
Investigation of Constant Creation Techniques in the
Context of Gene Expression Programming

Xin Li1, Chi Zhou2, Peter C. Nelson1, Thomas M. Tirpak2

1 Artificial Intelligence Laboratory, Department of Computer Science,
University of Illinois at Chicago, Chicago, IL 60607, USA

{xli1, nelson}@cs.uic.edu
2 Physical Realization Research Center of Motorola Labs,

Schaumburg, IL 60196, USA
{Chi.Zhou, T.Tirpak}@motorola.com

Abstract. Gene Expression Programming (GEP) is a new technique of Genetic
Programming (GP) that implements a linear genotype representation. It uses
fixed-length chromosomes to represent expression trees of different shapes and
sizes, which results in unconstrained search of the genome space while still en-
suring validity of the program’s output. However, GEP has some difficulty in
discovering suitable function structures because the genetic operators are more
disruptive than traditional tree-based GP. One possible remedy is to specifically
assist the algorithm in discovering useful numeric constants. In this paper, the
effectiveness of several constant creation techniques for GEP has been investi-
gated through two symbolic regression benchmark problems. Our experimental
results show that constant creation methods applied to the whole population for
selected generations perform better than methods that are applied only to the
best individuals. The proposed tune-up process for the entire population can
significantly improve the average fitness of the best solutions.

1 Introduction

First introduced by Candida Ferreira in 2001, Genetic Expression Programming
(GEP) [4] is a new technique for the creation of computer programs. In GEP, com-
puter programs are represented as linear character strings of fixed length (called
chromosomes) which, in the subsequent fitness evaluation, can be expressed as ex-
pression trees (ETs) of different sizes and shapes. The search space is separated from
the solution space, which results in unconstrained search of the genome space while
still ensuring validity of the program’s output. Due to its linear fixed-length genotype
representation, genetic manipulation becomes much easier. Thus, compared with
traditional GP, the evolution of GEP gains more flexibility and power in exploring
the entire search space. GEP methods have performed well for solving a large variety
of problems, including symbolic regression, optimization, time series analysis, classi-
fication, logic synthesis and cellular automata, etc. [2]. Zhou, et al. [5, 6] applied a
different version of GEP and achieved significantly better results on multi-category
pattern classification problems, compared with traditional machine learning methods

and GP classifiers. Instead of the original head-tail method [2], their GEP implemen-
tation used a chromosome validation algorithm to dynamically determine the feasibil-
ity of any individual generated, which results in no inherent restrictions in the types
of genetic operators applied to the GEP chromosomes, and all genes are treated
equally during the evolution. The work presented in this paper is based on this re-
vised version of GEP.

Despite its flexible representation and efficient evolutionary process, GEP still has
difficulty discovering suitable function structures, because the genetic operators are
more disruptive than traditional tree-based GP, and a good evolved function structure
is very likely to be destroyed in the subsequent generations. Different tentative ap-
proaches have been suggested, including multi-genetic chromosomes, special genetic
operators, and constant creation methods [2]. Our attention was drawn to constant
creation methods due to their simplicity and the potential benefits. It is assumed that
local search effort for finding better combinations of numeric constants on top of an
ordinary GEP process would help improve the fitness value of the final best solution.
In this paper, we propose five constant creation methods for GEP and have tested
them on two typical symbolic regression problems. All of these methods are variants
of two basic constant creation methods for a single chromosome, namely creep muta-
tion and random mutation. Experimental results have demonstrated that basic con-
stant creation methods performed on the whole population for selected generations
are preferred than those performed only for the best individuals, and that tune-up
processes applied to the whole population can achieve meaningful improvement in
the average fitness value of the best solutions.

The next section of this paper gives an overview of related work. Section 3 ex-
plains the constant creation methods that we investigated. The experiment design and
setup are described in section 4. Section 5 summarizes the experimental results and
gives a qualitative analysis of the applicability of the proposed constant creation
methods for GEP. Section 6 presents some conclusions and ideas for future work.

