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Abstract. Gene Expression Programming (GEP) is a new technique of Genetic 
Programming (GP) that implements a linear genotype representation. It uses 
fixed-length chromosomes to represent expression trees of different shapes and 
sizes, which results in unconstrained search of the genome space while still en-
suring validity of the program’s output. However, GEP has some difficulty in 
discovering suitable function structures because the genetic operators are more 
disruptive than traditional tree-based GP. One possible remedy is to specifically 
assist the algorithm in discovering useful numeric constants. In this paper, the 
effectiveness of several constant creation techniques for GEP has been investi-
gated through two symbolic regression benchmark problems. Our experimental 
results show that constant creation methods applied to the whole population for 
selected generations perform better than methods that are applied only to the 
best individuals. The proposed tune-up process for the entire population can 
significantly improve the average fitness of the best solutions. 

1   Introduction 

First introduced by Candida Ferreira in 2001, Genetic Expression Programming 
(GEP) [4] is a new technique for the creation of computer programs. In GEP, com-
puter programs are represented as linear character strings of fixed length (called 
chromosomes) which, in the subsequent fitness evaluation, can be expressed as ex-
pression trees (ETs) of different sizes and shapes. The search space is separated from 
the solution space, which results in unconstrained search of the genome space while 
still ensuring validity of the program’s output. Due to its linear fixed-length genotype 
representation, genetic manipulation becomes much easier. Thus, compared with 
traditional GP, the evolution of GEP gains more flexibility and power in exploring 
the entire search space. GEP methods have performed well for solving a large variety 
of problems, including symbolic regression, optimization, time series analysis, classi-
fication, logic synthesis and cellular automata, etc. [2]. Zhou, et al. [5, 6] applied a 
different version of GEP and achieved significantly better results on multi-category 
pattern classification problems, compared with traditional machine learning methods 



and GP classifiers. Instead of the original head-tail method [2], their GEP implemen-
tation used a chromosome validation algorithm to dynamically determine the feasibil-
ity of any individual generated, which results in no inherent restrictions in the types 
of genetic operators applied to the GEP chromosomes, and all genes are treated 
equally during the evolution. The work presented in this paper is based on this re-
vised version of GEP.  

Despite its flexible representation and efficient evolutionary process, GEP still has 
difficulty discovering suitable function structures, because the genetic operators are 
more disruptive than traditional tree-based GP, and a good evolved function structure 
is very likely to be destroyed in the subsequent generations. Different tentative ap-
proaches have been suggested, including multi-genetic chromosomes, special genetic 
operators, and constant creation methods [2]. Our attention was drawn to constant 
creation methods due to their simplicity and the potential benefits. It is assumed that 
local search effort for finding better combinations of numeric constants on top of an 
ordinary GEP process would help improve the fitness value of the final best solution. 
In this paper, we propose five constant creation methods for GEP and have tested 
them on two typical symbolic regression problems. All of these methods are variants 
of two basic constant creation methods for a single chromosome, namely creep muta-
tion and random mutation. Experimental results have demonstrated that basic con-
stant creation methods performed on the whole population for selected generations 
are preferred than those performed only for the best individuals, and that tune-up 
processes applied to the whole population can achieve meaningful improvement in 
the average fitness value of the best solutions. 

The next section of this paper gives an overview of related work. Section 3 ex-
plains the constant creation methods that we investigated. The experiment design and 
setup are described in section 4. Section 5 summarizes the experimental results and 
gives a qualitative analysis of the applicability of the proposed constant creation 
methods for GEP. Section 6 presents some conclusions and ideas for future work.  

2    Related Work 

2.1   A Brief Overview of Gene Expression Programming (GEP)  

As is the case with GP, when using GEP to solve a problem, generally five compo-
nents, i.e., the function set, terminal set (including problem-specific variables and 
pre-selected constants), fitness function, control parameters, and stop condition need 
to be specified. Each chromosome in GEP is composed of a fixed length of character 
strings, which can be any element (called gene) from the function set or the terminal 
set. Using the function set {+, -, *, /, sqrt} and the terminal set {a, b, c, d, 1}, Fig. 1 
gives an example GEP chromosome of length fifteen. This is referred to as Karva 
notation, or K-expression [4]. A K-expression can be mapped into an ET following a 
width-first procedure and be further written in a mathematical form as shown in Fig. 



