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Abstract.  Parametric regression in genetic programming can substantially 
speed up the search for solutions. Paradoxically, the same technique has diffi-
culty finding a true optimum solution. The parametric formulation of a problem 
results in a fitness landscape that looks like an inverted brush with many bris-
tles of almost equal length (individuals of high fitness), but with only one bris-
tle that is very slightly longer than the rest, the optimum solution. As such it is 
easy to find very good, even outstanding solutions, but very difficult to locate 
the optimum solution. In this paper parametric regression is applied to a mini-
mum-time-to-target problem. The solution is equivalent to the classical brachis-
tochrone. Two formulations were tried: a parametric regression and the classical 
symbolic regression formulation. The parametric approach was superior with-
out exception. We speculate the parametric approach is more generally applica-
ble to other problems and suggest areas for more research. 

1  Introduction 

Mathematicians sometimes use parametric formulations of expressions. Rather than 
write y(x), for example, they would write y(t) and x(t) where t is an arbitrary parame-
ter that generates the corresponding values of y and x. In this paper we explore use of 
the parametric formulation in genetic programming1 for a minimum-time-to-target 
problem and show it to be superior. 

2  Minimum-Time-to-Target Problem 

We considered a problem where a missile was launched at a moving target. Our goal 
was to find the fastest path from launch site to this target. For simplicity, the problem 
was initially posed with a stationary target. In this paper we will only report on solu-
tions for this simple situation since we were attempting to gain in-depth knowledge of 
a solution methodology. For the GECCO 2004 conference we expect to add various 
complicating factors like thrust, drag, cross winds, movement of the target (possibly 
evasive) and allowance for proximity to target. A first simplified task was to use ge-
netic programming (GP) to rediscover the well-known brachistochrone solution. The 

                                                                 
1 See [1] for an excellent tutorial introduction to genetic programming. 
 



missile interception problem (Figure 1a) is analogous to the brachistochrone problem 
if an axis inversion is performed (Figure 1b). The brachistochrone is simply the path 
of least time that a bead on a frictionless wire would take to fall under the influence of 
gravity to reach a fixed point. It is minimum when the wire is shaped like a cycloid 
with the y -axis downward. 

 

            
   (a)    (b) 

Fig. 1. (a) Missile launch to a target  (b) Analogy to bead on wire (brachistochrone). 

3  The Brachistochrone Problem 

The solution to the brachistochrone curve is well known [2,3]. Isaac Newton origi-
nally solved it in about a day. It is expressed parametrically as: 

X = a (θ – sin(θ)) (1) 

Y = a (1 –  cos(θ)) (2) 

 
In these equations X and Y are the coordinates representing bead position (Figure 1b), 
and θ is a parameter. The parametric form is used because there does not exist a 
closed-form solution in terms2 of Y = Y(X). 

3.1 The GP Formulation of the Brachistochrone 

For our chromosome we chose two genes 3, representing the expressions for X and Y, 
respectively. The set of operators used were +, -, *, /, ^, S, and C, where ^ represents 
exponentiation to a possibly non-integer power, S is the sine, and C the cosine func-
tion. For terminal symbols, we pre-defined immutable constants 0, 1, and p (for pi) 
and also allowed an arbitrary mutable constant, k. Multiple occurrences of k in a 
chromosome can take on different values and are mutated independently. However, 
during recombination (crossover), k preserves its value in the offspring. 

                                                                 
2 It is interesting to note that there does indeed exist the inverse solution, X = X(Y) in terms of 

square root and trigonometric functions. The X(Y) form is, however, multi-valued.  
3 Terminology: a chromosome is made up of several genes, each of which in turn is made up of 

operator and terminal symbols. The entire chromosome is packed as a linear string.  



We also chose to use a Karva-like notation [4, 5, 6] as the chromosome representation 
type4. (In brief, if you draw the tree for a symbolic expression, then scan it in left-to-
right, top -to-bottom order, the symbols form a Karva expression. Unlike Karva, our 
notation allows operators throughout the entire gene.) We also made a few runs with 
RPN as a comparison. We chose a gene length of 21 symbols. 

3.2  Fitness Evaluation and the Solution Landscape 

The most interesting findings related to this problem were associated with difficulties 
encountered during fitness evaluation. The most important is described in 3.3 below. 
 
