
Convergence Control in ACO

Bernd Meyer
bernd.meyer@acm.org

Dept. of Computer Science, Monash University, Australia

Abstract. Ant Colony Optimization (ACO) is a recent stochastic meta-
heuristic inspired by the foraging behaviour of real ants. As for all meta-
heuristics the balance between learning based on previous solutions (in-
tensification) and exploration of the search space (diversification) is of
crucial importance. The present paper explores a novel approach to di-
versity control in ACO. The common idea of most diversity control mech-
anisms is to avoid or slow down full convergence. We suggest to instead
use a fast converging search algorithm that is artificially confined to the
critical phase of its convergence dynamics. We also analyze the influence
of an ACO parameter that does not seem to have received sufficient at-
tention in the ACO literature: α, the exponent on the pheromone level
in the probabilistic choice function. Our studies suggest that α does not
only qualitatively determine diversity and convergence behaviour, but
also that a variable α can be used to render ant algorithms more ro-
bust. Based on these ideas we construct an Algorithm ccAS for which
we present some encouraging results on standard benchmarks.

1 Introduction

Ant Colony Optimization (ACO) [DDC99] is a relatively recent model-based
meta-heuristic [ZBMD04]. It is successfully applied to a growing number of in-
dustrial and academic constraint optimization problems and reaches state-of-
the-art results for several important problem classes [CHS02]. The progenitor of
all ACO algorithms, Ant System (AS) [Dor92], was very directly inspired by the
pheromone-based trail-laying-trail-following behaviour of real ants [CD01].

In ACO a number of agents (“ants”) independently construct solutions in
parallel by iteratively augmenting partial solutions. Consider a TSP, where a
partial solution corresponds to a partial path. Every construction step extends
a partial path to a new city. In ACO the ants make the choice of the next
city based on a so-called “pheromone value”, which models the preference for
a particular choice and is cooperatively learned by the ants during the search.
In a TSP the pheromone value is commonly attached to a pair of cities ci, cj

and models the preference to go from city ci to cj . The pheromone values are
learned through a reinforcement strategy in which each agent, after the complete
solutions have been constructed, reinforces the choices it has made during the
solution construction with an amount of reinforcement that depends on the
solution quality obtained. The AS algorithm for TSP is given in Figure 1.

Modern ACO algorithms deviate significantly from the simple AS schema
for the sake of a more efficient search. One of the core aspects of this quest is
to achieve a better balance between exploration and exploitation or learning,
i.e. between maintaining solution diversity and intensifying the search in the
vicinity of good solutions in the search space. Achieving this balance requires
the algorithm designer to adjust the convergence dynamics, where converging
means that an increasing number of ants starts to reproduce the same solution.



(1) ∀i, j : τi,j = τ0 /* initialize pheromone matrix
(2) ∀i, j : ηi,j = d−1

i,j /* heuristic η=inverse distance

(3) lgb := +∞; T gb := nil; /* initialize global best
(4) for t := 1 to max iterations do
(5) for k := 1 to number of ants do
(6) T k=nil /* intialize tour of ant k as empty
(7) mark all cities as unvisited by ant k
(8) i := random city not yet visited by ant k
(9) for n := 2 to number of cities
(10) mark city i as visited by ant k
(11) C := set of cities not yet visited by ant k
(12) choose next city j to be visited by ant k with probability

pj :=
τα

i,j ·η
β
i,j∑

j∈C
τα

i,j
·ηβ

i,j

(13) T k := append(T k, (i, j))
(14) i := j
(15) end
(16) lk := length(T k)
(17) end
(18) ib := argmink(lk) /* best tour index
(19) if lib < lgb then begin T gb := T ib; lgb := lib end
(20) ∀i, j : τi,j := (1− ρ)τi,j + ∆τi,j /* evaporate and reinforce

where ∆τi,j =
∑number of ants

k=1
∆τk

i,j and ∆τk
i,j =

{
Q · l−1

k if (i, j) ∈ T k

0 otherwise

(21) end.