1. The conversion of an ET into a K-expression can be accomplished by recording the 
nodes from left to right in each layer of the ET in a top-down fashion. 

 
Fig. 1.  An example of GEP chromosome, the corresponding expression tree and the mathe-
matical form. The character “.” is used to separate individual genes in a chromosome 

A chromosome is valid only when it can map into a legal ET within its length 
limit. Therefore all of the chromosomes randomly generated or reproduced by genetic 
operators are subject to a validity test procedure, in order to prevent illegal expres-
sions from being introduced into the population [6]. 

The GEP algorithm begins with the random generation of linear fixed-length chro-
mosomes for the initial population. Then the chromosomes are represented as ETs, 
evaluated based on a pre-defined fitness function, and selected by fitness to reproduce 
with modification. The individuals of this new generation are, in their turn, subjected 
to the same developmental process until a pre-specified number of generations are 
completed, or a solution has been found. In GEP, the selection procedures are often 
determined by roulette-wheel sampling with elitism [12] based on individuals’ fit-
ness, which guarantees the survival and cloning of the best individual to the next 
generation. Variation in the population is introduced by applying one or more genetic 
operators, i.e., crossover, mutation and rotation [2], to selected chromosomes, which 
usually drastically reshape the corresponding ETs.  

2.2   Constant Creation 

Research and discussion on constant creation issues have continued for some time in 
GP research circles, as it is well known that GP has difficulty discovering useful 
numeric constants for the terminal nodes of s-expression trees [1, 3]. This is one of 
the major obstacles that stand in the way of achieving greater efficiency for complex 
GP applications. A detailed analysis of the density and diversity of constants over 
generations in GP was given by Ryan and Keijzer in [8]. They also explored the ap-
plicability of improving the search performance of GP through small changes, by 
introducing two simple constant mutation techniques, namely creep mutation, a step-
wise mutation that only permits small changes, and uniform/random mutation that 
chooses a new random value uniformly from some specified range. Uniform mutation 
is reported to have considerably better performance. Some other enhancements to the 
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  Chromosome: sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d .

Mathematical form:ET: 



constant creation procedure in GP can be categorized as local search algorithms. 
Several researchers have tried to combine hill climbing [1, 2], simulated annealing [1, 
11], local gradient search [3] and other stochastic techniques to GP to facilitate find-
ing useful constants for evolving solutions or optimizing extra parameters. Although 
meaningful improvements have been achieved, these methods are somewhat compli-
cated to implement compared with simple mutation techniques. Furthermore, an 
overly constrained local search method would possibly reduce the power of the “free-
style” search inherent in the evolutionary algorithms. A novel view of constant crea-
tion by a digit concatenation approach is presented in [9] for Grammatical Evolution 
(GE). Most recently, a new concept of linear scaling is introduced in [10] to help the 
GP system concentrate on constructing an expression that has the desired shape. 
However, this method is suitable for finding significant constants for evolved expres-
sions that are approximately linearly related to their corresponding target values, but 
it is generally ineffective for identifying other candidates with good function shapes. 

Since the invention of GEP, constant creation techniques have received attention in 
the research literature. Ferreira introduced two approaches for symbolic regression in 
the original GEP [7]. One approach does not include any constants in the terminal set 
and relies on the spontaneous emergence of necessary constants through the evolu-
tionary process of GEP. The other approach involves the ability to explicitly manipu-
late random constants by adding a random constant domain Dc at the end of chromo-
some. Experiments have shown that the first approach is more efficient in terms of 
both accuracy of the evolved models and computational time for solving problems. 

3   Constant Creation Methods for GEP 

The way we handle numeric constants in GEP is as follows: several constant symbols 
are selected into the terminal set at the beginning of a GEP run. These constant sym-
bols will evolve with function symbols and other terminals to produce candidate 
solutions. This mechanism makes it possible to obtain desirable set of constants by 
evolving substructures composed of only functions and constant terminals. This 
search for desirable constants is concurrent with the search for desirable function 
structures. Therefore, the problem of finding useful constants in GP now also applies 
to GEP. In order to fit some constant coefficients the chromosome has to keep struc-
turally changing, even though a function structure similar to the optimal solution may 
have been previously discovered. Our investigation of constant creation methods in 
GEP was performed with the following assumptions: 
• The proposed methods for constant creation should be as simple as possible, so 

that they will not dominate the fundamental evolutionary process of GEP, which 
should play the leading role in finding an optimal solution. Therefore, we have 
chosen two basic constant creation methods for a single chromosome, namely 
creep mutation and random mutation, as the basis for our proposed methods. 

