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Abstract. Autonomous navigation controllers were developed for fixed
wing unmanned aerial vehicle (UAV) applications using incremental evo-
lution with multi-objective genetic programming (GP). We designed four
fitness functions derived from flight simulations and used multi-objective
GP to evolve controllers able to locate a radar source, navigate the UAV
to the source efficiently using on-board sensor measurements, and circle
closely around the emitter. We selected realistic flight parameters and
sensor inputs to aid in the transference of evolved controllers to physi-
cal UAVs. We used both direct and environmental incremental evolution
to evolve controllers for four types of radars: 1) continuously emitting,
stationary radars, 2) continuously emitting, mobile radars, 3) intermit-
tently emitting, stationary radars, and 4) intermittently emitting, mobile
radars. The use of incremental evolution drastically increased evolution’s
chances of evolving a successful controller compared to direct evolution.
This technique can also be used to develop a single controller capable
of handling all four radar types. In the next stage of research, the best
evolved controllers will be tested by using them to fly real UAVs.

1 Introduction

Incremental evolution [1] is the process of evolving a population on a simple
problem and then using the resulting evolved population as a seed to evolve
a solution to a related problem of greater complexity. Solutions to a variety
of complicated problems have been evolved using incremental evolution. There
are two types of incremental evolution. Functional incremental evolution [2–4]
changes the difficulty of the fitness function in order to increase the difficulty of
the problem. Environmental incremental evolution [5] changes the environment
to increase difficulty without changing the fitness function.

Evolutionary robotics (ER) [6] uses a population-based evolutionary algo-
rithm to evolve autonomous robot controllers for a target task. Most of the
controllers evolved in ER research to date have been developed for simple prob-
lems requiring a small number of behaviors; very little of the ER work to date has



been intended for use in real-life applications. A majority of the research in ER
has focused on wheeled mobile robot platforms [3,5,6]. An application of ER that
has received very little attention is the unmanned aerial vehicle (UAV). UAVs
are becoming increasingly popular for many applications, particularly where high
risk or accessibility are issues.

Genetic programming (GP) has been increasingly successful in the evolution
of robot controllers capable of complex tasks. While artificial neural networks
have traditionally been the most popular controller structure used in ER [1, 5],
GP has also been shown to produce functional behaviors for autonomous robot
control [3].

One of the main difficulties of ER is the formulation of fitness functions [7].
For many problems explored to date in ER, fitness functions that combined mul-
tiple objectives were synthesized using extensive human knowledge of the domain
or trial and error. For problems without a single, easily quantifiable objective, an
alternative is multi-objective optimization, which allows the evolutionary algo-
rithm to optimize on multiple fitness metrics [8]. Rather than combining multiple
objectives into a single function [3], multi-objective GP optimizes over multiple
functions [9]. A non-dominated sort is used to determine the relative rank of
individuals in the population [10], since this technique produces multiple fitness
values for each individual. Very rarely does multi-objective optimization produce
a single best solution. Instead, a Pareto front of solutions is produced, where all
solutions on that front are non-dominated [8].

In this paper, we present our approach to incrementally evolving autonomous
behavioral navigation controllers for fixed wing UAVs using multi-objective GP.
Both types of incremental evolution, functional and environmental, were used to
evolve controllers. The goal is to produce a controller that can locate a radar,
navigate the UAV to the source stably and efficiently using on-board sensor
measurements, and then circle around the emitter. Controllers were evolved for
a variety of radar types. While there has been success in evolving controllers
directly on real robots [6], simulation is the only feasible way to evolve controllers
for UAVs. A UAV cannot be operated continuously for long enough to evolve
a sufficiently competent controller, the use of an unfit controller could result in
damage to the aircraft, and flight tests are very expensive. For these reasons,
the simulation must be capable of evolving controllers which transfer well to real
UAVs. A method that has proved successful in this process is the addition of
noise to the simulation [11].