Fig. 1. The Original Ant System Algorithm for TSP

In the case of static optimization problems early convergence to a small region
of the search space leaves large sections of the search space unexplored. On the
other hand, very slow convergence cannot sufficiently concentrate the search in
the vicinity of good solutions and therefore renders the search inefficient. In the
case of dynamic problems and reactive optimization diversity control takes an
even more important role, as continued solution diversity is required to be able
to quickly adapt to problem changes.

The common idea behind all published diversity control modifications is es-
sentially to avoid full convergence or at least to slow it down significantly. These
control mechanisms can be classified as either modifications of the pheromone
deposit function or modifications of the probabilistic decision function. The earli-
est such refinement was introduced with Ant Colony System (ACS) [DG96]. The
basic idea of ACS is to use pheromone update only on the elitist path and to
complement the normal evaporation ∀i, j : τi,j := (1−ρ)τi,j applied to the elitist
path, which takes place after all ants have completed a tour construction, by lo-
cal evaporation: Each ant takes a small amount of pheromone off each edge used
as soon as it traverses this edge. In consequence the edge becomes less desirable
for subsequent ants and thus solution diversity is increased. MaxMin AS [SH00]
achieves increased diversity by imposing artificial minimum and maximum lim-
its on the amount of pheromone on each edge, so that the likelihood of being
selected does not ever become vanishingly small or overwhelmingly large for
any path. In the refined form of MaxMin AS with pheromone trail smoothing
(PTS), pheromone that exceeds a certain threshold is redistributed among in-



cident edges. All these modifications have lead to significantly more effective
search procedures [DG96,SH00]. An alternative to modifying the pheromone de-
posit mechanism is to change the path selection mechanism. This has been inves-
tigated mainly by introducing additional randomization, resembling a mutation
operation in a GA, into the decision function [NA01].

A final possibility is to tune parameters of the decision function. We will
analyze the influence of α, the exponent on the pheromone level in the selec-
tion function, which has received surprisingly little attention in the literature.
Our studies suggest that α does not only qualitatively determine diversity and
convergence behaviour, but also that a variable α can be used to improve the
efficiency of the search.

Following this, we explore a radically different approach to diversity control in
ACO. Instead of avoiding convergence we suggest to use a fast converging search
algorithm that is artificially confined to the critical phase of its convergence
dynamics. Based on these ideas we construct an Algorithm ccAS and analyze
its performance for standard benchmarks. The results appear encouraging.

2 The Influence of α on ACO Convergence Dynamics

While ACO research has a track record of successful applications, only few papers
have analyzed ACO theoretically. Even though convergence proofs exist for some
restricted forms of ACO [SD02,Gut02], the general understanding of convergence
behaviour and system dynamics is still in its infancy. This is particularly true for
the function of α, the exponent on the pheromone level in the choice function of
the original Ant System algorithm (Figure 1). In most approaches it is taken to
be 1, so that the selection probability is linear in the pheromone level. The fact
that α has not received a more systematic investigation is somewhat surprising,
as its value has a marked influence on the convergence behaviour.

Experimental support for the idea that α has important influence in ACO
can be drawn from some recent studies in ACO. In [BB98] the authors attempted
to find optimum parameters for ACS applied to standard TSP benchmarks. A
genetic algorithm was used to “breed” the optimum parameters for the ACS al-
gorithm. Training was performed on one problem instance (Oliver30) and testing
was performed with a different problem instance of comparable size (Eil51). The
optimum parameter set found was able to outperform previous search methods
on Eil51. Interestingly, the optimum α value was not 1 but 0.39.

In another recent study [RT02] different forms of varying α during the search
process are experimentally evaluated. The authors find that some forms of non-
constant α appear to outperform the same algorithm with a constant α. Both
studies mentioned were purely experimental, as were, to the best of the author’s
knowledge, all other studies investigating α. The obvious question is, whether
the influence of α can be understood in a more systematic manner. While a full
theoretical analysis currently still seems beyond reach, as the system dynamics
of ACO is not even fully understood for fixed α, it is possible to gain more insight
by investigation of ACO convergence dynamics on some very simple graphs.

