
 A Genetic Algorithm for Regular Inference

Philip Hingston

Edith Cowan University
Perth, Western Australia
p.hingston@ecu.edu.au

Abstract

We show how a genetic algorithm can be used
for the inference of a regular language from a set
of positive (and optionally also negative)
examples. The genetic algorithm attempts to find
the simplest description of the example data in
terms of a finite state automaton model.

1 INTRODUCTION

The inference of regular languages has important
applications in fields such as exploratory sequential
analysis, artificial intelligence, pattern recognition and
data mining. In this paper, we show how a genetic
algorithm (GA) can be used for the inference of a regular
language from a set of positive (and optionally also
negative) examples. The GA attempts to find the simplest
description of the example data in terms of a finite state
automaton model.

The structure of the paper is as follows. We first outline
the problem of regular inference. We then review the
relevant theory of fin ite state automata and regular
languages, and summarize the main approaches to the
regular language induction problem in terms of this
theory. Next we explain the concept of Minimum
Message Length as a model selection tool, and how we
compute it for finite state automata. Then we give a brief
account of genetic algorithms. We then pull these strands
together to describe our algorithm, a genetic algorithm
using Minimum Message Length to induce regular
languages. Finally, some experimental results on the
performance of the algorithm are presented.

2 REGULAR INFERENCE

Consider the following two sets of strings:

I+ = {abbaaaa, ab, ba, aaaaabb},

I- = {aabaaa, a, b, baa, aba}.

I+ is a randomly generated sample of strings in a certain
regular language, and I- is a randomly generated sample
of strings that are not in the language. Can the reader

guess the rule that determines membership in this
language? Of course, there are many possible answers
that would be consistent with this small sample. We want
to identify the correct answer as often as possible, and in
any case, we want our answers to be useful in predicting
whether other strings are in the target language or not.
This is the problem of regular inference from positive and
negative samples.

(By the way, the “correct” answer in this case, is the set of
strings over the alphabet {a,b} in which the number of a’s
and the number of b’s are congruent modulo 3.)

There are many applications of the inference of regular
languages. For example, in the case of exploratory
sequential analysis, we have coded behavior sequences,
and we want to find out something about the underlying
processes that produce the observed behavior. In speech
recognition applications, we have examples of strings of
phonemes representing spoken words, and we want to
find models that enable us to recognize these words. As a
data mining example, say we have a data set of sequences
of credit card transactions, and want to derive a model
that will detect possible fraudulent activities.

In the grammatical inference tradition, we usually have a
set of negative examples too – strings that are not in the
language. Sometimes one is provided with an oracle or
teacher that will answer whether a particular string is in
the language or not, or other questions that can be used to
identify the language. These additional data are needed if
one wishes to identify the target language exactly. In the
applications listed above, we are more likely to have only
a set of positive samples. In that case, the target language
can only be approximately identified, and heuristic
methods come into play.

Many existing regular inference algorithms use finite state
automata to describe regular languages. The connection
with finite state automata is explained in the next sections.

3 THEORY OF FSA

A basic result of automata theory states that a language is
regular if and only if it is accepted by (or, equivalently,
generated by) an FSA. In particular, for any finite set of
strings, there is an FSA that accepts exactly that set of
strings. One such FSA is the prefix tree acceptor (PTA) of

the strings. The PTA may be constructed by simply laying
out the strings in the language, using a state to represent
each unique prefix of one of the strings.

We can illustrate this using the sample data set I+ from
above. The PTA of I+ is shown in the state diagram
below, Figure 1. In the figure, circles represent the states,
and labeled arcs between them represent transitions. We
follow the usual convention of marking the start state with
a “>” and using a double-circle for the final states.

Figure 1: Example Prefix Tree Acceptor

A useful generalization of FSAs is a probabilistic FSA
(sometimes called a stochastic FSA). We introduce a
special delimiter symbol, which is not in the alphabet of
the FSA, say “^”. If a state emits the delimiter symbol,
this is taken to indicate the end of the string, and no next
state is specified (or equivalently, the next state is
understood to be the start state). Thus any state that can
emit the delimiter symbol is considered a final state. We
can now define a probabilistic finite state automaton as an
FSA with transition probabilities, giving the probability
that a particular symbol will be emitted when we are in a
particular state. Figure 2 shows one possible set of
transition probabilities for the FSA in Figure 1. Notice the
“transitions” from the final states using the delimiter
symbol.

