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Abstract. Parametric regression in genetic programming can substantialy
speed up the search for solutions. Paradoxicdly, the same technique has diffi-
culty finding a true optimum solution. The parametric formulation of a problem
results in a fitness landscape that looks like an inverted brush with many bris
tles of dmost equa length (individuas of high fitness), but with only one bris-
tle that is very dightly longer than the rest, the optimum solution. As such it is
easy to find very good, even outstanding solutions, but very difficult to locate
the optimum solution. In this paper parametric regression is applied to a mini-
mum-time-to-target problem. The solution is equivalent to the classical brachis
tochrone. Two formulations were tried: a parametric regresson and the classicd
symbolic regression formulation. The parametric approach was superior with-
out exception. We speculate the parametric approach is more generally goplica-
ble to other problems and suggest areas for more research.

1 Introduction

Mathematicians sometimes use parametric formulations of expressors. Rather than
write y(x), for example, they would write y(t) and x(t) where t is an arbitrary parame-
ter that generates the corresponding values of y and X. In this paper we explore use of
the parametric formulation in genetic programming for a minimum-time-to-target
problem and show it to be superior.

2 Minimum-Time-to-Target Problem

We conddered a problem where a missile was launched a a moving target. Our god
was to find the fastest path from launch site to this target. For smplicity, the problem
was initidly posed with a dationary target. In this paper we will only report on solu-
tions for this smple Stuation since we were attempting to gain in-depth knowledge of
a solution methodology. For the GECCO 2004 conference we expect to add various
complicating factors like thrust, drag, cross winds, movement of the taget (possibly
evasve) and alowance for proximity to target. A first smplified task was to use g
netic progranming (GP) to rediscover the well-known brachistochrone solution. The

1 See[1] for an excellent tutorial introduction to genetic programming.



missle interception problem (Figure 1a) is andogous to the brachistochrone problem
if an axis inverson is peformed (Figure 1b). The brachigochrone is smply the path
of least time that a bead on a frictionless wire would teke to fdl under the influence of
gavity to reach a fixed point. It is minimum when the wire is shaped like a cycloid
with they -axisdownward.
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Fig. 1. (8 Misslelaunch to atarget (b) Anadogy to bead on wire (brachistochrone).

3 TheBrachistochrone Problem

The solution to the brachigtochrone curve is wel known [2,3]. Issac Newton orig-
naly solved it in about aday. It isexpressed parametricaly as:

X =a(@-sn(a) )

Y =a(1- cog(q) @)

In these equations X and Y are the coordinaes representing bead postion (Figure 1b),
and g is a paamger. The parameric form is used because there does not exig a
closed-formsolution in termg of Y = Y (X).

3.1 The GP Formulation of the Brachistochrone

For our chromosome we chose two genes®, representing the expressions for X and Y,
respectively. The st of operators used were +, -, *, /, ~, S, and C, where » represents
exponentiation © a possibly norrinteger power, S is the sne, and C the cosne func-
tion. For termind symbols, we pre-defined immutable congtants O, 1, and p (for pi)
and ds0 dlowed an ahitrary mutable congtant, k. Multiple occurrences of k in a
chromosome can take on different values and are mutated independently. However,
during recombination (crossover), k preservesits vaue in the offspring.

2 |t is interesting to note that there does indeed exist the inverse solution, X = X(Y) in terms of
sguare root and trigonometric functions. The X(Y) form is, however, multi-vaued.

3 Terminology: a chromosome is made up of severa genes, each of which in turn is made up of
operator and terminal symbols. The entire chromosome is packed as a linear string.



We ds0 chose to use a Kava-like notation [4, 5, 6] as the chromosome representation
typet. (In brief, if you draw the tree for a symbolic eqression, then scan it in left-to-
right, top-to-bottom order, the symbols form a Karva expression. Unlike Karva, our
notetion alows operators throughout the entire gene) We dso made a few runs with
RPN as a comparison. We chose agene length of 21 symbals.

3.2 Fitness Evaluation and the Solution L andscape

The mogt interesting findings related to this problem were associated with difficulties
encountered during fitness evaluation. The most important is described in 3.3 below.

To assess fitness, we peformed a numericd integration by successvely evauding
the genes for X and Y a increesing vaues of g Over each intervd of X, Y; to Xy,
Y+, We smply computed the time increment and added it to the total time. This is the
time that has to be minimized. In the limit, as the step size for Dq approaches zero, the
true brachistochrone time is approached.

3.3 Brush-like Solution Space

Despite much tuning of our GP parameters (such as mutaion and recombinaion
rates), we did not discover the exact parametric solution. But we discovered many
"solutions' that were very good and came quite close to the nmnimum time dictated
by the brachisochrone. When plotted, the best discovered solutions lie on top of the
true brachigochrone curve except for a few pixes. Figure 2 below shows some inte-
mediate solutions to the intercept problem for different endpoints(not to scale).
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Fig. 2. Comparisons of parametric and non-parametric solutions

We may have determined why the genetic programming software was unable to dis-
cover the true brachistochrone. This prolem needs additional research to determine if

4 Our research has shown that Karva appears to evolve to a solution a bit faster than our other
representation types (e.g., RPN or Reverse Polish Notation) although it runs at a dower gen-
eration rate. A desired fitness is reached sooner in time with Karva, while RPN runs more
generations per second.



the reason we give below is the one causing the GP system to fal in its &empt to
resch the true brachistochrone.

