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ABSTRACT 
 
A new fitness function, known as the maximin fitness function, is presented for multi-objective genetic algorithms.  This 
fitness function directs genetic algorithms towards final generations that are both close to the universal Pareto front and 
diverse.  The performance of a genetic algorithm with the maximin fitness function as well as with the traditional Pareto-
ranking fitness function is compared on a real-world test problem from city planning. 
 
 
INTRODUCTION 
 
Genetic algorithms, unlike other optimization methods, operate on generations of designs.  This makes it possible to converge 
to a final generation containing many Pareto-optimal solutions in a single algorithm run.  Fonseca and Fleming (1995) survey 
the early research work in multi-objective evolutionary optimization.  They divided approaches into “non-Pareto approaches” 
and “Pareto-based approaches”.  The later approaches made direct use of the definition of Pareto optimality, while the former 
approaches did not. 
 
The first Pareto-based approach was proposed by Goldberg (1989).  This approach introduced the “Pareto-ranking fitness 
function”.  To evaluate this function for the designs in a particular generation, the Pareto subset is first identified.  The Pareto 
subset consists of the non-dominated designs in the generation.  A design is dominated if there exists another design in the 
generation that is better or equal in every objective, and better in at least one objective.  Figure 1 plots the designs in a 
particular generation in objective space.  The two objectives are being minimized.  According to the definition of domination, 
Design A dominates Design B, and Design C dominates Design A.  There is no design that dominates Design C.  Therefore, 
according to the definition of Pareto optimality, Design C is in the Pareto subset of the generation.  As shown in Figure 1, all 
designs in the Pareto subset are assigned a rank of one.  This subset is temporarily deleted from the generation, and the Pareto 
subset of the remaining designs is identified and assigned a rank of two.   The approach continues temporarily deleting Pareto 
subsets, identifying the Pareto subsets of the remaining designs, and assigning increasing ranks until all designs in the 
generation have been assigned ranks as shown in Figure 1.  The value of the Pareto-ranking fitness for each design in the 
generation is taken as the reciprocal of its rank. 
 
Fonseca and Fleming (1993) proposed a slightly different Pareto-ranking fitness function in which the rank of a design is one 
plus the number of designs in the generation by which it is dominated.  Since designs in the Pareto subset are non-dominated, 
they have a rank of one.  Again, the fitness is the reciprocal of the rank. 
 
The use of the Pareto-ranking fitness function in a genetic algorithm causes the algorithm to advance the Pareto front from 
generation to generation towards the universal Pareto front.  The universal Pareto front contains the designs in the Pareto 
subset of the universe of all possible designs.  However, the Pareto-ranking fitness function does not guarantee that the 



advance of the Pareto front from generation to generation will remain uniform.  After all, designs on the universal Pareto 
front would have exactly the same fitness value.  When presented with multiple equivalent optima, finite populations tend to 
cluster at a few or even a single solution of the problem.  This phenomenon, known as genetic drift (Goldberg and Segrest, 
1987), has been observed in natural as well as in artificial evolution.  For this reason, researchers have developed niche 
induction techniques for use with the Pareto-ranking fitness function to produce final generations which are both close to the 
universal Pareto front and diverse (Fonseca and Fleming, 1993;  Cieniawski, 1993;  Srinivas and Deb, 1994). 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Pareto-Ranking Fitness for a Particular Generation 
 
 
In this paper, we examine a new fitness function first introduced by Balling (2000) that is based directly on the definition of 
Pareto optimality.  We call this function the “maximin fitness function”.  This fitness function directs genetic algorithms 
toward final generations that are both close to the universal Pareto front and diverse.  The maximin fitness function will be 
compared with the Pareto-ranking fitness function on a real-world, multi-objective, city planning problem. 
 
 
THE MAXIMIN FITNESS FUNCTION 
 
Consider the case of two minimized objectives, f1 and f2.  Consider design i and design j in a particular generation, and 
assume that these two designs are distinct in objective space: 
 
 bothor  ffor  ffeither j22ij11i ≠≠       (1) 

 
where f1i and f1j are the values of the first objective for the ith and jth designs, respectively, and f2i and f2j are the values of the 
second objective for the ith and jth designs, respectively.  Since the two designs are distinct, the ith design will be dominated 
by the jth design if: 
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This is equivalent to: 
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Thus, the ith design is dominated if: 
 
 ( ) 0  )f-f ,f-(fmin max 2j2i1j1i

ij
≥

≠
      (4) 

 
From Equation (4), we construct the maximin fitness function for any number of minimized objectives: 
 
 ( )  )f-(f minmax -1  fitness kjkikiji ≠

=       (5) 

 
 ifitness  = fitness of ith design in the generation 

 kif   = kth objective evaluated at ith design 

 kjf   = kth objective evaluated at jth design 

 
In Equation  (5), the min is taken over all the objectives, and the max is taken over all designs in the generation whose value 
for at least one objective is different than the corresponding objective value for the ith design.  The maximin fitness will be 
greater than one for designs in the Pareto subset of the generation, and will be less than or equal to one for dominated 
designs.  If the values of the objectives for designs in the generation are scaled between zero and one prior to evaluating the 
maximin fitness function, then the maximin fitness values will range from zero to two. 
 