Figure 2: FSA with Transition Probabilities

Note that probabilistic FSAs are essentially a special case
of discrete output first-order Hidden Markov Models
(HMMs), which have been used extensively in
applications such as speech recognition (see, for example,
(Stolc ke 1994)). The key difference is that HMM states
are specified by two probability distributions, which
govern the symbol to be output as well as the next state.
We do not require the full generality of HMMs for our
target applications, and FSAs are much more tractable.

4 THE SEARCH SPACE FOR
INDUCTIVE INFERENCE

As stated earlier, we are concerned with the problem of
identifying a regular language from a finite sample of
strings. We have now seen that this is equivalent to
finding a corresponding FSA (the target). We usually
assume the sample to be large enough for all the
transitions in the target FSA to be represented (the sample
is then said to be structurally complete). One way to
approach the problem is to cast it as a search problem. To
do that, we first need to consider what space of solutions
we are searching.

It seems reasonable to restrict the search space by
requiring that solutions satisfy the following properties:

1. They accept the strings in I+.

2. Every transition is used in accepting some string
of I+ (and therefore all states are accessible).

It is easy to see that the PTA satisfies these. It can be
shown that every (possibly non-deterministic) FSA
obtained by merging states of the PTA does too. It can
further be shown that a deterministic FSA that satisfies
the two conditions can be obtained by merging states of
the PTA (Dupont 1994b). Thus each such FSA can be
identified with a partition of the states of the PTA. These
FSA’s form a lattice, with the PTA at the top of the
lattice. Given two FSA’s F and G, F≤G in the lattice if F
can be obtained by merging states of G (that is, the
partition corresponding to G is a refinement of the one for
F). At the bottom of the lattice is a single-state FSA, U.
This FSA accepts not only I+, but also any string over the
same alphabet. In general, as we move down the lattice,
the set of languages accepted by the FSA becomes more
general. To illustrate this, consider what happens if we
merge the two states that follow the start state in Figure 1.
The resulting FSA would be non-deterministic, so further
states must be merged to obtain a deterministic FSA,
giving the FSA shown in Figure 3.

Figure 3: PTA after Merging

This FSA accepts strings that begin with bb, for example,
whereas the PTA only accepts strings beginning with aa,
ab or ba. Further merges can create loops in the graph.
These can be traversed as many times as desired, adding
extra symbols to accepted strings.

To recap, the situation is summarized in Figure 4. From
I+ we can construct the PTA, which accepts exactly the
strings in I+. Every deterministic FSA that satisfies the
first two conditions above is a quotient of the PTA by

a(0.75) b(0.5)
b(0.67)

a(1.0) b(0.25)

a(0.33) a(1.0)

^(1.0)

b(1.0) a(1.0) a(1.0) a(1.0)

^(0.5)
^(1.0)

^(1.0)

a(1.0) a(1.0) a(1.0) a(1.0)

a a a b b
b

a a
a

a a a a b

a a b a a

a a a a b

a b

a

b

a

some partition on the states of the PTA. Coarser partitions
correspond to FSAs with fewer states, which in turn
accept more general languages.

Figure 4: Three Views of the Search Space for Inductive
Inference

The inductive inference problem can now been seen as a
search problem over this lattice of FSAs, or equivalently
over the lattice of partitions. If negative examples are
given, these dictate that some potential solutions are
infeasible. Assuming that the sample strings are generated
from an FSA using some probabilistic process, we can
infer not only the structure of the FSA, but also the
parameters of the probabilistic process. In particular, we
will assume that a probabilistic finite state automaton
generates the sample strings.

When we find an FSA from a set of sample strings, we
can estimate the transition probabilities by keeping a
count of the number of times each arc of the graph is
traversed by the strings. When states are merged, the
transition counts on any merged arcs are added together.
The counts can be converted into probability estimates by
dividing each count by the total count of all the arcs from
that state. In what follows, when we refer to an FSA, we
will often mean an FSA with transition counts, or a
probabilistic FSA, depending on the context.