To achieve an analytical understanding of ACO system dynamics, we start
from its simplest form, AS without a heuristic function (β = 0), and calculate
expected values instead of the discrete update performed by a finite number of
ants. This is a common simplification and a comparison with numerical experi-
mental data on real AS will later be used to validate the investigation.



We can gain some initial insight by looking at the AS behaviour on the
simplest possible graph (Figure 2) in which we can search for a Hamiltonian
path. Ants must obviously start at the west-most node and can either proceed
first north-east and then south (pathlength l1) or start south-east and then go
north (pathlength l2), l1 < l2. Let p∗i be the steady state of the probability pi

for the path with length li to be selected. Let τ1 be the pheromone level on the
edge leading north-east and τ2 the one on the edge leading south-east. At steady
state we must have: ρ · τi = Q

li
· n · p∗i By substituting the definition of pi from

Figure 1 and dividing both pi we find p∗1 =
(

1 +
(

l1
l2

) α
1−α

)−1

Fig. 2. Simple Model

Interestingly, p∗1 depends on the ratio of path
lengths and on α, with a singularity at α = 1. A full
fix point analysis for p∗1 is given in Figure 3 (stable
fixpoints marked with solid lines, unstable ones with
dashed lines). The two trivial fixpoints correspond
to “all traffic on the better path” and “all traffic
on the inferior path”, i.e. p∗1 = 1 and p∗1 = 0. The
non-trivial fixpoint corresponds to a proportional
distribution of the traffic depending on the ratio of
path lengths l1

l2
. For 0 < α < 1 only the non-trivial

fixpoint is stable, i.e. the system is guaranteed to
reach a proportional traffic distribution. At α = 1 the only stable fixpoint is
p∗1 = 1, i.e. the system is guaranteed to end up with the entire traffic on the
better path. For α > 1 the system behaviour is definitely not optimizing. The
third (proportional) fixpoint corresponds to inverted proportions and becomes
unstable and both (!) trivial fixpoints become stable. This means that now p∗1 =
0, i.e. all traffic on the inferior path, is stable. It depends on the initialization
whether the system reaches the correct fixpoint or the inverted one.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Fig. 3. Fixpoints

This shows that α > 1 is not a good choice, as
the system can converge totally to the wrong path.
More importantly the analysis also suggests that if
we want to keep diversity in the search α = 1 may
not be the ideal choice as it forces total convergence
towards a single path. Does this observation extend
to realistically sized problems tackled with a finite
number of ants?

The theoretical considerations can easily be ver-
ified in a numerical simulation. We use randomly
generated 20 city problems with an edge probabil-
ity of pe = 0.5. The histograms in Figures 4 show a typical run result for AS
with 20 ants using simple visibility heuristics ηij = d−1

ij where dij is the distance
between cities i and j. Each bar represents an interval of solution quality (with
shorter pathlengths on the left). The height of the dark bars in the foreground
represents the relative frequency of solutions in this interval after 1000 iterations.
The gray bars in the background represent the relative path length frequencies
of all unique paths encountered during the entire search. α = 2 converges to a
single path, but not to the best path encountered during the search. With α = 1
the situation looks somewhat better: the system converges towards a single path
in the range of the good solutions. However, as the small number of ants cannot



0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

α=2.0 α=1.0 α=0.5

Fig. 4. Solution Histograms for 20 City Random Problem

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

α=0.29 α=0.49

Fig. 5. α Determines Distribution Center and Shape

sample the entire search space and the system converges too quickly, it does not
converge reliably to the best path, rather just to some path in the range of good
solutions. Which path wins is dependent on the initialization of the pheromone
levels and on random events early in the search. In contrast, with α = 0.5 the
system does not converge to a single path. Instead it maintains a distribution
of paths that during the search shifts into better regions. Given sufficient time,
this enables the system to reliably find the optimal path.

