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Abstract 
 

 

We show how a genetic algorithm can be used 
for the inference of a regular language from a set 
of positive (and optionally also negative) 
examples. The genetic algorithm attempts to find 
the simplest description of the example data in 
terms of a finite state automaton model. 

1 INTRODUCTION 

The inference of regular languages has important 
applications in fields such as exploratory sequential 
analysis, artificial intelligence, pattern recognition and 
data mining. In this paper, we show how a genetic 
algorithm (GA) can be used for the inference of a regular 
language from a set of positive (and optionally also 
negative) examples. The GA attempts to find the simplest 
description of the example data in terms of a finite state 
automaton model. 

The structure of the paper is as follows. We first outline 
the problem of regular inference. We then review the 
relevant theory of fin ite state automata and regular 
languages, and summarize the main approaches to the 
regular language induction problem in terms of this 
theory. Next we explain the concept of Minimum 
Message Length as a model selection tool, and how we 
compute it for finite state automata. Then we give a brief 
account of genetic algorithms. We then pull these strands 
together to describe our algorithm, a genetic algorithm 
using Minimum Message Length to induce regular 
languages. Finally, some experimental results on the 
performance of the algorithm are presented. 

2 REGULAR INFERENCE 

Consider the following two sets of strings: 

I+ = {abbaaaa, ab, ba, aaaaabb}, 

I- = {aabaaa, a, b, baa, aba}. 

I+ is a randomly generated sample of strings in a certain 
regular language, and I- is a randomly generated sample 
of strings that are not in the language. Can the reader 

guess the rule that determines membership in this 
language? Of course, there are many possible answers 
that would be consistent with this small sample. We want 
to identify the correct answer as often as possible, and in 
any case, we want our answers to be useful in predicting 
whether other strings are in the target language or not. 
This is the problem of regular inference from positive and 
negative samples. 

(By the way, the “correct” answer in this case, is the set of 
strings over the alphabet {a,b} in which the number of a’s 
and the number of b’s are congruent modulo 3.) 

There are many applications of the inference of regular 
languages. For example, in the case of exploratory 
sequential analysis, we have coded behavior sequences, 
and we want to find out something about the underlying 
processes that produce the observed behavior. In speech 
recognition applications, we have examples of strings of 
phonemes representing spoken words, and we want to 
find models that enable us to recognize these words. As a 
data mining example, say we have a data set of sequences 
of credit card transactions, and want to derive a model 
that will detect possible fraudulent activities. 

In the grammatical inference tradition, we usually have a 
set of negative examples too – strings that are not in the 
language. Sometimes one is provided with an oracle or 
teacher that will answer whether a particular string is in 
the language or not, or other questions that can be used to 
identify the language. These additional data are needed if 
one wishes to identify the target language exactly. In the 
applications listed above, we are more likely to have only 
a set of positive samples. In that case, the target language 
can only be approximately identified, and heuristic 
methods come into play. 

Many existing regular inference algorithms use finite state 
automata to describe regular languages. The connection 
with finite state automata is explained in the next sections. 

3 THEORY OF FSA 

A basic result of automata theory states that a language is 
regular if and only if it is accepted by (or, equivalently, 
generated by) an FSA. In particular, for any finite set of 
strings, there is an FSA that accepts exactly that set of 
strings. One such FSA is the prefix tree acceptor (PTA) of 



the strings. The PTA may be constructed by simply laying 
out the strings in the language, using a state to represent 
each unique prefix of one of the strings. 

We can illustrate this using the sample data set I+ from 
above. The PTA of I+ is shown in the state diagram 
below, Figure 1. In the figure, circles represent the states, 
and labeled arcs between them represent transitions. We 
follow the usual convention of marking the start state with 
a “>” and using a double-circle for the final states. 