5 SOME EXISTING ALGORITHMS

We know that we can find the target FSA by starting with
the PTA, and merging states, so traversing down the
lattice. But if we take this to the extreme, we end up with
the single-state FSA, U, which accepts everything. The
question that remains is – how much is too much
merging? There are at least two distinct answers.

If negative samples are supplied, these can be used to stop
us merging too far. If we merge too many states, the
resulting FSA will accept one of the negative examples.
An example of an algorithm of this type is the RPNI
(regular positive and negative inference) algorithm
(Oncina 1992). RPNI works by starting with the PTA, and

merging pairs of states if possible, using a fixed depth-
first ordering of state pairs. This algorithm runs in
polynomial time and is guaranteed to identify the target
FSA given extra completeness conditions on the sample
data.

When there are only positive examples, merging must be
controlled another way. The Alergia algorithm (Carrasco
1994) is similar to RPNI except that the role of negative
samples in RPNI is replaced by a test of similarity of state
behaviours. A second possibility when there are only
positive samples, is to use Occam’s razor to select the
FSA in the lattice that provides the “simplest” explanation
of the data. This idea is behind a number of heuristic
algorithms. The general pattern is to construct the PTA
for the sample strings, and then to perform successive
merges of states, seeking to optimize a “figure of merit”
or simplicity measure.

In one of the earliest investigations of this kind, (Gaines
1976), Gaines describes ATOM, a system that used a
dual-objective minimization criterion (number of states
and an entropy-based measure) and looks for
discontinuities of the minimal entropy value as the
number of states is varied. Patrick and Chong (Patrick
1991) describe a greedy search algorithm that uses
Minimum Message Length (MML) (Wallace 1968;
Wallace 1983) as the measure of simplicity. This was
later improved and adapted to non-deterministic FSAs by
Raman et al (Raman 1998). Hingston (Hingston 2001)
extended it to make use of negative samples. Stolcke et al
(Stolcke 1994) describe a similar algorithm for HMMs.
Grunwald (Grunwald 1996) used the Minimum
Description Length (MDL) principle as formulated in
(Rissanen 1982) to directly induce grammars, rather than
FSAs, from positive samples. Both MML and MDL have
been used as a model selection principle for a variety of
induction problems.

A problem with these heuristic algorithms is that they
suffer from local optima (Hingston 2001). Therefore,
more powerful search methods are needed to tackle
difficult problems. This suggests the use of genetic
algorithms (GAs). The use of GAs or other evolution-
based methods to evolve FSAs goes back quite a long
way. In the context of artificial intelligence, L. Fogel
proposed the use of evolutionary programming to evolve
finite state transducers (a type of finite state machine with
both inputs and outputs) that perform prediction tasks, as
early as 1962 (see (Fogel 1995) for a discussion). In the
grammatical inference context, Dupont (Dupont 1994a)
describes GIG (Grammatical Inference by Genetic
search), a GA for induction of FSAs from positive and
negative samples, with a fitness function that minimizes
the size of the FSA while penalizing FSAs that accept
negative examples. Genetic search methods have also
been proposed for induction of other classes of automata.
For example, Lankhorst (Lankhorst 1995) used a GA for
inducing pushdown automata from positive and negative
samples.

PTA

U

F

More specific

More general

LanguagesAutomataPartitions

G

merge

Τ

⊥

ΠF

ΠG

refine

=PTA/ ΠF

=PTA/ ΠG

=PTA/ ⊥

L

∑*

In this paper, we describe a genetic algorithm for
grammatical inference (GARI) based on minimizing
MML.

6 MINIMUM MESSAGE LENGTH FOR
FSAS

For the case of induction from positive samples alone or
with limited numbers of negative examples, we need a
suitable simplicity measure to guide the search. We use
Minimum Message Length (MML), which is described
below.

The motivation for this choice is that the description with
the shortest optimal encoding provides the “simplest”, and
therefore the best, explanation of the observed data.
Imagine the situation where we wish to communicate the
data to another person, perhaps over a computer network.
We send a message to the other person describing the data
set. We want this message to be as short as possible.

The description consists of two parts: a description of the
model (the FSA) and a description of the data using that
model. At first, it may not be clear why the description of
the model must be included. This is because it may be
possible to achieve a very compact description of the data
using a very complex model, which should not be
considered to be a simple explanation. In the extreme case
the model could just enumerate the data and no separate
description of the data is needed at all! Requiring the
description to include both the model and the data
provides a trade-off between model complexity and
accuracy.