It is also instructive to look at the shape of the distributions generated by

different α. From Formula 2 and p∗2 = 1 − p∗1 we obtain p∗1
p∗2

=
(

l2
l1

) α
1−α

. For
α = 0.5 the probability ratio mirrors the path length ratio exactly, while α > 0.5
over-emphasizes path length differences and α < 0.5 under-emphasizes these.

In a graph of realistic size the distribution shape should also be expected
to depend on α. Again, this can be confirmed with a numerical experiment.
Figure 5 shows typical final path length distributions for the random 20 city
model for α = 0.29 and α = 0.49 after 400 iterations. Clearly, the distribution
for the higher α is distorted more strongly towards better path lengths.

The insight we have gained so far suggest to keep α in the range 0 < α < 1. A
value closer to 1.0 will emphasize better paths but reduce diversity, while lower
α will keep more diversity but reduce selective pressure. However, it appears
impossible to fix a universally best α.

3 Alpha Annealing

The previous section suggests that an adaptive or dynamic α that changes
throughout the search could be advantageous. We will term this procedure,
which loosely resembles the idea of simulated annealing,“α-annealing”. The idea
is to change the α value according to some annealing schedule (to be defined
later) between steps 4 and 5 of the AS algorithm (Figure 1). Increasing α slowly



throughout the search can keep diversity in the beginning and gradually in-
crease the selective pressure to cover better regions of the search space in the
later phases. The first question to ask is, is it possible to establish tighter bounds
for a reasonable α-range than the interval (0, 1]. We shall first look at the lower
bound. It turns out that cycles have interesting implications for this question.

y xa

b

c

d

Fig. 6. Circuit Trinket

Figure 6 shows the simplest possible
graph that contains a bidirectional cycle, a
root node and at least two paths with dif-
ferent costs (lengths). All edges are assumed
to have unit cost with the exception of the
wavy edge, which has a higher cost. To per-
form a complete tour, an ant obviously has
to start at y and has to terminate at x. From
y it can either perform the tours ycdabx with

cost(ycdabx) = 5, yabcdx with cost(yabcdx) > 5 or the tours yadcbx with
cost(yadcbx) = 5 and ycbadx with cost(ycbadx) > 5. Obviously, ants starting
with ya should prefer yadcbx and those starting with yc should prefer ycdabx
and reward the corresponding edges more strongly. Ants starting with ya will
at node c reinforce the decision to go to node b, while ants starting with yc will
reinforce the contrary decision to go to node d from c. If ants are equally likely
to start with ya or yc, it can be expected that the reinforcements annihilate each
other and no preferred orientation is learned. As the rewards for both orienta-
tions are identical, this should be expected when the general system behaviour
converges towards a proportional distribution according to path cost. On the
other hand, if the system behaviour dictates convergence towards a single so-
lution, we should expect one of the orientations to ultimately attract all of the
traffic, i.e. we expect symmetry breaking through reinforcement of some initial
random fluctuation towards one of the orientations.

Figure 7 shows the development of the path choice probabilities for AS with
expected value update on the graph in Figure 6. With α = 1 the entire traffic
converges on only one of the two optimal paths (symmetry breaking). With
α = 0.49 both circuit orientations converge towards a probability of 0.5 and
the traffic distribution on the two exit edges bx and dx is proportional. As the
total path probability is the product of the edge probabilities, the resulting path
probability for the optimal paths becomes very low. More extensive simulations
show that the symmetry breaking only sets in for α > 0.5.

The system works much more efficiently when symmetry breaking is per-
formed as the total number n of ants contributing to the system is higher. With
α = 1 all n ants choose the same single optimal path (here ycdabx). With
α = 0.49 (no symmetry breaking) less than n/2 ants are on the two possible op-

100 200 300 400

0.2

0.4

0.6

0.8

1

100 200 300 400

0.2

0.4

0.6

0.8

1 (1) p(ycdabx)

(2) p(yadcbx)

(3) p(ad)

(4) p(cd)

(5) p(ya)

(6) p(dx)

(7) p(bx)

1,7
6

3
2

4

3 76

1

5

5

4

Fig. 7. Path Choice Probabilities for the Circuit Trinket (left: α = 1.0, right: α = 0.49)



timal paths. Even for a proportional traffic distribution we should have expected
more than n/2 as two out of the total four paths have optimal length. The loss is
due to missing symmetry breaking: contradictory reinforcements annihilate one
another and conspire to let some proportion of ants get stuck. We can therefore
assert that symmetry breaking is in general desirable. As bi-directional circuits
can always be a component of the problem graph, we can establish α > 0.5 as a
safe (but not necessarily tight) lower bound.