Figure 1: Example Prefix Tree Acceptor 

A useful generalization of FSAs is a probabilistic FSA 
(sometimes called a stochastic FSA). We introduce a 
special delimiter symbol, which is not in the alphabet of 
the FSA, say “^”. If a state emits the delimiter symbol, 
this is taken to indicate the end of the string, and no next 
state is specified (or equivalently, the next state is 
understood to be the start state). Thus any state that can 
emit the delimiter symbol is considered a final state. We 
can now define a probabilistic finite state automaton as an 
FSA with transition probabilities, giving the probability 
that a particular symbol will be emitted when we are in a 
particular state. Figure 2 shows one possible set of 
transition probabilities for the FSA in Figure 1. Notice the 
“transitions” from the final states using the delimiter 
symbol. 

Figure 2: FSA with Transition Probabilities 

Note that probabilistic FSAs are essentially a special case 
of discrete output first-order Hidden Markov Models 
(HMMs), which have been used extensively in 
applications such as speech recognition (see, for example, 
(Stolc ke 1994)).  The key difference is that HMM states 
are specified by two probability distributions, which 
govern the symbol to be output as well as the next state. 
We do not require the full generality of HMMs for our 
target applications, and FSAs are much more tractable. 

4 THE SEARCH SPACE FOR 
INDUCTIVE INFERENCE 

As stated earlier, we are concerned with the problem of 
identifying a regular language from a finite sample of 
strings. We have now seen that this is equivalent to 
finding a corresponding FSA (the target). We usually 
assume the sample to be large enough for all the 
transitions in the target FSA to be represented (the sample 
is then said to be structurally complete). One way to 
approach the problem is to cast it as a search problem. To 
do that, we first need to consider what space of solutions 
we are searching. 

It seems reasonable to restrict the search space by 
requiring that solutions satisfy the following properties: 

1. They accept the strings in I+. 

2. Every transition is used in accepting some string 
of I+ (and therefore all states are accessible). 

It is easy to see that the PTA satisfies these. It can be 
shown that every (possibly non-deterministic) FSA 
obtained by merging states of the PTA does too. It can 
further be shown that a deterministic FSA that satisfies 
the two conditions can be obtained by merging states of 
the PTA (Dupont 1994b). Thus each such FSA can be 
identified with a partition of the states of the PTA. These 
FSA’s form a lattice, with the PTA at the top of the 
lattice. Given two FSA’s F and G, F≤G in the lattice if F 
can be obtained by merging states of G (that is, the 
partition corresponding to G is a refinement of the one for 
F). At the bottom of the lattice is a single-state FSA, U. 
This FSA accepts not only I+, but also any string over the 
same alphabet. In general, as we move down the lattice, 
the set of languages accepted by the FSA becomes more 
general. To illustrate this, consider what happens if we 
merge the two states that follow the start state in Figure 1. 
The resulting FSA would be non-deterministic, so further 
states must be merged to obtain a deterministic FSA, 
giving the FSA shown in Figure 3. 

Figure 3: PTA after Merging 

This FSA accepts strings that begin with bb, for example, 
whereas the PTA only accepts strings beginning with aa, 
ab or ba. Further merges can create loops in the graph. 
These can be traversed as many times as desired, adding 
extra symbols to accepted strings. 

To recap, the situation is summarized in Figure 4. From 
I+ we can construct the PTA, which accepts exactly the 
strings in I+. Every deterministic FSA that satisfies the 
first two conditions above is a quotient of the PTA by 
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some partition on the states of the PTA. Coarser partitions 
correspond to FSAs with fewer states, which in turn 
accept more general languages. 

 

Figure 4: Three Views of the Search Space for Inductive 
Inference 

The inductive inference problem can now been seen as a 
search problem over this lattice of FSAs, or equivalently 
over the lattice of partitions. If negative examples are 
given, these dictate that some potential solutions are 
infeasible. Assuming that the sample strings are generated 
from an FSA using some probabilistic process, we can 
infer not only the structure of the FSA, but also the 
parameters of the probabilistic process. In particular, we 
will assume that a probabilistic finite state automaton 
generates the sample strings. 