So, given a data set, D, we seek an FSA, F, which
minimizes the quantity:

DescriptionLength(F) + DescriptionLength(D|F)

,where each description is optimally encoded. How can
we compute these description lengths? There are two
possible ways – we could specify a particular coding
scheme, or we could compute the probability of each
event (since we know that the length of an optimally
encoded description is -log(p), the negative log-likelihood
of the event occurring). We decided to specify an
encoding scheme for F. This allows us to calculate the
description length for F. We have seen that once the FSA
is known, a probability distribution over the set of strings
from which the data set is drawn is determined. This then
lets us calculate the description length for D|F.

It is interesting to note that minimizing description length
is equivalent to maximizing the a-posteriori probability of
the model given the data. To see this consider the formula

prob(F|D) =
prob(D|F) × prob(F)

 prob(D)
 .

The denominator on the RHS is fixed by the data, so to
maximize the LHS is to maximize the numerator on the
RHS. Taking negative logs, we see that this is the same as
minimizing the expression:

-log(prob(F) x prob(D|F))
= -log(prob(F)) + -log(prob(D|F))
= DescriptionLength(F) + DescriptionLength(D|F)

This is equal to the MML, as claimed.

Due to space limitations, we must omit the derivation of
the MML formula. However, we can say that our
description of the FSA lists the following

1. the number of states, N, in the FSA,

2. for each state j, t j, the total of all transition counts
leaving the state,

3. for each state j and symbol i, nij, the transition
count for this symbol leaving the state,

4. for each state j and symbol i, if nij is not 0 (there
is a transition for symbol i) and symbol i is not
the delimiter, the description must specify the
next state.

Taking into account all these items, the Minimum
Message Length (MML) for the FSA may be estimated as

() ()() ()() ()() ()∑ ∑
= =

−−−−++−−′
N

j

V

i
jj niVVtNNM

1 1
22222)!log!1log!1log(!1loglog

,where V is the number of symbols in the alphabet and M’
is the number of non-delimiter arcs in the FSA.

7 THE GA

In this section, we describe our GA for regular inference,
which we will call GARI (GA for Regular Inference).
Genetic algorithms solve optimization problems by
mimicking the essential processes of Darwinian natural
evolution. A population of potential solutions is
repeatedly subjected to (analogs of) natural selection
based on fitness, reproduction, recombination and
mutation, until a “sufficiently good” solution is found.
The steps in a typical GA are:

1. Create an initial population of potential
solutions;

2. Evaluate the fitness of each potential solution;

3. Select parents for the next generation of
solutions based on their fitness;

4. Apply recombination (crossover) operators to
create new solutions;

5. Apply mutation operators to promote variety;

6. Repeat steps 2-5 until done.

In some variations, the best few solutions from each
generation are preserved intact in the next generation.
This is called an elitist strategy. Sometimes crossover is
only applied to a proportion of the selected pairs. In order
to apply a GA to our particular problem, we must
complete the missing details in the recipe given above.

Representation

The first detail to be completed is to design a “genome” to
represent a potential solution. In (Dupont 1994a), the GIG

method used partitions on the states of the PTA. Even
though Dupont’s algorithm searched over non-
determinis tic automata, and requires negative examples,
we could have adapted his approach. However, after some
experimentation, we settled on a different representation
that can use more generic crossover and mutation
operators.

Rather than use partitions, we use sets of pairs of states to
be merged. Such a set of pairs of states determines a
partition. We can represent the genome as a Boolean
mask over the set of all pairs of states of the PTA. In
nature, the genotype determines the physical form of the
organism, the phenotype. In our case, the corresponding
phenotype will be a quotient of the PTA determined by
this set of merges, except that more states may be merged
to ensure the FSA is deterministic. Thus it is possible for
different genotypes to produce the same phenotype. Each
member of the initial population is created by merging a
randomly selected pair of states of the PTA.

Fitness

In natural evolution, “fitness” refers to the ability of an
organism to survive long enough to reproduce. In GAs
this is achieved using a calculated fitness value based on
how good the solution is, and using this value in the
selection process. In our GA, fitness is determined by the
MML of the FSA. The fitness of each phenotype is
defined by the formula

fitness = exp








-ln(2) x 



MML

 PTA.MML

2
.