To establish an upper bound for α we ask whether there is a maximum α
below which full convergence to a single path (SPC in the following) is always
avoided. We construct the simplest possible DAG in which two paths intersect
at a node and cause contradictory reinforcements (Figure 8).

ab

ba

Fig. 8. Bridge Trinket

To complete a tour in this graph, an ant has
to start at the leftmost node and terminate at
the rightmost node. It can either follow the a-path
(a − down − a), which receives reward µa, or the
b-path, which receives reward µb. Assuming uni-
form pheromone initialization all edges on the a-
path (b-path) receive the same update ∆τa (∆τb,
respectively). Because of symmetry the sum of all
pheromones on outgoing edges at the two middle
nodes is also identical. From ρ · τ∗i = ∆τi at the fix-
point τ∗i (i ∈ {a, b}) we immediately obtain for the

non-trivial fixpoint τ∗b
τ∗a

=
(

µa

µb

) 1
2α−1

. At the singularity 2α = 1 the non-trivial
fixpoint becomes unstable and only the trivial fixpoints (pa = 1 or pb = 1)
become stable. In other words, as α passes 0.5 the system switches to SPC.

Combining these two observations we see that it is not possible to establish
an α-range independently of the network: symmetry breaking dictates α > 0.5,
while avoiding SPC dictates α < 0.5. Thus we cannot expect to avoid SPC.

It is important to note that even though our argument relies on very specific
simple small graphs, any larger graph can always contain these as subgraphs, so
that the argument directly extends to arbitrary larger graphs.

However, α-annealing can still make sense as it will emphasize diversity in
the beginning of the search, thereby giving the algorithm a chance to widely
sample the search space, and will subsequently gradually increase the selective
pressure in favour of better solutions until convergence to a single path is reached.
This potentially balances learning and exploration better than just a constant α
setting that would either lead to rapid SPC (possibly leaving large amounts of
interesting parts of the search space unexplored) or would favour exploration but
distort the probability distribution unreasonably towards inferior solutions. The
importance of this becomes particularly obvious when we take heuristics into
account. The task of the heuristic factor ηi,j is to bias the (initial) probability
distribution in the search space towards better solutions. If an ACO method
that performs rapid SPC is using a heuristics that biases the search towards
sub-optimal regions of the search space, it is likely that it will not converge
towards the optimal solution. α-annealing has the advantage that it can render
the algorithm more robust against such sub-optimal guidance received from the
heuristics, as it favours diversity in the initial search phases.

We demonstrate this effect with an α-annealing Ant System of 20 ants applied
to the same 20 city random problems as above. Recall that a standard Ant



System with constant α = 1.0 did generally converge on paths that are close
to optimum but sub-optimal. Those problem sets which AS with α = 1 fails to
solve to optimality in the majority of trials were selected for processing with
α-annealing AS. The annealing schedule starts from α = 0.3 and increases α
every 50 iterations by 0.1 to a maximum of α = 1.0. α-annealing AS solves these
problem instances reliably to optimality within 400 iterations.

While this first test does not by any means prove the superiority of α-
annealing, it is encouraging. However, even though α-annealing appears to achieve
an improved search behaviour and more robustness against the choice of a heuris-
tics, we are essentially still faced with a variant of the original problem. As α-
annealing AS is in the limit a standard AS, it is fully convergent in the later
phases of the search. To sustain diversity throughout the search, even in its later
phases, we need to investigate other modifications.

4 Exploiting the Critical Phase of Convergence

We revisit the simple model introduced in Figure 2 to inspect its convergence dy-
namics. Figure 9 shows the development of path choice probabilities.