• Local search should be biased towards optimality, which means that mutation 
proceeds only when it actually improves the fitness value of the chromosome. 

• Different variations of the basic constant creation methods should be examined 



as independent approaches, since the manner in which these basic methods are 
applied will result in difference in the exploration of the search space. 

3.1   Definition of Basic Constant Creation Methods 

The two basic constant creation methods we have employed for a single chromosome 
are similar to those adopted in [8] and have been described in the literature as creep 
mutation and random mutation. However, in our approach, we only preserve muta-
tions which actually contribute to an improvement in the fitness of the chromosome 
against the application of mutations to all constants present in the chromosome as 
used in [8]. We first define a single-point constant mutation in GEP as follows: 

For the initial configuration of GEP, a list of constants is selected and sorted into 
the terminal set as seeds to produce any other desirable constants during evolu-
tion. A single-point constant mutation changes a single constant gene in a chro-
mosome to another constant gene. If the new constant is randomly selected from 
the constant gene list, it is a random mutation; if the new one is restricted to be 
selected from the neighboring constants of the current one, it is a creep mutation. 

Then we define a GEP constant (creep or random) mutation operation as below: 
For every constant gene in a chromosome, perform a single-point constant muta-
tion (creep or random) in a greedy manner, i.e., only if the fitness of the new 
chromosome is improved would the mutation actually proceed with the new 
constant symbol substituted for the old one.  

These two mutation methods for a single chromosome form the foundation of our 
various constant creation methods for GEP. 

3.2   Constant Creation Methods for GEP 

After reviewing the existing literature, we have proposed five constant creation meth-
ods (CCMs) to investigate, which are detailed as follows: 
(1) Creep mutation on best individuals (CM_BST): Apply constant creep mutation 

to the fittest individual of each generation.  
(2) Random mutation on best individuals (RM_BST): Apply constant random muta-

tion to the fittest individual of each generation.  
(3) Creep mutation for first α% generations (CM_FST): For the first α% genera-

tions, at the end of the GEP run for each generation, all individuals in the popu-
lation undergo constant creep mutation.  

(4) Random mutation for first α% generations (RM_FST): Same as CM_FST except 
that constant random mutation is used in place of creep mutation.  

(5) Random mutation for generations at intervals (RM_INTV): Starting from the 
first generation, for generations at a certain interval g, all individuals in the 
population undergo constant random mutation at the end of the GEP run for 
each generation. Here the interval value g is chosen such that the generations 
subject to random mutation count α% of the total amount of generations.  

For the first two methods, CM_BST and RM_BST, only the best individual of 
each generation is considered for tuning up the constants. This is based on the well-



known practice for population-based evolutionary processes, where only the best 
individual is of real interest because it serves as the final solution to the problem. This 
is guaranteed by selection with elitism in reproduction of the population. Further-
more, if certain new constants achieve better fitness for the best individual, they 
should be useful components for an optimal solution. And the extra computation is 
limited since only one chromosome in the population applies CCM. For the CM_FST 
and RM_FST methods, constant mutation is performed for every individual in the 
population but only for the first few generations. This reflects the temporal qualities 
of constant mutation in GP, as examined in [8]. Namely, there is a dramatic drop-off 
in the number of constant mutations that contribute to the best-of-run individual as 
the GP procedure progresses. We conjecture a similar property for GEP. Moreover, 
as convergence is desired for an evolutionary process, the fluctuation of constants 
would be less useful or even harmful in later generations. The RM_INTV method 
was constructed for comparison with RM_FST to test our hypothesis that constant 
mutations are more beneficial at early stages of a GEP run. In the last three methods, 
the parameter α% is problem dependent and is usually set to a small value to avoid 
too much extra computation. 

4   Experiments 

4.1   Problem Statement 

In order to test the applicability of the proposed constant creation methods, we have 
selected two symbolic regression problems as the test cases, both of which have been 
studied by other researchers in published literatures on constant creation issue in GP 
or GEP. The first equation (1) is a simple polynomial with coefficients of real num-
bers [1]. Since real numbers belong to an unlimited set, we are never able to pre-
select appropriate ones to participate in the evolutionary process, and instead rely on 
the evolutionary process itself to discover such complex constants. The purpose of 
conducting this experiment is to find out the performance of potential methods in 
helping GEP compose real numeric values. A set of twenty-one fitness cases equally 
spaced along the x axis from -10 to 10 are chosen for this polynomial.  