This expression is equal to 1 if the MML of the FSA is 0,
0.5 if the MML of the FSA is equal to that of the PTA,
and otherwise, somewhere in between.

Selection mechanism

We use a common selection method, roulette wheel
selection, in which parents are selected in proportion to
their fitness. We also used elitism, preserving the fittest
individual discovered, and reserving 5% of the new
population for copies of this individual.

Crossover operator

Crossover is the process that, in sexual reproduction in
nature, recombines genetic material from the parents in
the children. While other choices could be tried, we used
the standard one-point crossover operator. If there are
negative examples, crossover of two feasible solutions
can create an infeasible solution, and the crossover is not
performed. Crossover probability was set at 0.8.

Mutation operators

Mutation in nature serves to introduce new genetic
material into the gene pool, and is central to the creation
of new species. In GAs, mutation operators make random
changes to individual genotypes, and help to ensure that it
is possible to explore the whole search space. We define
two mutation operators, each of which simply flips one bit
in the genome. The operators are:

1. merge-mutation: a zero bit is randomly selected
and set to one.

2. split-mutation: a one bit is randomly selected and
set to zero.

Note that merge-mutation aims to merge another pair of
states, while split-mutation aims to undo a merge. If there
are negative examples, merge-mutation can create an
infeasible solution, in which case it is not carried out. One
effective modification we made was to adjust the
probabilities so that state pairs that come first in depth-
first order are more likely to be merged than pairs that
come later (by a factor of 10).

The two types of flips are separated so that the
probabilities of merging versus splitting can be separately
controlled. The probability of each type was set at 0.2.

8 RESULTS

In this section we describe some experiments comp aring
the performance of GARI with the RPNI algorithm and
with GIG when positive and negative samples are given,
and investigating the success of GARI when only positive
samples are given.

Table 1: Tomita Regular Languages

 Description # states in the
target FSA

L1 a* 1

L2 (ab)* 2

L3 Not having odd number of
b’s then odd number of a’s

4

L4 No more than 2 consecutive
a’s

3

L5 Even number of a’s and even
number of b’s

4

L6 Number of a’s and number of
b’s congruent modulo 3

3

L7 a*b*a*b* 4

L8 a*b 2

L9 (a*+c*)b 4

L10 (aa)*(bbb)* 5

L11 Even number of a’s and odd
number of b’s

4

L12 a(aa)*b 3

L13 Even number of a’s 2

L14 (aa)*ba* 3

L15 bc*b+ac*a 4

For these experiments, we used a standard set of 15
regular languages (Dupont 1994a; Tomita 1982). These
languages are listed in Table 1.

8.1 POSITIVE AND NEGATIVE SAMPLES

Dupont used two data sets generated randomly from these
languages. For the first data set, positive examples were
randomly generated until a structurally complete sample
was achieved, and the same procedure was used for the
negative sample. Ten pairs of positive and negative
samples were generated in this way. The second data set
was generated the same way except that 3 times as many
examples were generated for each sample. We used the
same data sets for our first experiments.

Solutions were evaluated by finding the classification
rates for all strings up to a certain length (for L9 and L15,
this length was 7, for the rest it was 9), excluding the
sample strings. Classification rates for strings in the
language and for strings not in the language were
calculated separately, then averaged.

Dupont used a population size of 100, maximum number
of fitness evaluations of 2000, and ran the GA ten times
for each pair of samples. For each pair, he then evaluated
the performance of the solution having the minimum
number of states. In this experiment, we used a population
size of 200, maximum number of fitness evaluations of
5000, and ran our GA four times for each pair of samples,
evaluating the performance of the solution having the
smallest MML.

As well as comparing GARI with GIG and RPNI, we also
used another algorithm, a beam search described in
(Hingston 2001) and based on (Raman 1998). The beam
search maintains a “beam” of solutions (say 3), starting
with the PTA, and at each stage trying all possible merges
of state pairs for each solution on the beam. Of the
resulting new solutions, the 3 with the lowest MML are
selected for the next stage. Eventually, no more merges
are possible, and the solution with the lowest MML is the
final result. Table 2 shows the classification rates
achieved by the four algorithms using the second (larger)
data set.