Fig. 9. Path Probabilities

It is striking that there is little change for a long
time, until the fixpoint is assumed in a very rapid
transition (around 600 iterations). The qualitative
dynamics is not unique for the trivial model graph.
The left-hand graph in Figure 10 shows the typical
development of solution diversity during a 200 iter-
ation run of a standard 20 ant AS on the 51 city
benchmark Eil51. Fine diversity is measured as the
number of different paths followed by the 20 ants in
a single iteration. It is clearly visible that the same
type of dynamics governs the system: after a long
period of full maximal diversity the system abruptly

converges to a single path in what looks like a phase transition.
The best solutions are typically found at the end of the transition phase,

shortly before full convergence to the single solution path. The question arises
in how far this single path is already determined by the pheromone matrix
before the phase transition. If not, i.e. if small random fluctuations can still
drive the system to converge onto different solutions, it could be the case that
just before the transition all the diversity that we were aiming to keep is still
present and represented in the pheromone matrix. This suggests that re-running
the transition phase could be an effective way to explore this diversity.

To enable us to locate the phase transition we use two different measures of
diversity: fine diversity and coarse diversity. As above, fine diversity is measured
as the number of different complete paths generated in a single iteration, i.e.
during n parallel tour constructions without update of the pheromone matrix.
Coarse diversity counts the number of different complete paths that have been
generated in a fixed number of k successive iterations (here 10). The maximum
fine diversity therefore is n and the maximum coarse diversity k · n. The typical
development of these two measures is shown in Figure 10. After a long initial
period of maximal diversity the coarse diversity starts to fall off and then both
measures rapidly fall to minimum. The coarse diversity starting to decrease
before the fine diversity is due to the fact that the system still produces very



50 100 150 200

50

100

150

200
Coarse Diversity

50 100 150 200

5

10

15

20
Fine Diversity

Fig. 10. Diversity Development for Eil51

close to n solutions per iteration, but that some solutions are repeated between
iterations. We can use this observation as an “early warning” mechanism that
the transition is about to happen. To repeatedly cycle through the transition
phase we save the pheromone matrix after each iteration as long as the coarse
diversity is still high enough and we reset the pheromone matrix to this saved
value as soon as the fine diversity has fallen to minimum. This is performed
between steps 20 and 21 of Figure 1. As the transition is generally very sharp
it is easy to choose appropriate values for the thresholds very close to minimum
and maximum. We use 97% coarse diversity as the threshold for determining the
onset of the transition and 10% fine diversity as the threshold to determine full
convergence.

The proposed Ant System algorithm, which we term critical cycle Ant System
(ccAS) is essentially akin to a multistart procedure, with the crucial difference
that the subsequent runs do not start from scratch but from a pheromone matrix
that has already developed into a good representation of the distribution of
solutions in the vicinity of the optimum. Therefore a substantial amount of
computational effort is saved compared with a simple multi-start procedure.
Does this algorithm really produce the required diversity? The best indication
of this is given by the cumulative count of unique new solutions in the vicinity
of the optimum produced during restarts, which is shown on the left-hand side
of Figure 11 for a typical test run of 1000 iterations of α-annealing ccAS with 20
ants on the Eil51 benchmark. Comparing with the coarse diversity plot on the
right-hand side it is apparent that the first few solutions in the vicinity of the
optimum are discovered directly before the first restart. The curve flattens out
immediately due to SPC and no further solutions would be discovered without
cycling. With cycling, however, new good solutions in the vicinity of the optimum
are continuously discovered after every restart (which approximately happen at
iteration 500, 700 and from then on every 50 iterations) at a rate of 5 solutions
per iteration. Further indication of this is given by Figure 12. The left-hand side
shows a scatter plot of the cost of all solutions against the iteration number in
which they are generated, the right-hand side shows iteration best and global
best at every iteration. These figures show that the algorithm is effective in
maintaining diversity in the proximity of the optimum.