2 Related Work

2.1 A Brief Overview of Gene Expression Programming (GEP)

As is the case with GP, when using GEP to solve a problem, generally five compo-
nents, i.e., the function set, terminal set (including problem-specific variables and
pre-selected constants), fitness function, control parameters, and stop condition need
to be specified. Each chromosome in GEP is composed of a fixed length of character
strings, which can be any element (called gene) from the function set or the terminal
set. Using the function set {+, -, *, /, sqrt} and the terminal set {a, b, c, d, 1}, Fig. 1
gives an example GEP chromosome of length fifteen. This is referred to as Karva
notation, or K-expression [4]. A K-expression can be mapped into an ET following a
width-first procedure and be further written in a mathematical form as shown in Fig.

1. The conversion of an ET into a K-expression can be accomplished by recording the
nodes from left to right in each layer of the ET in a top-down fashion.

Fig. 1. An example of GEP chromosome, the corresponding expression tree and the mathe-
matical form. The character “.” is used to separate individual genes in a chromosome

A chromosome is valid only when it can map into a legal ET within its length
limit. Therefore all of the chromosomes randomly generated or reproduced by genetic
operators are subject to a validity test procedure, in order to prevent illegal expres-
sions from being introduced into the population [6].

The GEP algorithm begins with the random generation of linear fixed-length chro-
mosomes for the initial population. Then the chromosomes are represented as ETs,
evaluated based on a pre-defined fitness function, and selected by fitness to reproduce
with modification. The individuals of this new generation are, in their turn, subjected
to the same developmental process until a pre-specified number of generations are
completed, or a solution has been found. In GEP, the selection procedures are often
determined by roulette-wheel sampling with elitism [12] based on individuals’ fit-
ness, which guarantees the survival and cloning of the best individual to the next
generation. Variation in the population is introduced by applying one or more genetic
operators, i.e., crossover, mutation and rotation [2], to selected chromosomes, which
usually drastically reshape the corresponding ETs.

2.2 Constant Creation

Research and discussion on constant creation issues have continued for some time in
GP research circles, as it is well known that GP has difficulty discovering useful
numeric constants for the terminal nodes of s-expression trees [1, 3]. This is one of
the major obstacles that stand in the way of achieving greater efficiency for complex
GP applications. A detailed analysis of the density and diversity of constants over
generations in GP was given by Ryan and Keijzer in [8]. They also explored the ap-
plicability of improving the search performance of GP through small changes, by
introducing two simple constant mutation techniques, namely creep mutation, a step-
wise mutation that only permits small changes, and uniform/random mutation that
chooses a new random value uniformly from some specified range. Uniform mutation
is reported to have considerably better performance. Some other enhancements to the

dc
abca

−
∗+

1)(

 Chromosome: sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d .

Mathematical form:ET:

constant creation procedure in GP can be categorized as local search algorithms.
Several researchers have tried to combine hill climbing [1, 2], simulated annealing [1,
11], local gradient search [3] and other stochastic techniques to GP to facilitate find-
ing useful constants for evolving solutions or optimizing extra parameters. Although
meaningful improvements have been achieved, these methods are somewhat compli-
cated to implement compared with simple mutation techniques. Furthermore, an
overly constrained local search method would possibly reduce the power of the “free-
style” search inherent in the evolutionary algorithms. A novel view of constant crea-
tion by a digit concatenation approach is presented in [9] for Grammatical Evolution
(GE). Most recently, a new concept of linear scaling is introduced in [10] to help the
GP system concentrate on constructing an expression that has the desired shape.
However, this method is suitable for finding significant constants for evolved expres-
sions that are approximately linearly related to their corresponding target values, but
it is generally ineffective for identifying other candidates with good function shapes.

Since the invention of GEP, constant creation techniques have received attention in
the research literature. Ferreira introduced two approaches for symbolic regression in
the original GEP [7]. One approach does not include any constants in the terminal set
and relies on the spontaneous emergence of necessary constants through the evolu-
tionary process of GEP. The other approach involves the ability to explicitly manipu-
late random constants by adding a random constant domain Dc at the end of chromo-
some. Experiments have shown that the first approach is more efficient in terms of
both accuracy of the evolved models and computational time for solving problems.