6.04.03.0 23 −−−= xxxy  . (1) 

aeaay 243.7)ln(251.4 22 ++=  . (2) 

The second equation (2) is a “V” shaped function which not only has real coeffi-
cients with higher precision but also exhibits complex functionality and structure. 
Thus, the major challenge here for GEP is to obtain a good approximation to the 
shape of the target function. The fitness cases for this “V” shaped function problem 
are the same as used in [7], namely, a set of twenty random fitness cases chosen from 
the interval [-1, 1] of the variable a.  



4.2   Experiment Setup 

We compared the performance of different CCMs under the same experiment setup. 
For the GEP control parameters, we used 100 for the GEP chromosome length, 500 
for the population size, 1000 for the maximum number of generations, 0.7 for the 
crossover probability and 0.02 for the mutation probability. Though more generations 
usually provide greater chances to evolve a fitter solution, here we deliberately chose 
modestly sized GEP control parameters since we want to examine the evolutionary 
trend of each method under investigation, rather than obtain a perfect solution. In 
addition, the roulette-wheel selection with elitism is utilized as the selection method 
based on the fitness function calculated by (3), where fitnessi indicates the fitness 
function for the ith individual in the population, minR is the best (or minimum) resid-
ual error obtained so far and ResErrori is the individual’s residual error. This normal-
izes the fitness values within the interval [0, 1], and ResErrori=0 gives the best, where 
fitnessi=1. Note this is the fitness function used for selection, and the fitness of a 
chromosome is measured by its residual error whose value is better when smaller. 

)Re/(minmin ii sErrorRRfitness +=  . (3) 

The terminal set includes the constants {1, 2, 3, 5, 7} and input attributes (either 
the variables x or a). However, due to our a priori knowledge about these two bench-
mark problems, different function sets were used: {+, -, *, /} for the polynomial prob-
lem and {+, -, *, /, log, exp, power, sin, cos} for the “V” shaped function problem, 
where log represents the natural logarithm, exp represents ex, power(x, y) represents 
xy, sin represent sine function and cos represents the cosine function. Furthermore, in 
experiments for GEP with CCMs requiring α% parameter, we set the value as 1%.  

Our methods were incorporated into Java software for GEP, and experiments were 
conducted on a computer with Intel Pentium 4 CPU 1.70GHz and 512MB RAM 
using Microsoft Windows 2000. 

5   Experimental Results and Discussion 

Taking the stochastic behavior of the GEP process into account, each experiment was 
repeated for thirty independent runs, and the results were averaged. Since we utilized 
a greedy approach to perform constant mutation, i.e., keeping the change only if it 
improves the fitness, we want to first investigate the actual usage of the constant 
mutation for each strategy in the experiments we conducted. For those experiments in 
which constant mutations were actually performed, it is necessary to compare them 
with applications of GEP without any constant creation strategy (referred to as plain 
GEP) and examine whether the final solution’s fitness was improved. 

5.1   Finding 1: Not All Strategies Work 

In Table 1 we summarize the percentage of chromosomes whose fitness (i.e., the 
residual error) has been improved (i.e., minimized) through constant mutation. 



Table 1. Percentage of improved constant-mutated chromosomes. Percentage is defined as the 
ratio of chromosomes with fitness improved by constant mutation over the total number of 
constant-mutated chromosomes. Results were averaged over thirty independent runs 

Percentage of improved constant-mutated chromosomes Name of CCM 
Polynomial “V” Shaped function 

CM_BST 0.0% 0.0% 
RM_BST 0.0% 0.0% 
CM_FST 35.6% 50.2% 
RM_FST 31.0% 43.5% 

RM_INTV 16.6% 25.7% 
 

As shown in Table 1, GEP with constant mutation (either creep or random) applied 
to the best individual, never actually improved the best individual of the generation in 
our experiments. Consequently, except for an additional routine for checking the 
possibility of improving the best individuals by constant mutation, these two versions 
of GEP are essentially the same as plain GEP. This strongly indicates that the best 
individual evolved by plain GEP is already good enough, and that it is not likely to be 
improved by creep or random constant mutation operation. This observation also fits 
our assumption about GEP with CCM in section 3, namely that the GEP evolutionary 
process always plays the leading role in finding an optimal solution. Since the deter-
mination of whether or not to use the constant mutation method requires extra compu-
tation, but it is not likely that the GEP solution will be improved, we conclude that 
GEP with CM_BST or RM_BST is not a beneficial enhancement to plain GEP.  
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(a) The polynomial problem                            (b) The “V” shaped function problem 