2 Unmanned Aerial Vehicle Simulation

The focus of this research was the development of a navigation controller for a
fixed wing UAV. The UAV’s mission is to autonomously locate, track, and circle
around a radar site. There are several main goals for an evolved controller. First,
it should move to the vicinity of the radar as quickly as possible. The sooner
the UAV arrives in the vicinity of the radar, the sooner it can begin its primary
mission. Second, once in the vicinity of the source, the UAV should circle as



closely as possible around the radar. This goal is especially important for radar
jamming, where the distance from the source has a major effect on the necessary
jamming power. Third, the flight path should be efficient and stable. The roll
angle of UAVs should change as infrequently as possible, and any change in roll
angle should be small. Making frequent changes to the roll angle of the UAV
could create dangerous flight dynamics and could reduce the flying time and
range of the UAV.

Only the navigation portion of the flight controller is evolved; the low level
flight control is done by an autopilot. The navigation controller receives radar
signals as input, and based on this sensory data and past information, the navi-
gation controller changes the desired roll angle of the UAV control surface. The
autopilot then uses this desired roll angle to change the heading of the UAV.
This autonomous navigation technique results in a general controller model that
can be applied to a wide variety of UAV platforms; the evolved controllers are
not designed for any specific UAV airframe or autopilot.

The controller is evolved in simulation. The simulation environment is a
square 100 nautical miles (nmi) on each side. The simulator gives the UAV a
random initial position in the middle half of the southern edge of the environment
with an initial heading of due north and the radar site a random position within
the environment every time a simulation is run. In our current research, the
UAV has a constant altitude and a constant speed of 80 knots. This is realistic
because the speed and altitude are controlled by the autopilot, not the evolved
navigation controller.

Our simulation can model a wide variety of radars. Stationary radars were
modeled as early warning radars, mobile radars as target acquisition radars [12].
Only the sidelobes of the radar emissions are modeled. The sidelobes are the
parts of the emitted signal that are not part of the main beam, so they have a
much lower power than the effective portion of the radar signal. If a controller can
track a radar based only on the sidelobes, the radar can be tracked no matter
the direction in which it is pointed, increasing the robustness of the system.
Additionally, Gaussian noise is added to the amplitude of the radar signal. The
receiving sensor can perceive only two pieces of information: the amplitude and
the angle of arrival (AoA) of incoming radar signals. The AoA measures the angle
between the heading of the UAV and the source of incoming electromagnetic
energy. Real AoA sensors do not have perfect accuracy in detecting radar signals,
so the simulation models an inaccurate sensor. The accuracy of the AoA sensor
can be set in the simulation. In the experiments described in this research, the
AoA is accurate to within ±10◦ at each time step, a realistic value for this
type of sensor. Each experimental run simulates four hours of flight time, where
the UAV is allowed to update its desired roll angle once a second. The interval
between these requests to the autopilot can also be adjusted in the simulation.

While a human could design a controller that could home in on a radar
under perfectly ideal conditions, the real-world application for these controllers
is far from ideal. While sensors to detect the amplitude and angle of arriving
electromagnetic signals can be very accurate, the more accurate the sensor, the



larger and more expensive it tends to be. One of the great advantages of UAVs
is their low cost, and the feasibility of using UAVs for many applications may
also depend on keeping the cost of sensors low. By using evolution to design
controllers, cheaper sensors with much lower accuracy can be used without a
significant drop in performance. As the accuracy of the sensors decreases and
the complexity of the radar signals increases – as the radars emit periodically
or move – the problem becomes far more difficult for human designers. Flying
a physical UAV using an evolved controller is a future goal of this research,
so transference from simulation to a real UAV was taken into account from
the beginning. Navigation control was abstracted from UAV flight, simulation
parameters were tuned for equivalence to real aircraft, and noise was added to
the simulation.