To assess fitness, we performed a numerical integration by successively evaluating 
the genes for X and Y at increasing values of θ. Over each interval of Xi, Yi, to Xi+1, 
Yi+1, we simply computed the time increment and added it to the total time. This is the 
time that has to be minimized. In the limit, as the step size for ∆θ approaches zero, the 
true brachistochrone time is approached. 

3.3  Brush-like Solution Space  

Despite much tuning of our GP parameters (such as mutation and recombination 
rates), we did not discover the exact parametric solution. But we discovered many 
"solutions" that were very good and came quite close to the minimum time dictated 
by the brachistochrone. When plotted, the best discovered solutions lie on top of the 
true brachistochrone curve except for a few pixels. Figure 2 below shows some inter-
mediate solutions to the intercept problem for different endpoints (not to scale). 
 

   
Fig. 2. Comparisons of parametric and non-parametric solutions 

We may have determined why the genetic programming software was unable to dis-
cover the true brachistochrone. This problem needs additional research to determine if 

                                                                 
4 Our research has shown that Karva appears to evolve to a solution a bit faster than our other 

representation types (e.g., RPN or Reverse Polish Notation) although it runs at a slower gen-
eration rate. A desired fitness is reached sooner in time with Karva, while RPN runs more 
generations per second. 



the reason we give below is the one causing the GP system to fail in its attempt to 
reach the true brachistochrone. 
 
Consider that irrespective of any monotonic expression the GP discovers for X, it can 
usually  find a corresponding Y expression to approach the desired curve very closely. 
Likewise, for any monotonic Y expression, it can also find an expression for X. This 
leads us to the conclusion that the resulting fitness landscape is very much like an in-
verted scrub brush where each bristle is a local minimum peak. There are many bris-
tles, just as there are many monotonic expressions for X. As figure 3 illustrates, only 
one of the bristles is in the form of the exact best solution and it is almost indistin-
guishable from the other bristles in terms of its peak value5. 

 
Fig. 3. Brush-like structure of fitness landscape. 

Thus, it would have been quite fortuitous to discover the exact parametric brachisto-
chrone by accident. Nevertheless, we discovered several near misses, one of which 
included the exact solution embedded in a larger solution with other symbols. 
 
This led us to study whether it was possible that some of the other solutions found by 
the GP system may have been exact as well. It is very difficult, however, to recognize 
such solutions if they do appear. For example, since θ is an arbitrary parameter, any 
substitutions, such as t = tan(θ) are perfectly legitimate. Such substitutions change the 
visual appearance of the equation greatly so that it might not be recognized as New-
ton's result. We considered, but have not yet implemented, the idea of pseudo-
equivalence testing by supplying a small number of random values to the discovered 
expressions of X and Y and likewise to the true brachistochrone. If the results are 
identical, then the expressions are probably identical, with higher and higher probabil-
ity depending on the number of tests applied. It should be noted that one must take 
into account that the intrinsic system runtime libraries are typically not maximally ac-
curate to the last decimal place when making the comparisons. 
 
Nevertheless, given our scrub brush analogy, we believe that our GP never found the 
true parametric solution, even after many hours of running.  
 
Just as the scrub brush has many very good bristles, a formulation of a GP problem in 
terms of parametric equations should be able to do symbolic regressions much faster. 
This result also deserves investigation since it may apply more generally to other 

                                                                 
5 Not to be misleading, there are also many inferior individuals (shorter bristles) in the full fit -

ness landscape. The point is that there are a great many exceptionally good individuals, and it 
is these that form the scrub brush analogy. 



types of GP problems6. The parameter (θ) is somewhat like a slack variable that gives 
GP more search freedom, adding many good peaks to the fitness landscape. 
 
On the other hand, the brachistochrone has a peculiarity in that the initial slope, dy/dx, 
is infinite and thus any non-parametric solution is constrained by this fact. Since the 
total time is heavily biased toward the initial part while the bead on the wire is pick-
ing up speed, it may simply be that our choice of problem area is the full explanation 
for our favorable parametric results. If so, the applicability of this technique will be 
narrower. 