3 Constant Creation Methods for GEP

The way we handle numeric constants in GEP is as follows: several constant symbols
are selected into the terminal set at the beginning of a GEP run. These constant sym-
bols will evolve with function symbols and other terminals to produce candidate
solutions. This mechanism makes it possible to obtain desirable set of constants by
evolving substructures composed of only functions and constant terminals. This
search for desirable constants is concurrent with the search for desirable function
structures. Therefore, the problem of finding useful constants in GP now also applies
to GEP. In order to fit some constant coefficients the chromosome has to keep struc-
turally changing, even though a function structure similar to the optimal solution may
have been previously discovered. Our investigation of constant creation methods in
GEP was performed with the following assumptions:
• The proposed methods for constant creation should be as simple as possible, so

that they will not dominate the fundamental evolutionary process of GEP, which
should play the leading role in finding an optimal solution. Therefore, we have
chosen two basic constant creation methods for a single chromosome, namely
creep mutation and random mutation, as the basis for our proposed methods.

• Local search should be biased towards optimality, which means that mutation
proceeds only when it actually improves the fitness value of the chromosome.

• Different variations of the basic constant creation methods should be examined

as independent approaches, since the manner in which these basic methods are
applied will result in difference in the exploration of the search space.

3.1 Definition of Basic Constant Creation Methods

The two basic constant creation methods we have employed for a single chromosome
are similar to those adopted in [8] and have been described in the literature as creep
mutation and random mutation. However, in our approach, we only preserve muta-
tions which actually contribute to an improvement in the fitness of the chromosome
against the application of mutations to all constants present in the chromosome as
used in [8]. We first define a single-point constant mutation in GEP as follows:

For the initial configuration of GEP, a list of constants is selected and sorted into
the terminal set as seeds to produce any other desirable constants during evolu-
tion. A single-point constant mutation changes a single constant gene in a chro-
mosome to another constant gene. If the new constant is randomly selected from
the constant gene list, it is a random mutation; if the new one is restricted to be
selected from the neighboring constants of the current one, it is a creep mutation.

Then we define a GEP constant (creep or random) mutation operation as below:
For every constant gene in a chromosome, perform a single-point constant muta-
tion (creep or random) in a greedy manner, i.e., only if the fitness of the new
chromosome is improved would the mutation actually proceed with the new
constant symbol substituted for the old one.

These two mutation methods for a single chromosome form the foundation of our
various constant creation methods for GEP.

3.2 Constant Creation Methods for GEP

After reviewing the existing literature, we have proposed five constant creation meth-
ods (CCMs) to investigate, which are detailed as follows:
(1) Creep mutation on best individuals (CM_BST): Apply constant creep mutation

to the fittest individual of each generation.
(2) Random mutation on best individuals (RM_BST): Apply constant random muta-

tion to the fittest individual of each generation.
(3) Creep mutation for first α% generations (CM_FST): For the first α% genera-

tions, at the end of the GEP run for each generation, all individuals in the popu-
lation undergo constant creep mutation.

(4) Random mutation for first α% generations (RM_FST): Same as CM_FST except
that constant random mutation is used in place of creep mutation.

(5) Random mutation for generations at intervals (RM_INTV): Starting from the
first generation, for generations at a certain interval g, all individuals in the
population undergo constant random mutation at the end of the GEP run for
each generation. Here the interval value g is chosen such that the generations
subject to random mutation count α% of the total amount of generations.

For the first two methods, CM_BST and RM_BST, only the best individual of
each generation is considered for tuning up the constants. This is based on the well-

known practice for population-based evolutionary processes, where only the best
individual is of real interest because it serves as the final solution to the problem. This
is guaranteed by selection with elitism in reproduction of the population. Further-
more, if certain new constants achieve better fitness for the best individual, they
should be useful components for an optimal solution. And the extra computation is
limited since only one chromosome in the population applies CCM. For the CM_FST
and RM_FST methods, constant mutation is performed for every individual in the
population but only for the first few generations. This reflects the temporal qualities
of constant mutation in GP, as examined in [8]. Namely, there is a dramatic drop-off
in the number of constant mutations that contribute to the best-of-run individual as
the GP procedure progresses. We conjecture a similar property for GEP. Moreover,
as convergence is desired for an evolutionary process, the fluctuation of constants
would be less useful or even harmful in later generations. The RM_INTV method
was constructed for comparison with RM_FST to test our hypothesis that constant
mutations are more beneficial at early stages of a GEP run. In the last three methods,
the parameter α% is problem dependent and is usually set to a small value to avoid
too much extra computation.

