
Parsing Probabilistic Context Free Languages
with Multi-Objective Genetic Algorithms

Ramon Lefuel and Brian J. Ross

Brock University
Department of Computer Science,

500 Glenridge Ave.,
St. Catharines, Ontario

Canada L2S 3A1
lera1981@excite.com, bross@cosc.brocku.ca

Abstract. An approach to parsing probabilistic context free languages
is presented. Given an input sentence, a genetic algorithm is used to
evolve parse trees as defined by a given probabilistic context free gram-
mar. Each chromosome in the population represents a candidate parse
tree, using a simple indexed representation. The novelty of the approach
is the multi-objective treatment of parse tree fitness. One dimension of
the fitness space is the number of contiguous words correctly read by
the parse. The other dimension incorporates a measurement equivalent
to the probability obtained by complete parse trees, and partial prob-
abilities corresponding to incomplete parses. A number of experiments
show that this method is both effective and efficient for parsing natural
language sentences.

1 Introduction

Probabilistic models of natural language processing have been proposed [1].
These models have practical merit due to the ambiguity found within natural
languages. This is clearly seen when considering sentences with multiple syn-
tactic parses and semantic interpretations. If a candidate parse is “obvious”,
then the stochastic model ascribes to it a higher probability than its less sen-
sible counterparts. Hence, given a probabilistic context free grammar (PCFG),
probabilities are assigned to productions that ideally reflect the distribution of
sentences found in their actual use.

Context-free language parsing has a polynomial computational complexity.
For example, the CYK algorithm has a complexity of O(n3) [2]. When searching
for a parse tree with the highest probability according to a PCFG, it is necessary
to find all the correct parse trees, and select the one with the highest probability.
This is a more computationally expensive problem than finding a single correct
parse, because the number of parse trees can grow exponentially with respect
to the size of the sentence. In degenerate cases, there may be an exponential
number of trees to explore. This is unlikely to occur, however, with typical
natural language CFG’s. In any case, the combinatorial nature of PCFG parsing



2 Ramon Lefuel and Brian J. Ross

has lead researchers to explore the use of heuristic techniques. Although heuristic
searches do not guarantee optimal solutions, they are very effective for finding
reasonable solutions to difficult combinatorial problems.

This paper presents a new technique for parsing sentences. A genetic algo-
rithm is used to evolve a population of parse trees. These parse trees correspond
to the rules of a given PCFG, and denote candidate parses for a target sentence.
The chromosome representation uses a simple indexed mapping of production
rules, which are interpreted in a top-down manner during parse tree construction.
A novelty of the approach is the treatment of PCFG parsing as a multi-objective
problem. One dimension of the fitness space is the number of consecutive words
in a sentence successfully parsed. The other dimension is a measurement of the
probability of the parse. This measurement is a true probability if the chromo-
some transcribes onto a complete parse tree. Otherwise, it is a heuristic value
that scales to the probability of the partial parse tree within the chromosome.
Pareto ranking is then performed on these fitness dimensions, resulting in a
multi-objective perspective of the problem.

Section 2 discusses some background to the problem of PCFG parsing. The
experiment design is outlined in Section 3. Results are given in Section 4. Con-
clusions are given in Section 5.

2 Background

Evolutionary computation has been applied towards CFG parsing. O’Neill and
Ryan’s grammatical evolution (GE) system uses a context free grammar for
defining the target programming language, in which solution programs are writ-
ten [3]. Each chromosome in the population contains a list of numbers that index
the set of productions in the CFG. Once a complete parse tree is evolved, the
corresponding program is extracted and interpreted as a potential solution. The
translation of chromosomes into parse trees is an instance of the CFG parsing
problem. Their GA application is intended to both discover a legal program
(parse tree) as well as find a suitable program that solves some given program.

Araujo uses a genetic algorithm to parse probabilistic CFG’s (PCFG) [4,
5]. The chromosome representation is fairly sophisticated, as it explicitly de-
notes aspects of the parse tree, including the portion of the sentence parsed, the
production rule used, subsequent nonterminals used on the right-hand side of
productions, and the depth of the node within the parse tree. Fitness evaluation
measures both the success of the rule in parsing a sentence and the failure rate or
incoherence of genes within the rule. Specialized crossover and mutation opera-
tors preserve the correctness and performance of offspring chromosomes. Araujo
successfully parses several sentences with the system. The best performance is
obtained using course-grained parallelism on a multiprocessor computer.