Consider that irrespective of any monotonic expression the GP discovers for X, it can
usudly find a corresponding Y expression to approach the desired curve very closdy.
Likewise, for any monotonic Y expression, it can dso find an expression for X. This
leads us to the conclusion that the resulting fitness landscape is very much like an in-
vertad scrub brush where each bridle is a locd minimum pesk. There are many bris-
tles, just as there are many monotonic expressions for X. As figure 3 illustrates, only
one of the brigtles is in the form of the exact best solution and it is amost indistin-
guishable from the other bristlesin terms of its peek valueb.
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Fig. 3. Brush-like structure of fitness landscape.

Thus, it would have been quite fortuitous to discover the exact parametric brachisto-
chrone by accident. Neverthdess we discovered severd near misses, one of which
included the exact solution embedded in alarger solution with other symbols.

This led us to study whether it was possible that some of the other solutions found by
the GP system may have been exact as well. It is very difficult, however, to recognize
such solutions if they do appear. For example, since q is an arbitrary parameter, any
subdtitutions, such as t = tan(q) are pefectly legitimate. Such substitutions change the
visud appearance of the equation greatly so that it might not be recognized as Nev-
ton's result. We conddered, but have not yet implemented, the idea of pseudo-
equivalence testing by supplying a smal number of random vaues to the discovered
expressions of X and Y and likewise to the true brachistochrone. If the results are
identica, then the expressons are probably identical, with higher and higher probabil-
ity depending on the number of tests gpplied. It should be noted that one must take
into account that the intrinsic system wntime libraries are typicdly not maximally a-
curateto thelast decimal place when making the comparisons.

Neverthdess, given our scrub brush andogy, we beieve that our GP never found the
true parametric solution, even after many hours of running.

Just as the scrub brush has many very good brigtles, a formulation of a GP problem in
terms of parametric equations should be able to do symbolic regressons much faster.
This result dso desarves investigation since it may apply more generdly to other

5 Not to be mideading, there are also many inferior individuals (shorter bristles) in the full fit-
ness landscape. The point is that there are a great many exceptionally good individuals, and it
is these that form the scrub brush analogy.



types of GP problemst. The parameter () is somewhat like a dack variable that gives
GP more search freedom, adding many good peaks to the fitness landscape.

On the other hand, the brachistochrone has a peculiarity in that the initid dope, dy/dx,
is infinite and thus any non-parametric solution is constrained by this fact. Since the
totd time is heavily biased toward the initia part while the bead on the wire is pick-
ing up speed, it may smply be that our choice of problem area is the full eplanation
for our favorable parametric results. If so, the gpplicability of this technique will be
narrower.

4 An Additional Formulation of the Brachistochrone Problem

Thus far we have attempted to solve for the expresson with minimum time to the ta-
0&t Xiagew Yeager fOr various, but fixed values of Xage, Yiage It is @S0 possible with
our GP system to evolve a more general solution of al brachistochrones in terms of
multiple independent varigbles. This means we wish to evolve expressions for X and
Y in tems of Xeagen Yiage, @d 0. Thus, in equations (1) and (2) above, “d’ becomes a
function of Xage, Yiage: TO explore these solutions we crested a training data set of
50 known brachistochrone times as a function of Xege, Yiage Choosng the target val-
ues randomly?. Then, dding two variables, x, and y, to our chromosome termina s,
evolved generic solutions. This was done both parametricaly and non-parametricaly.
The reaults (below) were not nearly as fit as evolving a particular brachistochrone to a
particular Xiaget, Yiage: Nevertheless, the parametric formulation remained superior.

5 Comparison of Parametric and Non-Parametric Solutions

We performed many comparisons of the parametric and nonparametric GP solutions.
Without exception, the parametric verson was superior, despite a variety of vaues for
the GP parameters (recombination rates, population sizes, two types of mutation rate,
and about a dozen other controllable parameters). Within groups of 10 runs, each
typicaly for a haf-hour or longer, some particdar non-parametric runs were better
than some parametric runs, but the best-of-run was always superior for the @rametric

6 Just before submission of this paper we constructed and ran an additiona problem, namely a
classica symbolic regression in an attempt to find the non-parametric expression Y (x) and
the parametric expressions X(@), Y (@) that best matched a table of 16 numbers. Two sets of
10 runs were made for each formulation, and in this case we did not find the parametric ©-
lution to be superior. However the particular formulation may not have been favorable and
we will continue to investigate further. It may be that the decision to use parametric or non-
parametric formulation is strongly dependent upon the problem. Nevertheless, the parametric
approach presented herein should be considered for your problem. We believe the parametric
formulation will continue to be the favorable formulation for more complex minimum-time-
to-target problems. Additional resultswill be presented at the GECCO conference.

7 We aso included 2 additiona known solutions not chosen randomly for 52 total test cases.



runs and the best results were often near-perfect. The parametric formulation was
clearly superior in dl cases as shown in the Table 1 below.