4 Experiments

4.1 Problem Statement

In order to test the applicability of the proposed constant creation methods, we have
selected two symbolic regression problems as the test cases, both of which have been
studied by other researchers in published literatures on constant creation issue in GP
or GEP. The first equation (1) is a simple polynomial with coefficients of real num-
bers [1]. Since real numbers belong to an unlimited set, we are never able to pre-
select appropriate ones to participate in the evolutionary process, and instead rely on
the evolutionary process itself to discover such complex constants. The purpose of
conducting this experiment is to find out the performance of potential methods in
helping GEP compose real numeric values. A set of twenty-one fitness cases equally
spaced along the x axis from -10 to 10 are chosen for this polynomial.

6.04.03.0 23 −−−= xxxy . (1)

aeaay 243.7)ln(251.4 22 ++= . (2)

The second equation (2) is a “V” shaped function which not only has real coeffi-
cients with higher precision but also exhibits complex functionality and structure.
Thus, the major challenge here for GEP is to obtain a good approximation to the
shape of the target function. The fitness cases for this “V” shaped function problem
are the same as used in [7], namely, a set of twenty random fitness cases chosen from
the interval [-1, 1] of the variable a.

4.2 Experiment Setup

We compared the performance of different CCMs under the same experiment setup.
For the GEP control parameters, we used 100 for the GEP chromosome length, 500
for the population size, 1000 for the maximum number of generations, 0.7 for the
crossover probability and 0.02 for the mutation probability. Though more generations
usually provide greater chances to evolve a fitter solution, here we deliberately chose
modestly sized GEP control parameters since we want to examine the evolutionary
trend of each method under investigation, rather than obtain a perfect solution. In
addition, the roulette-wheel selection with elitism is utilized as the selection method
based on the fitness function calculated by (3), where fitnessi indicates the fitness
function for the ith individual in the population, minR is the best (or minimum) resid-
ual error obtained so far and ResErrori is the individual’s residual error. This normal-
izes the fitness values within the interval [0, 1], and ResErrori=0 gives the best, where
fitnessi=1. Note this is the fitness function used for selection, and the fitness of a
chromosome is measured by its residual error whose value is better when smaller.

)Re/(minmin ii sErrorRRfitness += . (3)

The terminal set includes the constants {1, 2, 3, 5, 7} and input attributes (either
the variables x or a). However, due to our a priori knowledge about these two bench-
mark problems, different function sets were used: {+, -, *, /} for the polynomial prob-
lem and {+, -, *, /, log, exp, power, sin, cos} for the “V” shaped function problem,
where log represents the natural logarithm, exp represents ex, power(x, y) represents
xy, sin represent sine function and cos represents the cosine function. Furthermore, in
experiments for GEP with CCMs requiring α% parameter, we set the value as 1%.

Our methods were incorporated into Java software for GEP, and experiments were
conducted on a computer with Intel Pentium 4 CPU 1.70GHz and 512MB RAM
using Microsoft Windows 2000.

5 Experimental Results and Discussion

Taking the stochastic behavior of the GEP process into account, each experiment was
repeated for thirty independent runs, and the results were averaged. Since we utilized
a greedy approach to perform constant mutation, i.e., keeping the change only if it
improves the fitness, we want to first investigate the actual usage of the constant
mutation for each strategy in the experiments we conducted. For those experiments in
which constant mutations were actually performed, it is necessary to compare them
with applications of GEP without any constant creation strategy (referred to as plain
GEP) and examine whether the final solution’s fitness was improved.

5.1 Finding 1: Not All Strategies Work

In Table 1 we summarize the percentage of chromosomes whose fitness (i.e., the
residual error) has been improved (i.e., minimized) through constant mutation.