Fig. 2. Percentage of improved individuals at constant-mutated generations. Percentage is 
defined as the ratio of individuals with fitness improved by constant mutation over the whole 
population; generations are those at which constant creation strategy is applied to the whole 
population. Results were averaged over thirty independent runs 

In contrast, when constant mutation is applied to the whole population, as is the 
case in the remaining three versions of GEP with CCM, it typically improves the 
fitness of many of the chromosomes in each generation. In particular, GEP with 
CM_FST or RM_FST has a larger portion of chromosomes improved via constant 
mutation than GEP with RM_INTV. The percentage of individuals (out of the whole 



population) whose fitness is improved (via constant mutation) in a given generation is 
plotted in Fig. 2, according to the number of generations subject to CCM.  

The curves in Fig. 2 highlight a characteristic of the fitness of average individuals 
in the population: the percentage of individuals that could be improved by constant 
mutation is prone to decrease over the generations. A qualitative analysis for this 
phenomenon is that in the beginning, the population is composed of dramatically 
diverse individuals and their corresponding functions have structures and constant 
coefficients combined differently from the optimal solution. Thus, constant mutation 
results in fitness improvement for large amounts of individuals. However as the GEP 
evolutionary process moves on, the population gradually settles down to be composed 
of sub-optimal coalitions of function structures and constants found along the way. 
Therefore in later generations, direct recombination of the genes in chromosomes by 
GEP algorithm itself is more significant in changing the fitness value than small 
modifications like constant mutations. 

5.2 Finding 2: Some Strategies Exhibit Better Performance 

The performance of GEP was examined with the constant creation strategies of 
CM_FST, RM_FST and RM_INTV. The experimental results are shown in Table 2, 
where best residual refers to the best residual error among all of the final best indi-
viduals from the thirty runs; average of best residuals is an average of all thirty final 
best residual errors along with an approximate 95% confidence interval; average 
running time is the running time of each GEP process averaged over thirty runs and 
measured in seconds; and average tree size refers to the average corresponding ex-
pression tree size (i.e., the number of nodes in the tree) of the best individuals over 
thirty runs. The following observations can be made from Table 2: 
(1) The entries for best residual show that no single approach exhibits a predominant 

advantage for both problems in finding a best solution out of thirty runs. 
(2) The numerical ranges for average of best residuals give evidence of better per-

formance of GEP with CCMs than plain GEP.  
(3) GEP with RM_FST and GEP with RM_INTV slightly outperform GEP with 

CM_FST with respect to average of best residuals. 
(4) The comparable expression tree sizes suggest all approaches produce solutions of 

equivalent functional complexity.  
(5) GEP with CCMs takes more running time than plain GEP does. We will discuss 

it separately in section 5.3.  
To verify the second observation, we have conducted one-tailed Student’s t-tests 

with an unequal variance assumption to determine the significance level that versions 
of GEP with CCM outperform plain GEP in terms of the average best residual error. 
Using this method, a good approach should produce a low best residual error (i.e., a 
high best fitness) in general. The t-test was carried out between plain GEP and each 
of GEP with CCMs, and the results demonstrate that their performances have signifi-
cant difference for both testing problems. More specifically, three versions of GEP 
with CCM outperformed plain GEP with greater than 95% significance in almost all 
of the conducted experiments. The only exception was the test between GEP with 



CM_FST and plain GEP for the “V” shaped problem, where the former only outper-
formed the later with around 91% significance. However, these results are strong 
enough for us to conclude that GEP with CCMs over the population has achieved 
nontrivial improvement in the fitness of the average best solution compared with 
plain GEP. 