3 Multi-objective Genetic Programming

UAV controllers were designed using multi-objective genetic programming which
employs non-dominated sorting, crowding distance assignment to each solution,
and elitism. The multi-objective genetic programming algorithm used in this
research is very similar to the NSGA-II [10] multi-objective genetic algorithm.
The function and terminal sets used in this research were

F = { Prog2, Prog3, IfThen, IfThenElse, And, Or, Not, <, ≤, >, ≥,

< 0, > 0, =, +, -, *, ÷, X < 0, Y < 0, X > max, Y > max,

Amplitude > 0, AmplitudeSlope > 0, AmplitudeSlope < 0, AoA >

0, AoA < 0 }
T = { HardLeft, HardRight, ShallowLeft, ShallowRight, WingsLevel, NoChange,

rand, 0, 1 }

The UAV has a GPS on-board, and the position of the UAV is given by the x

and y distances from the origin, located in the southwest corner of the simulation
area. This position information is available using the functions that include X

and Y, with max equal to 100 nmi, the length of one side of the simulation area.
The radar is always placed within the simulation area, but the UAV is free to
move outside of it. The two available sensor measurements are the amplitude and
the AoA of the incoming radar signal. The slope of the amplitude with respect to
time is also available. When turning, there are six available actions. Turns may
be hard or shallow, with hard turns making a 10◦ change in the roll angle and
shallow turns a 2◦ change. The WingsLevel terminal sets the roll angle to 0◦,
and the NoChange terminal maintains the current roll angle. Multiple turning
actions may be executed during one time step, since the roll angle is changed as
a side effect of each terminal. The final roll angle after the navigation controller
is finished executing is passed to the autopilot. The maximum roll angle is 45◦.
Each of the six terminals returns the current roll angle.

Genetic programming was generational, with crossover and mutation similar
to those outlined by Koza in [13]. The parameters used by GP are shown in
Table 1. Tournament selection was used. Initial trees were randomly generated



Table 1. Genetic programming parameters

Population Size 500 Maximum Initial Depth 5

Crossover Rate 0.9 Maximum Depth 21

Mutation Rate 0.05 Generations 600

Tournament Size 2 Trials per Evaluation 30

using ramped half and half initialization. No parsimony pressure methods were
used in this work, as code bloat was not a major problem. All computations were
done on a Beowulf cluster parallel computer with ninety-two 2.4 GHz Pentium
4 processors. The data communication between master and slave processors was
possible using the Message Passing Interface (MPI) standard [14] under the
Linux operating system.

3.1 Fitness Functions

Four fitness functions determine the success of individual UAV navigation con-
trollers. The fitness of a controller was measured over 30 simulation trials, where
the UAV and radar positions were random for every run. We designed the four
fitness measures to satisfy the goals of the evolved controller: moving toward the
emitter, circling the emitter closely, and flying in an efficient and stable manner.

Normalized distance The primary goal of the UAV is to fly from its initial
position to the radar site as quickly as possible. We measure how well controllers
accomplish this task by averaging the squared distance between the UAV and
the goal over all time steps. We normalize this distance using the initial dis-
tance between the radar and the UAV in order to mitigate the effect of varying
distances from the random placement of radar sites. The normalized distance
fitness measure is given as

fitness1 =
1

T

T
∑

i=1

[

distancei

distance0

]2

where T is the total number of time steps, distance0 is the initial distance, and
distancei is the distance at time i. We are trying to minimize fitness1.

Circling distance Once the UAV has flown in range of the radar, the goal shifts
from moving toward the source to circling around it. An arbitrary distance much
larger than the desired circling radius is defined as the in-range distance. For
this research, the in-range distance was set to be 10 nmi. The circling distance
fitness metric measures the average distance between the UAV and the radar
over the time the UAV is in-range. While the circling distance is also measured
by fitness1, that metric is dominated by distances far away from the goal and



applies very little evolutionary pressure to circling behavior. The circling distance
fitness measure is given as

fitness2 =
1

N

T
∑

i=1

in range ∗ (distancei)
2

where N is the amount of time the UAV spent within the in-range boundary of
the radar and in range is 1 when the UAV is in-range and 0 otherwise. We are
trying to minimize fitness2.

Level time In addition to the primary goals of moving toward a radar site and
circling it closely, it is also desirable for the UAV to fly efficiently in order to
minimize flight time to get close to the goal and to prevent potentially dangerous
flight dynamics, like frequent and drastic changes in the roll angle. The first
fitness metric that measures the efficiency of the flight path is the amount of time
the UAV spends with its wings level to the ground, which is the most stable flight
position for a UAV. This fitness metric only applies when the UAV is outside
the in-range distance, since once the UAV is within the in-range boundary, we
want it to circle around the radar. The level time is given as

fitness3 =
1

T − N

T
∑

i=1

(1 − in range) ∗ level

where level is 1 when the UAV has been level for two consecutive time steps and
0 otherwise. We are trying to maximize fitness3.