4.1 Benchmarking

We perform testing on some standard TSP benchmarks [Rei01]. Comparison
figures are taken from [SH00] with the exception of AS and ACS [DG96]. Blank



200 400 600 800 1000

500

1000

1500

2000

2500

200 400 600 800 1000

100

120

140

160

180

200

Fig. 11. Cumulative Count of Unique New Solutions within 10% of Optimum

200 400 600 800 1000

600

800

1000

1200

1400

200 400 600 800 1000

500

550

600

650

700

750

Fig. 12. Left: Development of Solution Distribution, Right: Iteration Best, Global Best

fields indicate missing data in the literature. The parameters used are standard
ACS parameters that have been reported as producing good results for similar
size problems in [SH00,DG96,RT02,BB98]: Q = k = β = 1, ρ = 0.05. The
figures are averages over 50 runs (10,000 iterations with 96 ants for RY48P,
10,000 iterations with 51 ants for Eil51). While MaxMin AS and ACS clearly
perform better, these results show that the combination of α-annealing and
cycling has brought ccAS roughly into the range of these algorithms and that
these mechansims may be useful as the basis of a different form of ACO.

We further explore the algorithm performance with some refinements. (1)
To achieve increased diversity between runs we initialize the pheromone matrix
with random values from the interval (0, 0.1). α-annealing ensures robustness
against outliers in the random initialization. (2) If there is no improvement
of the global best over a large number of iterations (here: 2000) we restart the
search with a complete re-initialization of the pheromone matrix. (3) The reward
factor used is Q

lk−lgb+1 as Q
lk

does not produce sufficient selective pressure and
pure elitist reward often caused the search to get trapped in local optima in pilot
experiments.

To isolate the effects of α-annealing, cycling and restarts, we run six different
versions of the algorithm on Eil51 and RY48P: plain AS, cAS (AS+cycling), αAS

Algorithm RY48P Eil51
Best Avg StdDev Avg StdDev

AS 16,845 783 442.2 9.04
ACS 14,422 14,625 142 428.1
AS-rank+pts 14,645 434.5
AS-elite+pts 14,658 428.3
MaxMin AS+pts 14,523 427.1
ccAS 14,422 14,782 160 429.5 1.85



Measurement AS cAS αAS αrAS αcAS ccAS
Eil51 - Best 428 430 428 427 427 427
Eil51 - Avg 442.2 439.2 436.9 433.2 431.4 429.5
Eil51 - Stddev 9.04 6.36 5.50 3.57 3.37 1.85

RY48P - Best 16,053 15,064 15,504 14,765 14,758 14,422
RY48P - Avg 16,845 15,334 15,836 14,930 15,279 14,782
RY48P - Stddev 783.6 224.2 357.1 134.3 379.4 160.0

FT53 - Best 7,796 7,188 7,320 7,170 7,177 7,170
FT53 - Avg 8,144.6 7,520.2 7,479.6 7,257.3 7,337.8 7,241.6
FT53 - Stddev 413.9 239.4 106.8 36.7 158.9 45.88

(AS+α-annealing), αrAS (AS+α-annealing+restarts), αcAS (AS+α-annealing+
cycling), ccAS (AS+α-annealing+cycling+restarts). We show a performance
comparison for these versions on the standard benchmarks Eil51 and RY48P.
The results are averages over 20 runs with the same parameters as above. The
ranking of the results clearly shows that the combination of all three features in
ccAS yields the best results.

Fig. 13. Best Solution for Eil51

Finally, we give a quick comparison of
ccAS with local optimization (2-opt), which
is encouraging, however, not statistically sig-
nificant. Using 2-opt the performance in-
creases significantly and matches MaxMin
AS+pts on Eil51 with an average of 427.3.
We should therefore compare ccAS with
other ACO algorithms that use local op-
timization. In [BB98] ACS with 2-opt was
used with a parameter set optimized by a
GA (see Section 2) and applied to EIL51
(real-valued). The study found a number of
new solutions that improved on the opti-
mum published in TSPLIB (429.9833). To
the best of our knowledge, their best solution
(length 429.118) is the best solution that has
been reported for ACO algorithms. ccAS+2-
opt found two new solutions to Eil51 (real-

valued) that improve on these results. These have the lengths 428.982 and
428.871 (see Figure 13). The average solution quality generated by ccAS+2-opt
over 20 runs was also quite remarkable (429.61, StdDev=0.721).