Table 1. Percentage of improved constant-mutated chromosomes. Percentage is defined as the
ratio of chromosomes with fitness improved by constant mutation over the total number of
constant-mutated chromosomes. Results were averaged over thirty independent runs

Percentage of improved constant-mutated chromosomes Name of CCM
Polynomial “V” Shaped function

CM_BST 0.0% 0.0%
RM_BST 0.0% 0.0%
CM_FST 35.6% 50.2%
RM_FST 31.0% 43.5%

RM_INTV 16.6% 25.7%

As shown in Table 1, GEP with constant mutation (either creep or random) applied
to the best individual, never actually improved the best individual of the generation in
our experiments. Consequently, except for an additional routine for checking the
possibility of improving the best individuals by constant mutation, these two versions
of GEP are essentially the same as plain GEP. This strongly indicates that the best
individual evolved by plain GEP is already good enough, and that it is not likely to be
improved by creep or random constant mutation operation. This observation also fits
our assumption about GEP with CCM in section 3, namely that the GEP evolutionary
process always plays the leading role in finding an optimal solution. Since the deter-
mination of whether or not to use the constant mutation method requires extra compu-
tation, but it is not likely that the GEP solution will be improved, we conclude that
GEP with CM_BST or RM_BST is not a beneficial enhancement to plain GEP.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 2 3 4 5 6 7 8 9 10

constant-mutated generations

pe
rc

en
ta

ge
 o

f i
m

pr
ov

em
en

t

CM_FST RM_FST RM_INTV

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

1 2 3 4 5 6 7 8 9 10

constant-mutated generations

pe
rc

en
ta

ge
 o

f i
m

pr
ov

em
en

t

CM_FST RM_FST RM_INTV

(a) The polynomial problem (b) The “V” shaped function problem

Fig. 2. Percentage of improved individuals at constant-mutated generations. Percentage is
defined as the ratio of individuals with fitness improved by constant mutation over the whole
population; generations are those at which constant creation strategy is applied to the whole
population. Results were averaged over thirty independent runs

In contrast, when constant mutation is applied to the whole population, as is the
case in the remaining three versions of GEP with CCM, it typically improves the
fitness of many of the chromosomes in each generation. In particular, GEP with
CM_FST or RM_FST has a larger portion of chromosomes improved via constant
mutation than GEP with RM_INTV. The percentage of individuals (out of the whole

population) whose fitness is improved (via constant mutation) in a given generation is
plotted in Fig. 2, according to the number of generations subject to CCM.

The curves in Fig. 2 highlight a characteristic of the fitness of average individuals
in the population: the percentage of individuals that could be improved by constant
mutation is prone to decrease over the generations. A qualitative analysis for this
phenomenon is that in the beginning, the population is composed of dramatically
diverse individuals and their corresponding functions have structures and constant
coefficients combined differently from the optimal solution. Thus, constant mutation
results in fitness improvement for large amounts of individuals. However as the GEP
evolutionary process moves on, the population gradually settles down to be composed
of sub-optimal coalitions of function structures and constants found along the way.
Therefore in later generations, direct recombination of the genes in chromosomes by
GEP algorithm itself is more significant in changing the fitness value than small
modifications like constant mutations.

5.2 Finding 2: Some Strategies Exhibit Better Performance

The performance of GEP was examined with the constant creation strategies of
CM_FST, RM_FST and RM_INTV. The experimental results are shown in Table 2,
where best residual refers to the best residual error among all of the final best indi-
viduals from the thirty runs; average of best residuals is an average of all thirty final
best residual errors along with an approximate 95% confidence interval; average
running time is the running time of each GEP process averaged over thirty runs and
measured in seconds; and average tree size refers to the average corresponding ex-
pression tree size (i.e., the number of nodes in the tree) of the best individuals over
thirty runs. The following observations can be made from Table 2:
(1) The entries for best residual show that no single approach exhibits a predominant

advantage for both problems in finding a best solution out of thirty runs.
(2) The numerical ranges for average of best residuals give evidence of better per-

formance of GEP with CCMs than plain GEP.
(3) GEP with RM_FST and GEP with RM_INTV slightly outperform GEP with