When we find an FSA from a set of sample strings, we 
can estimate the transition probabilities by keeping a 
count of the number of times each arc of the graph is 
traversed by the strings. When states are merged, the 
transition counts on any merged arcs are added together. 
The counts can be converted into probability estimates by 
dividing each count by the total count of all the arcs from 
that state. In what follows, when we refer to an FSA, we 
will often mean an FSA with transition counts, or a 
probabilistic FSA, depending on the context. 

5 SOME EXISTING ALGORITHMS 

We know that we can find the target FSA by starting with 
the PTA, and merging states, so traversing down the 
lattice. But if we take this to the extreme, we end up with 
the single-state FSA, U, which accepts everything. The 
question that remains is – how much is too much 
merging? There are at least two distinct answers. 

If negative samples are supplied, these can be used to stop 
us merging too far. If we merge too many states, the 
resulting FSA will accept one of the negative examples. 
An example of an algorithm of this type is the RPNI 
(regular positive and negative inference) algorithm 
(Oncina 1992). RPNI works by starting with the PTA, and 

merging pairs of states if possible, using a fixed depth-
first ordering of state pairs. This algorithm runs in 
polynomial time and is guaranteed to identify the target 
FSA given extra completeness conditions on the sample 
data.  

When there are only positive examples, merging must be 
controlled another way. The Alergia algorithm (Carrasco 
1994) is  similar to RPNI except that the role of negative 
samples in RPNI is replaced by a test of similarity of state 
behaviours. A second possibility when there are only 
positive samples, is to use Occam’s razor to select the 
FSA in the lattice that provides the “simplest” explanation 
of the data. This idea is behind a number of heuristic 
algorithms. The general pattern is to construct the PTA 
for the sample strings, and then to perform successive 
merges of states, seeking to optimize a “figure of merit” 
or simplicity measure. 

In one of the earliest investigations of this kind, (Gaines 
1976), Gaines describes ATOM, a system that used a 
dual-objective minimization criterion (number of states 
and an entropy-based measure) and looks for 
discontinuities of the minimal entropy value as the 
number of states is varied. Patrick and Chong (Patrick 
1991) describe a greedy search algorithm that uses 
Minimum Message Length (MML) (Wallace 1968; 
Wallace 1983) as the measure of simplicity. This was 
later improved and adapted to non-deterministic FSAs by 
Raman et al (Raman 1998). Hingston (Hingston 2001) 
extended it to make use of negative samples. Stolcke et al 
(Stolcke 1994) describe a similar algorithm for HMMs. 
Grunwald (Grunwald 1996) used the Minimum 
Description Length (MDL) principle as formulated in 
(Rissanen 1982) to directly induce grammars, rather than 
FSAs, from positive samples. Both MML and MDL have 
been used as a model selection principle for a variety of 
induction problems. 

A problem with these heuristic algorithms is that they 
suffer from local optima (Hingston 2001). Therefore, 
more powerful search methods are needed to tackle 
difficult problems. This suggests the use of genetic 
algorithms (GAs). The use of GAs or other evolution-
based methods to evolve FSAs goes back quite a long 
way. In the context of artificial intelligence, L. Fogel 
proposed the use of evolutionary programming to evolve 
finite state transducers (a type of finite state machine with 
both inputs and outputs) that perform prediction tasks, as 
early as 1962 (see (Fogel 1995) for a discussion). In the 
grammatical inference context, Dupont (Dupont 1994a) 
describes GIG (Grammatical Inference by Genetic 
search), a GA for induction of FSAs from positive and 
negative samples, with a fitness function that minimizes 
the size of the FSA while penalizing FSAs that accept 
negative examples. Genetic search methods have also 
been proposed for induction of other classes of automata. 
For example, Lankhorst (Lankhorst 1995) used a GA for 
inducing pushdown automata from positive and negative 
samples. 
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In this paper, we describe a genetic algorithm for 
grammatical inference (GARI) based on minimizing 
MML. 