4.2 Conclusions and Future Directions

Diversity control is a crucial aspect of meta-heuristics and becomes even more
important when continuous adaptiveness to dynamic problems is required. We
have investigated two aspects of diversity control: the influence of α and the
critical phase of the convergence behaviour. Based on this we have proposed to
use a dynamic α and a dynamic restart method to maintain diversity through-
out the search. Complementary to the standard diversity control mechanisms,
which prevent complete convergence, we have shown how the critical phase of
the system dynamics of a fully convergent algorithm can be utilized to effec-
tively explore the search space in the vicinity of the optimum. The effectiveness



of these mechansims has been demonstrated by embedding them into AS. These
modifications seem a promising terrain for further investigation, but more ex-
tensive testing of ccAS on larger problems is obviously required to fully analyze
the performance of this algorithm and to understand whether it may be able
to compete directly with ACS and MaxMin AS when its parameters are tuned
carefully.

However, the basic effects of these mechansims are interesting independently
of the absolute performance of ccAS, as they may help us to better understand
the convergence behaviour of related reinforcement-based search methods.

An important question for practical applications is whether the suggested
diversity control mechanisms can directly be embedded into more effective types
of ACO, like MaxMin AS or ACS. Our feeling is that α-annealing is likely to
be useful. The case of cycling is more difficult as ACS and MaxMin AS already
incorporate their own mechanisms to avoid full convergence.

We would also like to gain a better understanding of the kind of fitness
landscapes on which these mechanisms are effective. Intuitively it is clear that
they, like other methods that exploit local diversity, must be more effective on less
rugged landscapes. How this relation can be captured formally is a challenging
question for future research.

References

[BB98] H.M. Botee and E. Bonabeau. Evolving ant colony optimization. Advances
in Complex Systems, 1:149—159, 1998.

[CD01] S. Camazine and J.L. Deneubourg. Self-organization in biological systems.
Princeton University Press, Princeton, NJ, 2001.

[CHS02] O. Cordon, F. Herrera, and T. Sttzle. A review on the ant colony opti-
mization metaheuristic. Mathware and Soft Computing, 9(2–3):141—175,
2002.

[DDC99] M. Dorigo and G. Di Caro. The ant colony mea-heuristic. In D. Corne, M.
Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11—32.
McGraw Hill, London, 1999.

[DG96] M. Dorigo and L.M. Gambardella. Ant colony system. Technical Report
TR/IRIDIA/1996-5, Universite Libre de Bruxelles, 1996.

[Dor92] M. Dorigo. Optimization, learning and Natural algorithms. PhD thesis,
Poltecnico di Milano, 1992.

[Gut02] W.J. Gutjahr. ACO algorithms with guaranteed convergence to the optimal
solution. Information Processing Letters, 82(3):145—153, 2002.

[NA01] Y. Nakamichi and T. Arita. Diversity control in ant colony optimization. In
Proc. Inaugural Workshop on Artificial Life (AL’01), pages 70–78, Adelaide,
Australia, December 2001.

[Rei01] G. Reinelt, 2001. WWW repository.
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

[RT02] M. Randall and E. Tonkes. Intensification and diversification strategies in
ant colony system. Complexity International, 9, 2002.

[SD02] T. Stützle and M. Dorgio. A short convergence proof for a class of ant colony
optimization algorithms. IEEE Transactions on Evolutionar Computation,
6(4):358–365, 2002.

[SH00] T. Stützle and H. Hoos. MAX-MIN ant system. Future Generation Com-
puter Systems, 16(8):889—914, 2000.

[ZBMD04] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search
for combinatorial optimization: A critical survey. Annals of Operations Re-
search, 2004. to appear.