Parsing Probabilistic Context Free Grammars 3

3 Experiment

3.1 Representation

The genetic algorithm is supplied with a sentence to parse, and a PCFG for
parsing. Each chromosome represents a partial or complete parse of the sentence
with this PCFG. A complete parse tree is a precise and correct parse of the
sentence, or portion thereof, with the PCFG. Partial parse tree are incorrect.
The right-hand portion is not completely satisfied, because the terminal it is
expecting does not match the one found at a given position in the sentence. In
addition, partial parse trees can arise when the tree consumes the entire sentence,
but still requires further input to complete the parse tree.

The chromosome representation is similar to that used in [3]. Chromosomes
consist of a fixed-sized list of integers (1 ≤ i ≤ maxint), where maxint needs to
be at least as large as the maximum number of rules for any set of nontermi-
nals. Each integer is an index that denotes a production rule from the PCFG.
For example, the first integer may be taken to refer to a top-level nonterminal
(sentence). If there are 3 productions for sentence, then the gene is interpreted
modulo 3 to denote one of these 3 productions. If the right-side of this pro-
duction is nounphrase verbphrase, then the next integer in the sequence will be
interpreted modulo K to access one of the K noun phrase productions. When a
terminal is reached, it must match with the current word in the sentence, or else
the parsing stops with an error condition. This process continues until either a
terminal mismatches, or the entire sentence is parsed.

3.2 PCFG

The PCFG used in the experiments is shown in Table 1. Nonterminals are la-
belled with capital letters, and terminals with lower-case. The corresponding
probabilities are shown beside each production. There are two sources of ambi-
guity in the grammar. The WH rules are the primary means by which ambiguous
parse trees arise. The noun phrase rules also permit multiple parse trees. For ex-
ample, noun phrase production 7 can be duplicated by productions 4 and 5.
Using production 7 entails a probability of 10%, while the use of 4 and 5 has a
probability of 4%. Hence production 7 results in stronger parse trees.

3.3 Parsing strategies

Two types of parsing strategies were examined in this research:

– A: Fix the root of the parse tree with a top-level nonterminal (“sentence”),
and apply the parse from the first word in the target sentence.

– B: Root the parse tree with an arbitrary nonterminal determined by the
chromosome. Apply the parse iteratively starting at each word in the sen-
tence. Retain the parse that starts from the word that results in the longest
substring of consumed words.



4 Ramon Lefuel and Brian J. Ross

Sentence:
1. Noun Phrase, Verb Phrase (95%)
2. Verb Phrase (5%)

Noun Phrase:
1. noun (10%)
2. noun, Preposition Phrase (10%)
3. noun, Noun Phrase (20%)
4. det, Noun Phrase (20%)
5. adj, Noun Phrase (20%)
6. Noun Phrase, WH (10%)
7. det, adj, Noun Phrase (10%)

Verb Phrase:
1. verb (10%)
2. verb, Noun Phrase (20%)
3. verb, Preposition Phrase (20%)
4. verb, Noun Phrase, Preposition Phrase (20%)
5. verb, WH (30%)

WH Phrase:
1. pron, Verb Phrase (50%)
2. pron, Noun Phrase, Verb Phrase (20%)
3. Verb Phrase (30%)

Preposition Phrase:
1. prep, Noun Phrase (100%)

Table 1. Probabilistic Context Free Grammar

Strategy A uses a parser that tries to find a complete parse tree for the en-
tire sentence. Strategy B uses a parser that tries to find partial parse trees for
substrings of the sentence. Since trees can be rooted by any nonterminal, the
criteria for completeness is relaxed. In both strategies, the parser will record the
size of the longest contiguous string of words successfully parsed, along with its
corresponding probability. In strategy B, when multiple substrings tie for maxi-
mum length of consumed substrings, then the one with the highest probability
is recorded.