6 MINIMUM MESSAGE LENGTH FOR 
FSAS 

For the case of induction from positive samples alone or 
with limited numbers of negative examples, we need a 
suitable simplicity measure to guide the search. We use 
Minimum Message Length (MML), which is described 
below. 

The motivation for this choice is that the description with 
the shortest optimal encoding provides the “simplest”, and 
therefore the best, explanation of the observed data. 
Imagine the situation where we wish to communicate the 
data to another person, perhaps over a computer network. 
We send a message to the other person describing the data 
set. We want this message to be as short as possible. 

The description consists of two parts: a description of the 
model (the FSA) and a description of the data using that 
model. At first, it may not be clear why the description of 
the model must be included. This is because it may be 
possible to achieve a very compact description of the data 
using a very complex model, which should not be 
considered to be a simple explanation. In the extreme case 
the model could just enumerate the data and no separate 
description of the data is needed at all! Requiring the 
description to include both the model and the data 
provides a trade-off between model complexity and 
accuracy. 

So, given a data set, D, we seek an FSA, F, which 
minimizes the quantity: 

DescriptionLength(F) + DescriptionLength(D|F) 

,where each description is optimally encoded. How can 
we compute these description lengths? There are two 
possible ways – we could specify a particular coding 
scheme, or we could compute the probability of each 
event (since we know that the length of an optimally 
encoded description is -log(p), the negative log-likelihood 
of the event occurring). We decided to specify an 
encoding scheme for F. This allows us to calculate the 
description length for F. We have seen that once the FSA 
is known, a probability distribution over the set of strings 
from which the data set is drawn is determined. This then 
lets us calculate the description length for D|F.  

It is interesting to note that minimizing description length 
is equivalent to maximizing the a-posteriori probability of 
the model given the data. To see this consider the formula 

prob(F|D) = 
prob(D|F) × prob(F)

 prob(D)
 . 

The denominator on the RHS is fixed by the data, so to 
maximize the LHS is to maximize the numerator on the 
RHS. Taking negative logs, we see that this is the same as 
minimizing the expression: 

-log(prob(F) x prob(D|F))
= -log(prob(F)) + -log(prob(D|F))
= DescriptionLength(F) + DescriptionLength(D|F)

  

This is equal to the MML, as claimed. 

Due to space limitations, we must omit the derivation of 
the MML formula. However, we can say that our 
description of the FSA lists the following 

1. the number of states, N, in the FSA, 

2. for each state j, t j, the total of all transition counts 
leaving the state, 

3. for each state j and symbol i, nij, the transition 
count for this symbol leaving the state, 

4. for each state j and symbol i, if nij is not 0 (there 
is a transition for symbol i) and symbol i is not 
the delimiter, the description must specify the 
next state. 

Taking into account all these items, the Minimum 
Message Length (MML) for the FSA may be estimated as 
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,where V is the number of symbols in the alphabet and M’ 
is the number of non-delimiter arcs in the FSA. 

7 THE GA 

In this section, we describe our GA for regular inference, 
which we will call GARI (GA for Regular Inference). 
Genetic algorithms solve optimization problems by 
mimicking the essential processes of Darwinian natural 
evolution. A population of potential solutions is 
repeatedly subjected to (analogs of) natural selection 
based on fitness, reproduction, recombination and 
mutation, until a “sufficiently good” solution is found. 
The steps in a typical GA are: 

1. Create an initial population of potential 
solutions; 

2. Evaluate the fitness of each potential solution; 

3. Select parents for the next generation of 
solutions based on their fitness; 

4. Apply recombination (crossover) operators to 
create new solutions; 

5. Apply mutation operators to promote variety; 

6. Repeat steps 2-5 until done. 

In some variations, the best few solutions from each 
generation are preserved intact in the next generation. 
This is called an elitist strategy. Sometimes crossover is 
only applied to a proportion of the selected pairs. In order 
to apply a GA to our particular problem, we must 
complete the missing details in the recipe given above. 