It is clear that the two algorithms that minimize the
number of states (RPNI and GIG) generally outperform
the two that minimize message length (BEAM and GARI)
on this data set. GARI and BEAM are about equal, with
GARI generally doing a little better except on L5 and
L11.

The performance of GARI depends on two factors:

1. The effectiveness of MML as a fitness criterion,
and

2. The effectiveness of the GA as a search method.

Table 2: Classification Rates for RPNI, GIG, BEAM and
GARI

 RPNI GIG BEAM GARI

L1 100 100 100 100

L2 96.6 100 100 100

L3 100 94.6 84.9 87

L4 90.4 81.2 72.5 76.6

L5 63.2 80.5 67.1 64.6

L6 89.7 95 74.9 86.7

L7 92.4 99.2 85.5 92

L8 100 100 100 100

L9 98.7 99.2 99.9 99.8

L10 96.4 96.6 79.5 83.7

L11 95.6 70.8 81.4 64.6

L12 100 99.8 100 100

L13 84.8 100 81.6 95

L14 98.7 99.8 95.2 95.2

L15 99.3 99.4 95 95

Mean 93.7 94.4 87.8 89.3

On the first point, we speculate that better performance
might be obtained by developing a better MML formula
using some prior knowledge about the data set (e.g. we
know that the transition probabilities for each state are all
equal). On the second point, better results can be achieved
by running the GA for more generations. We have kept to
only 25 generations here so as to be more directly
comparable to GIG. We tested GARI on L5 and L11
using 4 runs of 100 generations, and obtained improved
classification rates of 67.4% and 80.4%.

Speculating that the number of states may be a better
criterion to use for these data sets, we ran additional tests
using the same protocol as before, but with number of
states as the fitness criterion for both BEAM and GARI.
A slight problem in doing this is that there may be several
solutions consistent with the positive and negative
samples having the same number of states. For GARI, we
resolved this by selecting the solution with the smallest
MML among those with the least number of states. For
BEAM search, merges were tried in the same depth-first
order used by RPNI, and the first solutions found using
this ordering were kept. Table 3 shows the results.

This time the performance of both algorithms is about
equal with that of RPNI and GIG. Once again, GARI had
difficulty with L5 and L11, and once again, performance
was improved using 100 generations (73% and 75.6%).

Table 3: Performance of BEAM and GARI when
Minimizing Number of States

 GIG BEAM GARI

L1 100 100 100

L2 100 100 100

L3 94.6 95.3 94.6

L4 81.2 98.9 84.1

L5 80.5 69.9 66.1

L6 95 82.8 89.1

L7 99.2 100 96.2

L8 100 100 100

L9 99.2 98.8 99

L10 96.6 91.9 92.2

L11 70.8 86.2 67.4

L12 99.8 100 100

L13 100 94.9 100

L14 99.8 98.7 98.7

L15 99.4 99.3 99.7

Mean 94.4 94.5 92.5

8.2 POSITIVE SAMPLES ONLY

To test GARI’s performance with positive samples only,
we once again used data sets randomly generated from L1
to L15. Note that GIG does not work without negative
samples, so we compare GARI with BEAM. Generally,
larger data sets are required when there are no negative
samples. We used a process of trial and error to determine
how many positive example strings to generate for each
language. In each case we generated sufficient examples
so that the MML for the target automaton was less than
that of the single state automaton. 10 samples were
generated for each language.

Table 4 shows the performance of BEAM and GARI
(population = 200, generations = 100) on these data sets.
The figures shown are averages for the 10 samples, using
only a single run of the GA on each sample. For each
algorithm we show the average MML as a percentage of
the MML of the target automaton, and the average
classification rate. The two algorithms are roughly
comparable. Both had difficulty with L5, L6 and L7, and
GARI also had trouble with L3 and L11. Notice that in
these cases, the %MML is high, showing that the problem
lies with the search, rather than with the MML criterion.
Often the search converged early on the single state
automaton.