CM_FST with respect to average of best residuals.
(4) The comparable expression tree sizes suggest all approaches produce solutions of

equivalent functional complexity.
(5) GEP with CCMs takes more running time than plain GEP does. We will discuss

it separately in section 5.3.
To verify the second observation, we have conducted one-tailed Student’s t-tests

with an unequal variance assumption to determine the significance level that versions
of GEP with CCM outperform plain GEP in terms of the average best residual error.
Using this method, a good approach should produce a low best residual error (i.e., a
high best fitness) in general. The t-test was carried out between plain GEP and each
of GEP with CCMs, and the results demonstrate that their performances have signifi-
cant difference for both testing problems. More specifically, three versions of GEP
with CCM outperformed plain GEP with greater than 95% significance in almost all
of the conducted experiments. The only exception was the test between GEP with

CM_FST and plain GEP for the “V” shaped problem, where the former only outper-
formed the later with around 91% significance. However, these results are strong
enough for us to conclude that GEP with CCMs over the population has achieved
nontrivial improvement in the fitness of the average best solution compared with
plain GEP.

Table 2. Performance comparison of GEP with CCMs. GEP with CM_FST, RM_FST and
RM_INTV are compared against plain GEP. Results were averaged over thirty independent
runs and each entry for average of best residuals is an approximate 95% confidence interval

Pr
ob

le
m

Statistics Plain GEP GEP with
CM_FST

GEP with
RM_FST

GEP with
RM_INTV

 Best residual 0.382 0.419 0.268 0.157
 Average of best residuals 1.261±0.213 1.007±0.116 0.992±0.178 0.966±0.167
 Average running time (s) 56 79 80 81 Po

ly
-

no
m

ia
l

 Average tree size 32.3 36.3 36.9 37.3
 Best residual 1.065 1.013 1.110 1.038
 Average of best residuals 2.045±0.145 1.914±0.121 1.865±0.149 1.863±0.127
 Average running time (s) 62 96 90 98

“V
”

sh
ap

ed

 Average tree size 25.8 27.1 27.2 28.4

The third observation draws our attention to the difference among performances of
these three versions of GEP with CCM in our experiments. We again conducted one-
tailed Student’s t-tests with an unequal variance assumption for each pair of them.
However, the test results reveal that even the most significant difference in their per-
formance, which comes between GEP with CM_FST and GEP with RM_INTV for
the “V” shaped problem, is just around 72%. Therefore, we do not have enough evi-
dence to claim that one GEP with CCM outperforms the other in terms of the fitness
of the average best solution. The indication here is that by tuning up the fitness of the
whole population via constant creation methods, the performance of GEP can be
effectively boosted. The individuals who are able to gain fitness improvement purely
via constant mutation tend to have fitter function structure components. Meanwhile
the improved fitness values of these individuals after constant mutation make them
more likely to survive through multiple generations, when compared with the rest of
the population. Search direction is consequently biased to these fitter function struc-
tures, which is essential for the evolution to converge to an optimal solution. It ap-
pears that specific manner in which the constant mutation methods are applied to tune
the whole population, i.e., when they are applied (in the beginning or at intervals) and
how they are applied (as creep or random mutation), do not have a large effect on the
fitness of the final solution.

5.3 Finding 3: All Strategies Require Extra Computation

As shown in the entries for average running time in Table 2, our constant creation
strategies require some extra computational resources. However, as noted from the

experiments in [3], the use of local learning creates a bias in the structure of solutions,
namely it prefers structures that are more readily adaptable by local learning. There-
fore, the fitness landscape [13] is altered due to the fitness improvement of the best
individual or large portion of other individuals in the population. Consequently, it is
not fair to directly compare the efficiency of GEP with or without CCMs. This is
particularly true when those variants of GEP that require more computation actually
tend to find better solutions with higher fitness values on average. We are not able to
precisely estimate how many more generations (and thus computational resources)
are needed in order to make plain GEP produce an equally competitive solution as
those gained by GEP with CCMs. Since the percentage of generations subject to
constant mutation is adjustable, which would help minimize additional overhead of
GEP with CCMs, whether or not to pick up these enhanced versions of GEP for solv-
ing a symbolic regression problem is better left to the actual preference between fit-
ness improvement and computational cost considerations with respect to the nature of
the problem at hand.