Representation 

The first detail to be completed is to design a “genome” to 
represent a potential solution. In (Dupont 1994a), the GIG 



method used partitions on the states of the PTA. Even 
though Dupont’s algorithm searched over non-
determinis tic automata, and requires negative examples, 
we could have adapted his approach. However, after some 
experimentation, we settled on a different representation 
that can use more generic crossover and mutation 
operators. 

Rather than use partitions, we use sets of pairs of states to 
be merged. Such a set of pairs of states determines a 
partition. We can represent the genome as a Boolean 
mask over the set of all pairs of states of the PTA. In 
nature, the genotype determines the physical form of the 
organism, the phenotype. In our case, the corresponding 
phenotype will be a quotient of the PTA determined by 
this set of merges, except that more states may be merged 
to ensure the FSA is deterministic. Thus it is possible for 
different genotypes to produce the same phenotype. Each 
member of the initial population is created by merging a 
randomly selected pair of states of the PTA. 

Fitness 

In natural evolution, “fitness” refers to the ability of an 
organism to survive long enough to reproduce. In GAs 
this is achieved using a calculated fitness value based on 
how good the solution is, and using this value in the 
selection process. In our GA, fitness is determined by the 
MML of the FSA. The fitness of each phenotype is 
defined by the formula 

fitness = exp








-ln(2) x 



MML

 PTA.MML

2
. 

This expression is equal to 1 if the MML of the FSA is 0, 
0.5 if the MML of the FSA is equal to that of the PTA, 
and otherwise, somewhere in between. 

Selection mechanism 

We use a common selection method, roulette wheel 
selection, in which parents are selected in proportion to 
their fitness. We also used elitism, preserving the fittest 
individual discovered, and reserving 5% of the new 
population for copies of this individual. 

Crossover operator 

Crossover is the process that, in sexual reproduction in 
nature, recombines genetic material from the parents in 
the children. While other choices could be tried, we used 
the standard one-point crossover operator. If there are 
negative examples, crossover of two feasible solutions 
can create an infeasible solution, and the crossover is not 
performed. Crossover probability was set at 0.8. 

Mutation operators 

Mutation in nature serves to introduce new genetic 
material into the gene pool, and is central to the creation 
of new species. In GAs, mutation operators make random 
changes to individual genotypes, and help to ensure that it 
is possible to explore the whole search space. We define 
two mutation operators, each of which simply flips one bit 
in the genome. The operators are: 

1. merge-mutation: a zero bit is randomly selected 
and set to one. 

2. split-mutation: a one bit is randomly selected and 
set to zero. 

Note that merge-mutation aims to merge another pair of 
states, while split-mutation aims to undo a merge. If there 
are negative examples, merge-mutation can create an 
infeasible solution, in which case it is not carried out. One 
effective modification we made was to adjust the 
probabilities so that state pairs that come first in depth-
first order are more likely to be merged than pairs that 
come later (by a factor of 10). 

The two types of flips are separated so that the 
probabilities of merging versus splitting can be separately 
controlled. The probability of each type was set at 0.2. 

8 RESULTS 

In this section we describe some experiments comp aring 
the performance of GARI with the RPNI algorithm and 
with GIG when positive and negative samples are given, 
and investigating the success of GARI when only positive 
samples are given. 

Table 1: Tomita Regular Languages 

 

 Description # states in the 
target FSA 

L1 a* 1 

L2 (ab)* 2 

L3 Not having odd number of 
b’s then odd number of a’s 

4 

L4 No more than 2 consecutive 
a’s 

3 

L5 Even number of a’s and even 
number of b’s 

4 

L6 Number of a’s and number of 
b’s congruent modulo 3 

3 

L7 a*b*a*b* 4 

L8 a*b 2 

L9 (a*+c*)b 4 

L10 (aa)*(bbb)* 5 

L11 Even number of a’s and odd 
number of b’s 

4 

L12 a(aa)*b 3 

L13 Even number of a’s 2 

L14 (aa)*ba* 3 

L15 bc*b+ac*a 4 



For these experiments, we used a standard set of 15 
regular languages (Dupont 1994a; Tomita 1982). These 
languages are listed in Table 1. 