Vaues in the result table bdlow are the percent error in time as compared to the true
minimum time. The true minimum was computed two different ways that differed
very dightly (eg., 23951 and 23971) and the average was used as the reference
vaue for comparison. The downward force of gravity was assumed to have the vaue
0.5. Run results are averaged over 10 or more smaler sub-runs (footnoted if less than
30 minutes). The bes-of+un and average-of-run times are shown. Run #7 was the
best run, each sub-run being 4 hours in length. Run #14 was the best run for which
we had a comparison to the non-parametric formulation. Some runs were ddiberately
crippled, providing fewer operators to work with or varying GP parameters such as
population Size, ec.

Note that there are no exceptions to the superiority of the parametric formulation in
terms of the best-of-run times, and only 1 exception (run #12) where the average-of-
run was very dightly better for the non-parametric formulation. This exception wes
probably not satisticaly vaid because it was among the shortest of the runs, with
only 10 minutes for each sub-run.

Table 1. Comparison of parametric and non-parametric runs

Best / Average % error
Run # Parametric Non-parametric Footnotes
Y (), X(t) Y (X)

1 0.35 avg 0.66 avg 1,4
2 0.16 avg 0.52avg 1,4
3 0.159/0.674 1.087/1.978 1,4,7,8
4 0.070/0.364 0.941/1.301 1,47
5 0.067/0.163 0.104/0522 1,4
6 0.381/0.722 0.620/1.03 2,5
7 0.056/0.092 N.A. 1,411
8 0.135/0441 0.543/1.166 1,4
9 0.187/0.679 0.823/1.108 1,4
10 0.717/1.810 1470/ 2.055 1,4
11 0.124/0.503 N.A. 1,411
12 0.534/1570 0.927/151 1,4,9
13 0.067/0.164 0.106/0522 1,4
14 0.0565/0.151 0.0760/0.232 3,6
15 34.47/36.08 35.64/37.18 10
16 34.57/36.26 36.30/38.27 10

Table Footnotes:

1 Endpoint (target X, Y) is 86.26193, 31.61920.
2 End-point is 100, 10.



Endpoint is 52.48684, 30.68447.

Reference time (true brachistochrone time) is 23.961.

Reference timeis 29.358,

Reference timeis 18.175.

S.b-runs were only 5 minutes each for runs 3 and 4.

Reverse Polish Notation used for representation time.

Sib-runs were only 10 minutes each for run 12.

Generic brachistochrone runs (see “Additiona Formulation...” above). Fit-
ness values for generic runs are in percent over the total of true times for 52
mostly randomly selected endpoints. Best-of-run and average-of-run are re-
ported.

11.  Non-parametric runs were not made.
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One of the better solutions found was:

X: ((q+sin(26.0075373) + @) * q) + q ©)
Y: 0 * (11.2222191 - (((co(d) * 0.333373901) * In(g)) + 0)) - (4)

where the trigonometric functions expect argumentsin radians.

Varying parameters such as recombination rates, representation type, populaion size,
operator choice, etc., within reason dl had a smdler effect on fitness than did choice
to use the parametric representation.

To summarize, it appears that if you seek to discover an  exact solution, then you
might avoid a parametric formulation of the problem®. However if you merdy seek
an outstanding solution that is likely to be very close but not exact, then embrace pe-
rametric formulation. We intend to conduct more research on GP and parametric e
gression to establish its capabilities.

6 More Complex Minimum-Time-To-lntercept Problems

As indicaed earlier, we are planning to add thrugt, drag, crosswind, target movement
and other complications to the modd. The result should be avalable during the
GECCO conference.

8 Of course, for the brachistochrone, one is forced to seek a parametric solution since no closed
form solution exists.



7 Comparison to Prior Work

Reference [7] describes a piecewise linear approximation to the brachistochrone dis-
covered by agenetic dgorithm.

Reference [8] is an example of usng GP to intercept a moving target with evasive
maneuvers, and attempts to be a high-fiddity mode, usng smulation code based on
actud missle parameters. The cost of this fiddity was that very few generations
could be run. Nevertheless GP found improved solutions.

8 Final Remarkson GP and Parametric Solutions

Anybody congdering the use of GP for the search of parametric solutions should con-
sider our experience, as indicated below. It may hep them avoid some pitfals and
guidetheir research by what we found.

Pitfall. Whatever Dq step we used for the numerical integration, the GP system would
sometimes evolve a solution that multiplied Dg by a large constant to make it no
longer smal. We had assumed that we could ignore the last intervd near the target
sincetheintegration step was small. Wrong!

Rule #1: GP will evolve to take advantage of any assumptions you make in formulat-
ing the problem. It can (and did) discover better-thanphysicdly possible "solutions'
until we corrected our formulation. If your run-time library makes assumptions or is
inaccurate, it will also attempt to take advantage of it, too.

Rule #2 GP will evolve a solution that makes you satisfied with the result, whether

or not it is a good solution or has any rdationship to theory or practice. The evolution
environment for fitness evaluation alwaysincludes the resear cher!
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