

 
When we generate the initial population for GNP, we used five nodes for each node 

type. Therefore each network has 30 nodes with a start node. In order to use the same 
number of nodes in GP, we specified the maximum depth of the tree was five. 

We applied the genetic operations with 500 generations in each trial of GNP and GP. 
Table 2 shows the average result of 100 trials. According to the results, we can see 
that GP could not find the tree structure that enables agents to get the highest fitness 
value while GNP could obtain the network to attain the maximum fitness value. Figs 
9 and 10 show the tree and the network structure obtained by GP and GNP, 
respectively. In these figures, the nodes that have no effect in the decision making of 
an agent are omitted. From Fig. 9, we can see that GP could produce the rule tree 
which enables only five agents to carry heavy loads. On the other hand, GNP could 
produce the network if an agent can not carry the heavy load, it will move to the place 
with light loads. This result clearly shows the effectiveness of GNP. 
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of the ADG and the 
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Fitness ADG Hetero 

Max 120 118 

Average 120.0 110.9 

Min 120 99 
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Fig. 10  The best network obtained by GNP 
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Fig. 11  Average over 100 trials by the Heterogeneous model. 
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Fig. 12  Average over 100 trials by the ADG model. 

4.3 Effectiveness of GNP Using the ADG Model 

In this section, we compare the performance of GNP using the ADG model with that 
of GNP using the heterogeneous model. In the heterogeneous model, every agent has 
its own network for its action control rule. 

Table 3 shows the average result of 100 trials of GNP using the ADG model and the 
heterogeneous model. Table 3 shows that GNP using the ADG model obtained the 
highest fitness value in every trial. On the other hand, GNP using the heterogeneous 
model could not find the network with the highest fitness value. These results clearly 
show that the ADG model is effective to this problem. 

Figs. 11 and 12 show the average fitness over 500 generations obtained by the 
heterogeneous model and the ADG model. From these figures, we can see that the 
ADG model can find the best fitness (120) in the 20th generation in the best trial. On 



the other hand, the heterogeneous model could not find the network with the best 
fitness value in 100 trials. From these figures, we can see the effectiveness of GNP 
with the ADG model to evolve the cooperation of multiple agents. 

5  Conclusion and Future Works 

In this paper, we propose the GNP architecture with the ADG model. By computer 
simulations, we clearly show the better representation ability of GNP than that of GP. 
We also showed that GNP with the ADG model can find appropriate roles of agents 
according to their ability by the load transportation problem. 

As for further research topics, we need to investigate a way to reduce the redundant 
nodes in the networks developed in GNP. In Fig. 10, we showed the network where 
the nodes that are not work are removed. Without such a manipulative remove, the 
network has a more redundant structure. We will improve the performance of GNP in 
such way. 
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