8.1 POSITIVE AND NEGATIVE SAMPLES  

Dupont used two data sets generated randomly from these 
languages. For the first data set, positive examples were 
randomly generated until a structurally complete sample 
was achieved, and the same procedure was used for the 
negative sample. Ten pairs of positive and negative 
samples were generated in this way. The second data set 
was generated the same way except that 3 times as many 
examples were generated for each sample. We used the 
same data sets for our first experiments. 

Solutions were evaluated by finding the classification 
rates for all strings up to a certain length (for L9 and L15, 
this length was 7, for the rest it was 9), excluding the 
sample strings. Classification rates for strings in the 
language and for strings not in the language were 
calculated separately, then averaged. 

Dupont used a population size of 100, maximum number 
of fitness evaluations of 2000, and ran the GA ten times 
for each pair of samples. For each pair, he then evaluated 
the performance of the solution having the minimum 
number of states. In this experiment, we used a population 
size of 200, maximum number of fitness evaluations of 
5000, and ran our GA four times for each pair of samples, 
evaluating the performance of the solution having the 
smallest MML. 

As well as comparing GARI with GIG and RPNI, we also 
used another algorithm, a beam search described in 
(Hingston 2001) and based on (Raman 1998). The beam 
search maintains a “beam” of solutions (say 3), starting 
with the PTA, and at each stage trying all possible merges 
of state pairs for each solution on the beam. Of the 
resulting new solutions, the 3 with the lowest MML are 
selected for the next stage. Eventually, no more merges 
are possible, and the solution with the lowest MML is the 
final result. Table 2 shows the classification rates 
achieved by the four algorithms using the second (larger) 
data set. 

It is clear that the two algorithms that minimize the 
number of states (RPNI and GIG) generally outperform 
the two that minimize message length (BEAM and GARI) 
on this data set. GARI and BEAM are about equal, with 
GARI generally doing a little better except on L5 and 
L11.  

The performance of GARI depends on two factors: 

1. The effectiveness of MML as a fitness criterion, 
and 

2. The effectiveness of the GA as a search method. 

Table 2: Classification Rates for RPNI, GIG, BEAM and 
GARI 

 

 RPNI GIG BEAM GARI 

L1 100 100 100 100 

L2 96.6 100 100 100 

L3 100 94.6 84.9 87 

L4 90.4 81.2 72.5 76.6 

L5 63.2 80.5 67.1 64.6 

L6 89.7 95 74.9 86.7 

L7 92.4 99.2 85.5 92 

L8 100 100 100 100 

L9 98.7 99.2 99.9 99.8 

L10 96.4 96.6 79.5 83.7 

L11 95.6 70.8 81.4 64.6 

L12 100 99.8 100 100 

L13 84.8 100 81.6 95 

L14 98.7 99.8 95.2 95.2 

L15 99.3 99.4 95 95 

Mean 93.7 94.4 87.8 89.3 

 

On the first point, we speculate that better performance 
might be obtained by developing a better MML formula 
using some prior knowledge about the data set (e.g. we 
know that the transition probabilities for each state are all 
equal). On the second point, better results can be achieved 
by running the GA for more generations. We have kept to 
only 25 generations here so as to be more directly 
comparable to GIG. We tested GARI on L5 and L11 
using 4 runs of 100 generations, and obtained improved 
classification rates of 67.4% and 80.4%. 