4  An Additional Formulation of the Brachistochrone Problem 

Thus far we have attempted to solve for the expression with minimum time to the tar-
get Xtarget,  Ytarget for various, but fixed values of Xtarget,  Ytarget. It is also possible with 
our GP system to evolve a more general solution of all brachistochrones in terms of 
multiple independent variables. This means we wish to evolve expressions for X and 
Y in terms of Xtarget,  Ytarget, and θ. Thus, in equations (1) and (2) above, “a” becomes a 
function of Xtarget, Ytarget. To explore these solutions we created a training data set of 
50 known brachistochrone times as a function of Xtarget, Ytarget choosing the target val-
ues randomly7. Then, adding two variables, x, and y, to our chromosome terminal set, 
evolved generic solutions. This was done both parametrically and non-parametrically. 
The results (below) were not nearly as fit as evolving a particular brachistochrone to a 
particular Xtarget, Ytarget. Nevertheless, the parametric formulation remained superior. 

5  Comparison of Parametric and Non-Parametric Solutions  

We performed many comparisons of the parametric and non-parametric GP solutions. 
Without exception, the parametric version was superior, despite a variety of values for 
the GP parameters (recombination rates, population sizes, two types of mutation rate, 
and about a dozen other controllable parameters). Within groups of 10 runs, each 
typically for a half-hour or longer, some particular non-parametric runs were better 
than some parametric runs, but the best-of-run was always superior for the parametric 

                                                                 
6 Just before submission of this paper we constructed and ran an additional problem, namely a 

classical symbolic regression in an attempt to find the non-parametric expression Y(x) and 
the parametric expressions X(θ), Y(θ) that best matched a table of 16 numbers. Two sets of 
10 runs were made for each formulation, and in this case we did not find the parametric so-
lution to be superior. However the particular formulation may not have been favorable and 
we will continue to investigate further. It may be that  the decision to use parametric or non-
parametric formulation is strongly dependent upon the problem. Nevertheless, the parametric 
approach presented herein should be considered for your problem. We believe the parametric 
formulation will continue to be the favorable formulation for more complex minimum-time-
to-target problems. Additional results will be presented at the GECCO conference. 

7 We also included 2 additional known solutions not chosen randomly for 52 total test cases. 



runs and the best results were often near-perfect. The parametric formulation was 
clearly superior in all cases as shown in the Table 1 below. 
 
Values in the result table below are the percent error in time as compared to the true 
minimum time. The true minimum was computed two different ways that differed 
very slightly (e.g., 23.951 and 23.971) and the average was used as the reference 
value for comparison. The downward force of gravity was assumed to have the value 
0.5. Run results are averaged over 10 or more smaller sub-runs (footnoted if less than 
30 minutes). The best-of-run and average-of-run times are shown. Run #7 was the 
best run, each sub-run being 4 hours in length.  Run #14 was the best run for which 
we had a comparison to the non-parametric formulation. Some runs were deliberately 
crippled, providing fewer operators to work with or varying GP parameters such as 
population size, etc. 
 
Note that there are no exceptions to the superiority of the parametric formulation in 
terms of the best-of-run times, and only 1 exception (run #12) where the average-of-
run was very slightly better for the non-parametric formulation. This exception was 
probably not statistically valid because it was among the shortest of the runs, with 
only 10 minutes for each sub-run. 

Table 1. Comparison of parametric and non-parametric runs 

 

 
Best / Average % error   

Run # Parametric 
Y(t), X(t) 

Non-parametric 
Y(x) 

Footnotes 

1 0.35 avg 0.66 avg 1, 4 
2 0.16 avg 0.52 avg 1, 4 
3 0.159 / 0.674 1.087 / 1.978 1, 4, 7, 8 
4 0.070 / 0.364 0.941 / 1.301 1, 4, 7 
5 0.067 / 0.163 0.104 / 0.522 1, 4 
6 0.381 / 0.722 0.620 / 1.03 2, 5 
7 0.056 / 0.092 N.A. 1, 4,11 
8 0.135 / 0.441 0.543 / 1.166 1, 4 
9 0.187 / 0.679 0.823 / 1.108 1, 4 
10 0.717 / 1.810  1.470 / 2.055 1, 4 
11 0.124 / 0.503 N.A. 1, 4,11 
12 0.534 / 1.570 0.927 / 1.51 1, 4, 9 
13 0.067 / 0.164  0.106 / 0.522 1, 4 
14 0.0565 / 0.151 0.0760 / 0.232 3, 6 
15 34.47 / 36.08 35.64 / 37.18 10 
16 34.57 / 36.26 36.30 / 38.27 10 

 
Table Footnotes: 

1. End-point (target X, Y) is 86.26193, 31.61920. 
2. End-point is 100, 10.  



3. End-point is 52.48684, 30.68447.  
4. Reference time (true brachistochrone time) is 23.961.  
5. Reference time is 29.358,  
6. Reference time is 18.175. 
7. Sub-runs were only 5 minutes each for runs 3 and 4. 
8. Reverse Polish Notation used for representation time. 
9. Sub-runs were only 10 minutes each for run 12. 
10. Generic brachistochrone runs (see “Additional Formulation…” above). Fit-

ness values for generic runs are in percent over the total of true times for 52 
mostly randomly selected end-points. Best-of-run and average-of-run are re-
ported. 