Turn cost The second fitness measure intended to produce an efficient flight
path is a measure of turn cost. While UAVs are capable of very quick, sharp
turns, it is preferable to avoid them. The turn cost fitness measure is intended
to penalize controllers that navigate using a large number of sharp, sudden turns
because this may cause very unstable flight, even stalling. The UAV can achieve
a small turning radius without penalty by changing the roll angle gradually; this
fitness metric only accounts for cases where the roll angle has changed by more
than 10◦ since the last time step. The turn cost is given as

fitness4 =
1

T

T
∑

i=1

h turn ∗ |roll anglei − roll anglei−1|

where roll angle is the roll angle of the UAV and h turn is 1 if the roll angle
has changed by more than 10◦ since the last time step and 0 otherwise. We are
trying to minimize fitness4.

3.2 Incremental Evolution

Functional incremental evolution incrementally changes the fitness function to
increase the difficulty of the problem. Controllers evolved from random initial



populations used a form of functional incremental evolution. Controllers evolved
for 600 generations, but for the first 200 generations, we used only one of the four
fitness functions. Flying to the goal was the most basic behavior for a navigation
controller. To place more importance on this behavior, the first 200 generations
used only the normalized distance fitness function. The last 400 generations used
all four of the fitness functions.

Environmental incremental evolution incrementally increases the difficulty of
the environment or task faced by evolution, while leaving the fitness function
unchanged. In this research, random populations are initialized and then evolved
for 600 generations on continuously emitting, stationary radars to create seed
populations. Controllers for more difficult radars are then evolved for 400 genera-
tions with all four fitness functions using these seed populations. The controllers
in the seed population are not immediately able to solve this new problem well,
but since many aspects of the problem are similar, the seed population provides
an excellent basis for evolving fit controllers for the new task. The more complex
radar types may be evolved over multiple stages of evolution, using progressively
more difficult radar types.

Maintaining sufficient diversity in the population is often an issue when using
incremental evolution [15]. If the diversity of a population decreases too much
during an early stage of evolution, the final evolution might still have a very dif-
ficult time producing a good solution. While this was a concern in this research,
one of the features of the multi-objective optimization algorithm had potential to
counter loss of diversity. Like NSGA-II [10], the algorithm used for this research
attempts to spread solutions across the Pareto front by incorporating a crowding
distance into fitness evaluation, encouraging diversity in the population.

4 Results

Multi-objective GP produced controllers that satisfied the goals of this problem.
In order to statistically measure the performance of GP, we did 50 evolutionary
runs for each experiment. Each evolutionary run lasted for 600 generations and
produced 500 solutions. Since multi-objective optimization produces a Pareto
front of solutions, rather than a single best solution, we needed a method to
gauge the performance of evolution. To do this, we selected values we consid-
ered minimally successful for the four fitness metrics. We defined a minimally
successful UAV controller as able to move quickly to the target radar site, circle
at an average distance under 2 nmi, fly with the wings level to the ground for at
least 1,000 seconds, and turn sharply less than 0.5% of the total flight time. If
a controller had a normalized distance fitness value (fitness1) of less than 0.15,
a circling distance (fitness2) of less than 4 (the circling distance fitness metric
squares the distance), a level time (fitness3) of greater than 1,000, and a turn
cost (fitness4) of less than 0.05, the evolution was considered successful. These
baseline values were used only for our analysis, not for the evolutionary process.