3.4 Fitness

There are two dimensions of fitness for the PCFG parsing problem. One dimen-
sion of the fitness space is the number of consecutive words successfully parsed
denoted by the chromosome. The other dimension is the probability for the parse,
which is simply the product of the probabilities of all the productions used within
the parse tree. We would like to maximize both of these values by parsing the
complete sentence with the highest probability possible. A complication with



Parsing Probabilistic Context Free Grammars 5

using a linear fitness score for PCFG is that the number of words parsed and
the overall probability are in conflict with each other. Longer substrings require
more productions, which result in lower overall probabilities. Reconciling these
scores into a linear score (weighted sum) is difficult and ultimately arbitrary.

The fact that probabilities are only relevant for complete parse trees poses
another problem. Since a partial parse tree denotes a non-member of the lan-
guage, its probability is zero. This is not a feasible scoring strategy for a genetic
algorithm, because until a parse tree is successfully evolved, virtually the entire
population will have a zero probability score. Therefore, a probability distance
heuristic is used instead of pure probabilities. It is defined as follows:

ProbDistance =

Pr(tree) : complete parse

Pr(tree)− 1 : partial parse

where Pr(tree) is the computed probability for the complete or partial tree
that consumes a substring of the sentence. This heuristic assigns a negative
score between -1.0 and 0.0 to partial parse trees, and positive values (i.e., true
probabilities) between 0.0 and 1.0 to complete trees. Selective pressure is given
to partial or complete trees that have higher probabilities.

The PCFG parsing problem is effectively characterized as a multi-objective
optimization problem (MOP). The maximum substring length and probability
distance are used as the MOP fitness vector. Pareto ranking is then performed
on individuals using this vector [6, 7]. Pareto ranking is based upon the following
notion of multi-objective domination.

Definition 1. Given a problem defined by a vector of objectives f = (f1, ..., fk)
subject to appropriate problem constraints. Then vector u dominates v iff ∀i ∈
(1, ..., k) : ui ≥ vi ∧ ∃i ∈ (1, ..., k) : ui > vi.

A vector is dominated if another vector exists that is better in at least 1 objective,
and at least as good in the remaining objectives.

With respect to PCFG parsing, individuals are assigned a Pareto rank ac-
cording to the following criteria. The rank 1 set are individuals that are not
dominated in the population. Each successive rank are dominated by all in-
dividuals of lesser rank, and are not dominated by fellow rank members. The
overall advantage of Pareto ranking is that substring length and and probability
distance no longer must be combined together in some ad hoc manner.

3.5 Other experimental parameters

The experiments were run using the Mr P Gamp system [8]. This is a C++
based system that supports multiple representations, multiple populations, and
a variety of reproduction and selection strategies. For this application, the re-
production operators preserve genome values (integers between 1 and 7). One
specialized reproduction operator used is modified 2-point crossover. Here, a



6 Ramon Lefuel and Brian J. Ross

point denoting the length of the crossover is selected randomly. Then, two start-
ing points for each chromosome are selected. The genes ranging from the first
starting point to the length of the crossover in the first chromosome are then
crossed over with the genes ranging from the second starting point to the length
of the crossover in the second chromosome.

Another specialized operator is shuffle swapping mutation. A random number
ranging from one to the number of genes in the chromosome is selected to indicate
the number of genes to be mutated. Every gene that is selected for mutation gets
swapped with another gene.

The implementation of multiple population evolution uses a universal list
that redistributes subpopulation members to one another at a specified inter-
breeding frequency. When an interbreeding generation is reached, each subpop-
ulation copies a specified number of its elite chromosomes to the universal list.
An equal number of members from the universal list are randomly copied back
to each subpopulation, replacing the worst in that population.

The parameters that are common for most of the experiments are listed in
Table 2. Parameter differences in specific experiments are reported in Section 4.