Table 4: Performance of BEAM and GARI with Positive
Examples Only

BEAM GARI #

%MML %class %MML %class

L1 10 100 100 100 100

L2 10 100 100 100 100

L3 160 100.6 84.9 101.5 69.7

L4 150 99.9 89.2 100 79.6

L5 30 102.2 64.9 102.4 62.4

L6 20 102.9 50 102. 8 50

L7 300 100.3 70 100.6 50

L8 10 100 100 100 100

L9 50 100.2 99.7 100 99.8

L10 30 99.9 99.8 100.5 99. 6

L11 30 102.3 71 103.7 63

L12 10 100 100 100 100

L13 20 102.2 70 100.8 90

L14 20 99.9 100 99.9 100

L15 10 100 100 100 100

Mean - 100.8 86.6 101.1 84. 3

8.3 CONCLUSION

We have introduced a genetic algorithm, GARI, for the
induction of regular languages from positive samples, or
positive and negative samples. The algorithm seeks to
optimize a measure of model simplicity (MML). The
search had difficulty finding the optimal solution with
some data sets, often converging instead to the degenerate
single state automaton. Further work to overcome this
early convergence may improve on these results. Another
possible improvement is to reformulate the MML formula
using additional prior knowledge about the target
automata. In spite of these provisos, the performance of
the GA is comparable to that of existing methods. The
performance of this algorithm suggests that the strategy of
using a genetic algorithm to minimize message length
may be applicable to other problems of grammatical
inference. We intend to investigate this in future work.

References

Carrasco, R. C., & Oncina, J. (1994). “Learning stochastic
regular grammar by means of a state merging
method.” The Second International Colloquium
on Grammatical Inference (ICGI'94), Alicante,
Spain, 139-152.

Dupont, P. (1994a). “Regular grammatical inference from
positive and negative samples by genetic search:
the GIG method.” Second International
Colloquium on Grammatical Inference
(ICGI'94), Alicante, Spain, 236-245.

Dupont, P., Miclet, L., & Vidal, E. (1994b). “What is the
search space of the regular inference?” Second
International Colloquium on Grammatical
Inference (ICGI'94), Alicante, Spain, 25-37.

Fogel, D. (1995). “Fogel: Evolutionary Programming.”
Evolutionary Computation, IEEE, NY, 75-84.

Gaines, B. R. (1976). “Behaviour/structure transformation
under uncertainty.” International Journal of
Man-Machine Studies, 8, 337-365.

Grunwald, P. (1996). “A Minimum Description Length
Approach to Grammar Inference.” Connectionist,
statistical and symbolic approaches to learning
for natural language processing, G. S. S. R.
Wermter, E., ed., Springer-Verlag, Berlin, 203-
216.

Hingston, P. (2001). “Inference of Regular Languages
using Model Simplicity.” Australian Computer
Science Conference, Gold Coast, 8 pp.

Lankhorst, M. (1995). “A Genetic Algorithm for the
Induction of Pushdown Automata.” International
Conference on Evolutionary Computation, Perth,
Western Australia.

Oncina, J., & Garc ia, P. (1992). “Inferring regular
languages in polynomial update time.” Pattern
Recognition and Image Analysis, N. Perez et al,
ed., World Scientific, 49-61.

Patrick, J. D., & Chong, K.E. (1991). “Real-time
inductive inference for analysing human
behaviour.” Paper presented at the International
Joint Conference on AI (IJCAI'91), Workshop
number 6 on Integrating AI into Databases,
Sydney.

Raman, A., Andreae, P. & Patrick, J. (1998). “A Beam
Search Algorithm for PFSA Inference.” Pattern
Analysis and Applications, 1, 121-129.

Rissanen, J. (1982). “A universal prior for integers and
estimation by minimum description length.”
Annals of Statistics, 11, 416-431.

Stolcke, A., and Omohundra, S. (1994). “Best-first Model
Merging for Hidden Markov Model Induction.”
TR-94-003, International Computer Science
Institute, Berkeley, CA.

Tomita, M. (1982). “Dynamic construction of finite-
automata from examples using hill-climbing.”
The 4th Annual Cognitive Science Conference,
105-108.

Wallace, C., & Boulton, D. (1968). “An information
measure for classification.” Computing Journal,
11, 185-195.

Wallace, C. S., & Georgeff, M.P. (1983). “A general
objective for inductive inference.” TR 32,
Monash University, Department of Computer
Science.