Table 2. Performance comparison of GEP with CCMs. GEP with CM_FST, RM_FST and 
RM_INTV are compared against plain GEP. Results were averaged over thirty independent 
runs and each entry for average of best residuals is an approximate 95% confidence interval 
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Statistics Plain GEP GEP with  
CM_FST 

GEP with 
RM_FST 

GEP with 
RM_INTV 

 Best residual 0.382 0.419 0.268 0.157 
 Average of best residuals 1.261±0.213 1.007±0.116 0.992±0.178 0.966±0.167 
 Average running time (s) 56 79 80 81 Po

ly
- 

no
m

ia
l  

 Average tree size 32.3 36.3 36.9 37.3 
 Best residual 1.065 1.013 1.110 1.038 
 Average of best residuals 2.045±0.145 1.914±0.121 1.865±0.149 1.863±0.127 
 Average running time (s) 62 96 90 98 

“V
” 

sh
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ed
 

 Average tree size 25.8 27.1 27.2 28.4 
  

The third observation draws our attention to the difference among performances of 
these three versions of GEP with CCM in our experiments. We again conducted one-
tailed Student’s t-tests with an unequal variance assumption for each pair of them. 
However, the test results reveal that even the most significant difference in their per-
formance, which comes between GEP with CM_FST and GEP with RM_INTV for 
the “V” shaped problem, is just around 72%. Therefore, we do not have enough evi-
dence to claim that one GEP with CCM outperforms the other in terms of the fitness 
of the average best solution. The indication here is that by tuning up the fitness of the 
whole population via constant creation methods, the performance of GEP can be 
effectively boosted. The individuals who are able to gain fitness improvement purely 
via constant mutation tend to have fitter function structure components. Meanwhile 
the improved fitness values of these individuals after constant mutation make them 
more likely to survive through multiple generations, when compared with the rest of 
the population. Search direction is consequently biased to these fitter function struc-
tures, which is essential for the evolution to converge to an optimal solution. It ap-
pears that specific manner in which the constant mutation methods are applied to tune 
the whole population, i.e., when they are applied (in the beginning or at intervals) and 
how they are applied (as creep or random mutation), do not have a large effect on the 
fitness of the final solution. 

5.3 Finding 3: All Strategies Require Extra Computation 

As shown in the entries for average running time in Table 2, our constant creation 
strategies require some extra computational resources. However, as noted from the 



experiments in [3], the use of local learning creates a bias in the structure of solutions, 
namely it prefers structures that are more readily adaptable by local learning. There-
fore, the fitness landscape [13] is altered due to the fitness improvement of the best 
individual or large portion of other individuals in the population. Consequently, it is 
not fair to directly compare the efficiency of GEP with or without CCMs. This is 
particularly true when those variants of GEP that require more computation actually 
tend to find better solutions with higher fitness values on average. We are not able to 
precisely estimate how many more generations (and thus computational resources) 
are needed in order to make plain GEP produce an equally competitive solution as 
those gained by GEP with CCMs. Since the percentage of generations subject to 
constant mutation is adjustable, which would help minimize additional overhead of 
GEP with CCMs, whether or not to pick up these enhanced versions of GEP for solv-
ing a symbolic regression problem is better left to the actual preference between fit-
ness improvement and computational cost considerations with respect to the nature of 
the problem at hand. 

6   Conclusions and Future Work 

This paper has explored a way to improve the performance of the GEP algorithm by 
implementing constant creation methods. The experimental results reported in this 
paper show that the GEP algorithm possesses a very strong capability to find or com-
pose the most suitable combination of constants and function structures. As a result, 
the best individual of the generation usually exhibits the true best evaluation score 
and can seldom be further improved by simple local search/tuning of its constants. 
However, constant creation methods applied to the whole population can significantly 
improve the fitness of average individuals in the population, especially in early gen-
erations. On average, via this constant tune-up process, higher fitness scores have 
been achieved for the final best solutions with only a modest increase in the computa-
tional effort of the GEP algorithm.  

In future research, we plan to further examine the proposed GEP with constant 
creation methods for larger scale regression problems. Furthermore, the current con-
stant creation methods under investigation either apply the basic constant mutation 
techniques to the best individual of the generation or to the whole population. Ex-
periments have shown two extreme results, where the former one seldom obtains 
improvement in the fitness of the best individual while the latter shows notable bene-
fits. We infer that there possibly exists a more appropriate intermediate setup point 
between these two choices. For example, it may be possible to extend the constant 
creation methods to an elite group, which contains a set of individuals with relatively 
high fitness values, as compared to the remaining individuals in the whole population 
for a given generation. This would save some computation but still yield the advan-
tage of improving overall fitness of final best solutions via constant mutation meth-
ods. 
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