Experiments were done for four radar types using direct evolution: 1) contin-
uously emitting, stationary radars, 2) continuously emitting, mobile radars, 3)



Table 2. Direct evolution experimental results

Runs Successful controllers

Radar type Total Successful Percentage Total Average Maximum

Continuous, Stationary 50 45 90% 3,149 63 170

Continuous, Mobile 50 36 72% 2,266 45.3 206

Intermittent, Stationary 50 25 50% 1,891 37.8 156

Intermittent, Mobile 50 16 32% 569 11.38 93
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Fig. 1. Incremental evolutionary process

intermittently emitting, stationary radars, and 4) intermittently emitting, mo-
bile radars. The intermittently emitting radars had periods of 10 minutes and
emitting durations of 5 minutes. The mobile radars were modeled as finite state
machines with setup, deployed, tear down, and move states. A radar only emits
in the deployed state. When a radars moves, the new location can be anywhere
in the simulation area. For each of these experiments, a population of 500 indi-
viduals was randomly initialized and then evolved for 600 generations. Results
from the four experiments are shown in Table 2. Multi-objective GP was able to
successfully evolve controllers for all four of these radar types. For both mobile
and intermittently emitting radars, the UAV receives sensor information from
the radar less than 100% of the time, which increases the difficulty of the problem
for evolution. The results show that the continuously emitting, stationary radar
proved the easiest for evolution and the intermittently emitting, mobile radar
the most difficult. For more detailed results on the direct evolution experiments,
refer to [16,17].

Another set of experiments was performed using environmental incremental
evolution to improve the chances of evolving controllers for the more complex
radar types. The same four radar types were used, but instead of evolving con-
trollers in four separate experiments, evolved controllers from simpler radar types
were used to seed evolutions for the more complex radar types. Figure 1 shows
the evolutionary process. In the first stage of evolution, randomly initialized pop-
ulations were evolved on continuously emitting, stationary radars for 600 gen-
erations in the same manner as the direct evolution experiments. In the second
stage, these evolved populations were used as seed populations and evolved for
400 generations on continuously emitting, mobile radars. In the third stage, the



Table 3. Incremental evolution experimental results

Runs Successful controllers

Radar type Total Successful Percentage Total Average Maximum

Continuous, Stationary 50 45 90% 2,815 56.30 166

Continuous, Mobile 50 45 90% 2,774 55.48 179

Intermittent, Stationary 50 42 84% 2,083 41.66 143

Intermittent, Mobile 50 37 74% 1,602 32.04 143

evolved populations were evolved on intermittently emitting, stationary radars.
Finally, in the fourth stage of evolution, evolution took place on intermittently
emitting, mobile radars. Results from each stage of evolution are shown in Table
3. For continuously emitting, stationary radars, the results verify those from the
direct evolution experiments. Figure 2 compares the number of successful evo-
lutionary runs for direct and incremental evolution. Figure 3 compares the total
number of successful controllers for direct and incremental evolution. For the
three more complex radar types, the use of environmental incremental evolution
dramatically increased both the total number of successful controllers and the
number of evolutionary runs that produced successful controllers. As mentioned
in Section 3.2, diversity is often an issue when using incremental evolution. In
these experiments, populations tended to remain diverse, possibly because of the
use of crowding distance in the multi-objective GP algorithm.

When autonomous navigation controllers are used to fly real UAVs, it is
essential to have a single controller that can handle multiple radar types. Based
on the information available to the UAV, it is difficult to know what kind of radar
the UAV is approaching, and it is far easier to have one robust controller that
is used all the time rather than switching between several simpler controllers.
The final population for intermittently emitting, mobile radars evolved using
incremental evolution produced 1,602 successful controllers. The controllers were
evaluated separately on all four radar types, and every controller was successful
for each type.

5 Conclusions

Using genetic programming with multi-objective optimization, we were able to
evolve navigation controllers for UAVs capable of flying to a target radar, cir-
cling the radar site, and maintaining an efficient flight path, all while using
inaccurate sensors in a noisy environment. We used methods to aid in the future
transference of evolved controllers to real UAVs. Controllers were evolved for
four radar types using both direct evolution and incremental evolution. Using
incremental evolution dramatically increased the chances of producing success-
ful controllers. Incremental evolution also produced controllers able to handle
all four radar types. In the future, we will test the controllers evolved in this
research on physical UAVs. Our research will also focus on evolving distributed,
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Fig. 2. Number of successful evolutionary runs for each radar type using direct evolu-
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multi-agent UAV navigation controllers for responding to multiple radar sites
with multiple UAVs.
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