11. Non-parametric runs were not made. 
 
 

One of the better solutions found was: 
 

            X: ((θ + sin(26.0075373) + θ) * θ) + θ (3) 

            Y: θ * (11.2222191 - (((cos(θ) * 0.333373901) * ln(θ)) + θ)) . (4) 

 
where the trigonometric functions expect arguments in radians. 
 
Varying parameters such as recombination rates, representation type, population size, 
operator choice, etc., within reason all had a smaller effect on fitness than did choice 
to use the parametric representation. 
 
To summarize, it appears that if you seek to discover an  exact solution, then you 
might  avoid a parametric formulation of the problem8. However if you merely seek 
an outstanding solution that is likely to be very close but not exact, then embrace pa-
rametric formulation. We intend to conduct more research on GP and parametric re-
gression to establish its capabilities. 

6  More Complex Minimum-Time -To-Intercept Problems  

As indicated earlier, we are planning to add thrust, drag, crosswind, target movement 
and other complications to the model. The result should be available during the 
GECCO conference. 

                                                                 
8 Of course, for the brachistochrone, one is forced to seek a parametric solution since no closed-

form solution exists. 



7  Comparison to Prior Work 

 
Reference [7] describes a piece-wise linear approximation to the brachistochrone dis-
covered by a genetic algorithm.  
 
Reference [8] is an example of using GP to intercept a moving target with evasive 
maneuvers, and attempts to be a high -fidelity model, using simulation code based on 
actual missile parameters. The cost of this fidelity was that very few generations 
could be run. Nevertheless GP found improved solutions. 
 

8  Final Remarks on GP and Parametric Solutions  

 
Anybody considering the use of GP for the search of parametric solutions should con-
sider our experience, as indicated below. It may help them avoid some pitfalls and 
guide their research by what we found. 
 
Pitfall. Whatever ∆θ step we used for the numerical integration, the GP system would 
sometimes evolve a solution that multiplied ∆θ by a large constant to make it no 
longer small. We had assumed that we could ignore the last interval near the target 
since the integration step was small.  Wrong! 
 
Rule #1: GP will evolve to take advantage of any assumptions you make in formulat-
ing the problem. It can (and did) discover better-than-physically possible "solutions" 
until we corrected our formulation. If your run-time library makes assumptions or is 
inaccurate, it will also attempt to take advantage of it, too. 
 
Rule #2: GP will evolve a solution that makes you satisfied with the result, whether 
or not it is a good solution or has any relationship to theory or practice. The evolution 
environment for fitness evaluation always includes the researcher! 

References 

1. Koza, John R., Introduction to Genetic Programming, Tutorial, GECCO-2003, 
Chicago (2003) 

 
2. Hiebert, K.L.: ACM Trans. Math. Software 8 (1982) 5-20 
 
3. Hildebrand, Francis B.: Methods of Applied Mathematics. 2nd edn. Prentice-Hall 

(1965) 
 



4. Ferreira, C., 2001. Gene Expression Programming: A New Adaptive Algorithm for 
Solving Problems. Complex Systems, 13 (2): 87-129 

 
5. Ferreira, C.: Gene Expression Programming in Problem Solving, WSC6 Tutorial, 

(2001) 
 
6. Ferreira, C., Gene Expression Programming in Problem Solving. In R. Roy, M. 

Köppen, S. Ovaska, T. Furuhashi, and F. Hoffmann, eds., Soft Computing and In-
dustry – Recent Applications, pages 635-654, Springer-Verlag, 2002 

 
7. Erickson, D., Killmer, C., Lechner, A: Solving the Brachistochrone Problem with 

Genetic Programming, 860-864 
 
8. Moore, F.W.: A Methodology for Missile Countermeasures Optimization under 

Uncertainty. Evolutionary Computation 10 (2002) 129-149 
 
9. Eiben, A.E., and Smith, J.E.: Introduction to Evolutionary Computing, Springer, 

(2003) 