6 Conclusions and Future Work

This paper has explored a way to improve the performance of the GEP algorithm by
implementing constant creation methods. The experimental results reported in this
paper show that the GEP algorithm possesses a very strong capability to find or com-
pose the most suitable combination of constants and function structures. As a result,
the best individual of the generation usually exhibits the true best evaluation score
and can seldom be further improved by simple local search/tuning of its constants.
However, constant creation methods applied to the whole population can significantly
improve the fitness of average individuals in the population, especially in early gen-
erations. On average, via this constant tune-up process, higher fitness scores have
been achieved for the final best solutions with only a modest increase in the computa-
tional effort of the GEP algorithm.

In future research, we plan to further examine the proposed GEP with constant
creation methods for larger scale regression problems. Furthermore, the current con-
stant creation methods under investigation either apply the basic constant mutation
techniques to the best individual of the generation or to the whole population. Ex-
periments have shown two extreme results, where the former one seldom obtains
improvement in the fitness of the best individual while the latter shows notable bene-
fits. We infer that there possibly exists a more appropriate intermediate setup point
between these two choices. For example, it may be possible to extend the constant
creation methods to an elite group, which contains a set of individuals with relatively
high fitness values, as compared to the remaining individuals in the whole population
for a given generation. This would save some computation but still yield the advan-
tage of improving overall fitness of final best solutions via constant mutation meth-
ods.

Acknowledgement

We appreciate the Physical Realization Research Center of Motorola Labs for pro-
viding funding for this research work. We would also thank Weimin Xiao for his
insightful discussion on related topics.

References

1. Matthew Evett, Thomas Fernandez: Numeric Mutation Improves the Discovery of Numeric
Constants in Genetic Programmin. Proceedings of the Third Annual Genetic Programming
Conference. Madison, Wisconsin (1998) 66-71

2. Candida Ferreira: Gene Expression Programming: Mathematical Modeling by an Artificial
Intelligence. Angra do Heroismo, Portugal (2002)

3. Alexander Topchy, William F. Punch: Faster Genetic Programming based on Local Gradi-
ent Search of Numeric Leaf Values. Proceedings of the Genetic and Evolutionary Computa-
tion Conference. San Francisco, California (2001) 155-162

4. Candida Ferreira: Gene Expression Programming: a New Adaptive Algorithm for Solving
Problems. Complex Systems, Vol. 13, No. 2 (2001) 87-129

5. Chi Zhou, Weimin Xiao, Peter C. Nelson, Thomas M. Tirpak: Evolving Accurate and Com-
pact Classification Rules with Gene Expression Programming. IEEE Transactions on Evolu-
tionary Computation, Vol. 7, No. 6 (2003) 519-531

6. Chi Zhou, Peter C. Nelson, Weimin Xiao, Thomas M. Tirpak: Discovery of Classification
Rules by Using Gene Expression Programming. Proceedings of the International Confer-
ence on Artificial Intelligence. Las Vegas, Nevada (2002) 1355-1361

7. Candida Ferreira: Function Finding and the Creation of Numerical Constants in Gene Ex-
pression Programming. The Seventh Online World Conference on Soft Computing in Indus-
trial Applications (2002)

8. Conor Ryan, Maarten Keijzer: An Analysis of Diversity of Constants of Genetic Program-
ming. European Conference on Genetic Programming. Lecture Notes in Computer Science,
Vol. 2610. Springer-Verlag, Berlin Heidelberg New York (2003) 404-413

9. Michael O’Neill, Ian Dempsey, Anthony Brabazon, Conor Ryan: Analysis of a Digit Con-
catenation Approach to Constant Creation. European Conference on Genetic Programming.
Lecture Notes in Computer Science, Vol. 2610. Springer-Verlag, Berlin Heidelberg New
York (2003) 173-182

10.Maarten Keijzer: Improving Symbolic Regression with Interval Arithmetic and Linear
Scaling. European Conference on Genetic Programming. Lecture Notes in Computer Sci-
ence, Vol. 2610. Springer-Verlag, Berlin Heidelberg New York (2003) 70-82

11.Anna I. Esparcia-Alcazar, Ken Sharman: Learning Schemes for Genetic Programming.
Proceedings of Late Breaking Papers at the Annual Genetic Programming Conference. Stan-
ford University, California (1997) 57-65

12.David E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Pub. Co. (1989)

13.Melanie Mitchell: An Introduction to Genetic Algorithms (Complex Adaptive Systems).
MIT Press (1996)