Parameter Value
Evolution paradigm generational
Max generations 60 to 100
Runs/experiment 5
Sub-populations 2
Interbreeding rate every 10 generations
Migration strategy 50% elite

Sub-population 1 Sub-population 2
Population sizes 270 180
Crossover rate 70% 80%
Mutation rate 20% 10%
Replication rate 10% 10%
Tournament size 3 4
Crossover operator 2-point modified 2-point
Mutation operator shuffle swapping gene replacement

Table 2. Common experiment parameters

4 Results

4.1 Trees rooted at sentence nonterminal

The first set of experiments use parsing strategy A discussed in Section 3.3. This
strategy assumes that the tree is rooted at the sentence rule in Table 1, and the
parse begins at the first word of the input sentence. The runs use the sentences



Parsing Probabilistic Context Free Grammars 7

1. Jack regretted that he ate the whole thing.
2. The man who gave Bill the money drives a big car.
3. The man who lives in the red house saw the thieves in the bank.
4. Jack likes visiting kids.
5. The man who lives in the bank likes visiting kids in the red house.

Table 3. Example sentences

Sentence Chromosome Max. Complete Approx. time
size generations parses per run (sec)

1 10 60 5 1
2 15 60 4 2
3 20 60 4 2
4 10 60 5 1
5 30 80 5 5

Table 4. Overall results

in Table 3. The first 3 sentences are from [4]. Other experimental parameters,
as well as overall results, are shown in Table 4. Since longer sentences require
larger parse trees, their chromosomes are longer. A total of 5 runs are performed
per sentence, each using a different random number seed.

The first 3 sentences in Table 3 have unambiguous parse trees. All 3 sentences
were successfully parsed with strategy A. As is shown in Table 4, of the total of
15 runs for these sentences, 13 runs found complete parse trees.

Sentences 4 and 5 in Table 3 have ambiguous parse trees, primarily caused
by the WH rules in Table 1. Sentence 4 was successfully parsed in all these runs.
Of the two legal parses for this sentence, the preferred higher probability parse
tree was found in all 5 runs (where “visiting” is an adjective describing “kids”).
The alternative parse was also found in 2 of these runs.

Sentence 5 is a considerably more complex problem than all the other sen-
tences, given its size and the ambiguity within it. To handle this sentence, the
sizes of sub-population 1 and 2 were increased to 300 and 290 respectively, and
a maximum of 80 generations were performed. 4 runs found the preferred parse
(“visiting” is an adjective), while 1 run found the lower-probability alternate
parse. It should be noted that of the 4 preferred parse trees, one of them was ac-
tually a more obscure variation of the tree, in which the noun phrase productions
4 and 5 were used instead of production 7. This variant has a lower probability
than the alternate parse tree.

Figure 1 shows the Pareto distribution of one subpopulation from one run of
sentence 5. The horizontal axis is the number of words consumed from the be-
ginning of the sentence. Positive probability distances denote true probabilities
for complete parse trees, while negative probability distances are for incomplete
parse trees. Probability distances typically have very small magnitudes, which



8 Ramon Lefuel and Brian J. Ross

Fig. 1. Pareto distribution of subpopulation 1

makes them difficult to distinguish on the graph for some of the negative valued
instances. The Pareto distribution of parse trees take the form of columns on
the chart. This is because each parse tree parses a discrete number of words in
the input sentence. The parse trees will have a variety of probability distances
within each column. Higher column values dominate lower ones. Note that there
are complete parse trees for partial initial substrings of the sentence, includ-
ing possibly null strings. For example, “Jack regretted” is a complete parse for
nonterminal sentence, although it is still a substring of sentence 1.

4.2 Arbitrarily rooted trees for unambiguous sentences

A second set of experiments used strategy B, where trees can be rooted at any
nonterminal, and parsing starts at each successive word in the sentence. The
longest substring consumed is used as the result for the parse. A total of 5 runs
were tried for each of sentences 1 through 3 in Table 3, and 100 generations were
performed per run.

Permitting a variety of rooted parse trees resulted in a greater number of
complete parse trees in the populations. Complete parse trees rooted at nonter-
minals such as verb phrase or WH are common. Surprisingly, this greater variety
of rooted trees was detrimental to the discovery of complete parse trees for the



Parsing Probabilistic Context Free Grammars 9

entire sentence. None of the 15 runs found complete sentence parse trees. Ob-
viously, the distribution of parse trees in the population hindered finding parse
trees for the entire sentence. A conjecture for this is that too many nonterminal
parse trees dominate others, at the expense of constructing a sentence tree.