Speculating that the number of states may be a better 
criterion to use for these data sets, we ran additional tests 
using the same protocol as before, but with number of 
states as the fitness criterion for both BEAM and GARI. 
A slight problem in doing this is that there may be several 
solutions consistent with the positive and negative 
samples having the same number of states. For GARI, we 
resolved this by selecting the solution with the smallest 
MML among those with the least number of states. For 
BEAM search, merges were tried in the same depth-first 
order used by RPNI, and the first solutions found using 
this ordering were kept. Table 3 shows the results. 

This time the performance of both algorithms is about 
equal with that of RPNI and GIG. Once again, GARI had 
difficulty with L5 and L11, and once again, performance 
was improved using 100 generations (73% and 75.6%). 



Table 3: Performance of BEAM and GARI when 
Minimizing Number of States 

 

 GIG BEAM GARI 

L1 100 100 100 

L2 100 100 100 

L3 94.6 95.3 94.6 

L4 81.2 98.9 84.1 

L5 80.5 69.9 66.1 

L6 95 82.8 89.1 

L7 99.2 100 96.2 

L8 100 100 100 

L9 99.2 98.8 99 

L10 96.6 91.9 92.2 

L11 70.8 86.2 67.4 

L12 99.8 100 100 

L13 100 94.9 100 

L14 99.8 98.7 98.7 

L15 99.4 99.3 99.7 

Mean 94.4 94.5 92.5 

 

8.2 POSITIVE SAMPLES ONLY 

To test GARI’s performance with positive samples only, 
we once again used data sets randomly generated from L1 
to L15. Note that GIG does not work without negative 
samples, so we compare GARI with BEAM. Generally, 
larger data sets are required when there are no negative 
samples. We used a process of trial and error to determine 
how many positive example strings to generate for each 
language. In each case we generated sufficient examples 
so that the MML for the target automaton was less than 
that of the single state automaton. 10 samples were 
generated for each language. 

Table 4 shows the performance of BEAM and GARI 
(population = 200, generations = 100) on these data sets. 
The figures shown are averages for the 10 samples, using 
only a single run of the GA on each sample. For each 
algorithm we show the average MML as a percentage of 
the MML of the target automaton, and the average 
classification rate. The two algorithms are roughly 
comparable. Both had difficulty with L5, L6 and L7, and 
GARI also had trouble with L3 and L11. Notice that in 
these cases, the %MML is high, showing that the problem 
lies with the search, rather than with the MML criterion. 
Often the search converged early on the single state 
automaton. 

Table 4: Performance of BEAM and GARI with Positive 
Examples Only 

 

BEAM GARI  # 

%MML %class %MML %class 

L1 10 100 100 100 100 

L2 10 100 100 100 100 

L3 160 100.6 84.9 101.5 69.7 

L4 150 99.9 89.2 100 79.6 

L5 30 102.2 64.9 102.4 62.4 

L6 20 102.9 50 102. 8 50 

L7 300 100.3 70 100.6 50 

L8 10 100 100 100 100 

L9 50 100.2 99.7 100 99.8 

L10 30 99.9 99.8 100.5 99. 6 

L11 30 102.3 71 103.7 63 

L12 10 100 100 100 100 

L13 20 102.2 70 100.8 90 

L14 20 99.9 100 99.9 100 

L15 10 100 100 100 100 

Mean - 100.8 86.6 101.1 84. 3 

 

8.3 CONCLUSION 

We have introduced a genetic algorithm, GARI, for the 
induction of regular languages from positive samples, or 
positive and negative samples. The algorithm seeks to 
optimize a measure of model simplicity (MML). The 
search had difficulty finding the optimal solution with 
some data sets, often converging instead to the degenerate 
single state automaton. Further work to overcome this 
early convergence may improve on these results. Another 
possible improvement is to reformulate the MML formula 
using additional prior knowledge about the target 
automata. In spite of these provisos, the performance of 
the GA is comparable to that of existing methods. The 
performance of this algorithm suggests that the strategy of 
using a genetic algorithm to minimize message length 
may be applicable to other problems of grammatical 
inference. We intend to investigate this in future work. 
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