4.3 Performance

All the experiments were undertaken on a IBM/PC compatible computer with
an Intel 4 2.0 GHz CPU, 256 MB 800 MHz memory, and running Windows XP.
The GA system is implemented in C++. Approximate wall clock measurements
for each run is shown in Table 4. This performance is very good, considering that
different experiments test anywhere between 28000 and 47000 parse trees. The
multiple populations are executed by a single CPU, and thus true parallelism is
not being exploited.

5 Conclusion

A new technique for discovering parse trees for probabilistic context free gram-
mars has been presented. As is illustrated in [3], the linear representation of parse
trees is ideally suited for representing parse trees for CFG’s. Besides its simplicity
for transcribing trees, it also permits the use of standard crossover and mutation
operators. Treating word consumption and probability as separate dimensions
in the MOP fitness space is advantageous, eliminating the need for arbitrary,
ad hoc combinations of these separate aspects of stochastic parsing. A number
of sentences of varying degrees of complexity and ambiguity were successfully
parsed. Performance wise, a complete run usually takes less than 3 seconds to
complete, demonstrating the advantages of the straight-forward representation
and evaluation schemes.

This research is inspired by Araujo’s use of a genetic algorithm to parse
probabilistic CFG’s [4, 5]. He successfully parses 3 of the same sentences parsed
here. A number of differences can be drawn between his approach and ours. He
uses a much more complex chromosomal representation of parse trees, which
incorporates explicit information of the parse tree morphology. This kind of
representation requires specialized reproduction operators, which must preserve
chromosome correctness. Our linear representation permits the use of generic re-
production operators. Araujo’s fitness evaluation is quite complex, as it merges
both probability and word consumption scores together, which is unnecessary
with the MOP Pareto approach we use. Furthermore, his fitness scheme evaluates
gene performance by evaluating gene “coherence” and “incoherence”. A chromo-
some with dysfunctional genes will be suitably penalized. Although there can be
erroneous genes in our chromosomes, we do not explicitly detect and penalize
them, but instead allow evolution to manage their survival.

It is difficult to benchmark performance between different platforms. Araujo
runs his experiments on a multi-processor SGI-CRAY Origin 2000. Using 10



10 Ramon Lefuel and Brian J. Ross

processors, his implementation requires 15 seconds to successfully parse sen-
tence 3 from Table 3. Our implementation takes approximately 2 seconds to
parse the same sentence using a single Pentium 4 CPU. Platform differences not
withstanding, our faster performance is likely due to the simpler representation,
reproduction, and fitness evaluation.

There are a number of future directions for this research. The use of real-world
data would be worth considering, since our sentences use artificial probability
distributions. The study of more complex grammars with additional forms of
ambiguity is worth exploring. Our multi-objective scoring strategy would also
benefit with the inclusion of population diverisity heuristics, as done in [9]. Vari-
able length chromosomes are also worth consideration, since chromosome size
strongly influences evolution effectiveness.

Acknowledgements: This work was partially supported by NSERC Operating
Grant 138467.

References

1. Charniak, E.: Statistical Language Learning. MIT Press (1993)
2. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-

guages, and Computation. second edn. Addison Wesley (2001)
3. O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Transactions on Evolutionary

Computation 5 (2001) 349–358
4. Araujo, L.: A Parallel Evolutionary Algorithm for Stochastic Natural Language

Parsing. In: PPSN VII. (2002) 700–709
5. Araujo, L.: Symbiosis of Evolutionary Techniques and Statistical Natural Language

Processing. IEEE Transactions on Evolutionary Computation 8 (2004) 14–27
6. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison Wesley (1989)
7. Coello, C.C., Veldhuizen, D.V., Lamont, G.: Evolutionary Algorithms for Solving

Multi-Objective Problems. Kluwer Academic Publishers (2002)
8. Lefuel, R.: The Effects of GA’s with Multiple Populations on Various Representa-

tions and its Implementation with Pareto Ranking when Evolving PCFG’s (2004)
Hons. Thesis, Dept of Computer Science, Brock U.

9. Ross, B., Zhu, H.: Procedural Texture Evolution Using Multiobjective Optimization.
New Generation Computing (2004) In press.