The simplicity of Equation (5) makes implementation of the maximin fitness function both easy and efficient.  One constructs 
three nested loops.  The outermost loop is over designs i in the generation, the middle loop is over designs j ≠ i in the 
generation, and the innermost loop is over objectives k.  If tournament selection is used, selection pressure can be increased 
by increasing the tournament size.  If roulette-wheel selection is used, selection pressure can be increased by raising the 
maximin fitness to an exponent greater than one before allocating space on the roulette wheel. 
 
 
BEHAVIOR OF THE MAXIMIN FITNESS FUNCTION 
 
The behavior of the maximin fitness function can be understood by considering a few simple examples.  In Figures 2-6, we 
give examples of generations plotted in objective space involving two minimized objectives.  Each design is labeled with a 
letter, and the value of the maximin fitness function is listed beside the letter in parentheses.  
 
In Figure 2 we have a generation of four designs.  Designs A, B, and C are in the Pareto subset and their maximin fitnesses 
are greater than one.  Design D is dominated, and its maximin fitness is less than one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Maximin Fitness for a Particular Generation 

Objective 1 

Objective 2 

A  (1.5) 

B  (1.5) 

C  (1.5) 

D  (0.5) 

1 

1 



The generation in Figure 3 differs from the generation in Figure 2 in that the objective coordinates of Design B have been 
moved from (0.5, 0.5) to (0.2, 0.2).  Again, Designs A, B, and C are in the Pareto subset, and their maximin fitnesses are 
greater than one.  While the Pareto front in Figure 2 is linear, the Pareto front in Figure 3 is convex.  The maximin fitness of 
Design B is greater than the maximin fitnesses of Designs A and C in Figure 3.  Thus, the maximin fitness function does not 
treat all designs in the Pareto subset equally.  It appears to favor designs in the center of convex Pareto fronts.  Note also that 
the maximin fitness of Design D drops from 0.5 in Figure 2 to 0.2 in Figure 3.   This is because the amount of domination of 
Design D by Design B increases from Figure 2 to Figure 3.  If the Pareto-ranking fitness function were used, the fitness of 
Designs A, B, C, and D would not change from Figure 2 to Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Maximin Fitness for a Particular Generation 
 
 
Because Design B in Figure 3 has such a high fitness, it is likely that in the next generation, new designs will be created with 
objective values near those of Design B.  An example of this is shown in Figure 4 where the generation is identical to the 
generation in Figure 3 except that Design E has been added near Design B.  Note that the presence of Design E near Design 
B caused the maximin fitness of Design B to drop from 1.8 in Figure 3 to 1.1 in Figure 4.  Thus, when clustering begins to 
occur, the maximin fitness automatically degrades. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  Maximin Fitness for a Particular Generation 
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Now consider Figure 5.  Designs A, B, and C are in the Pareto subset, but this time the Pareto front is concave.  The maximin 
fitness favors Designs A and C over Design B.  Thus, the maximin fitness function appears to favor the extremes of concave 
Pareto fronts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  Maximin Fitness for a Particular Generation 
 
 
Because the fitness of Design A is so high in Figure 5, suppose the next generation adds Design E near Design A as shown in 
Figure 6.  This clustering around Design A causes its fitness to drop from 1.8 in Figure 5  to 1.1 in Figure 6, and suddenly 
Design C looks much better.  The Pareto subset consists of Designs A, B, and C whose maximin fitnesses are greater than 
one, while Designs D and E are dominated since their maximin fitnesses are less than or equal to one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Maximin Fitness for a Particular Generation 
 
 
These simple examples illustrate the potential advantages of the maximin fitness function over the Pareto-ranking fitness 
function.  First, when clustering on the Pareto front begins to occur, the maximin fitness begins to degrade causing the 
genetic algorithm to search elsewhere on the Pareto front thereby maintaining diversity.  Second, the maximin fitness 
function quantifies the amount of domination.  The Pareto-ranking fitness function does not capture any information about 
how much worse designs with rank 2 are than designs with rank 1.  In a sense, the maximin fitness function quantifies the 
distance between ranks.  Finally, if a generation contains uniformly spaced designs on the Pareto front, the maximin fitness 
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function favors designs in the center of convex fronts and designs at the extremes of concave fronts.  An argument can be 
made that these are the designs of most interest to designers in these two very different situations. 
 
 
APPLICATION TO A CITY PLANNING EXAMPLE 
 
The different fitness functions were tested on a multi-objective real world problem.  The problem was one of finding 
optimum future land-use and transportation plans for two adjacent high-growth cities in the state of  Utah in the United 
States.  The land in the cities was divided into 199 zones, and the major streets in the cities were divided into 60 corridors.  
The problem had one variable for each zone and one variable for each corridor.  The possible values of the zone variables 
were integers from 1 to 11 corresponding to eleven different future residential and commercial land uses.  The possible 
values of the corridor variables were integers from 1 to 10 corresponding to ten different future street types.  City planners 
from both cities were involved to reduce the search space by identifying which land uses would be allowed for each zone and 
which street types would be allowed for each corridor.  The number of possible future plans in the search space was reduced 
to 10108. 
 
A single constraint was imposed requiring that the future housing capacity of any plan be greater than the projected future 
population of 327,000 for both cities.  Incidentally, the current zoning plan for these cities was infeasible.  During execution 
of the genetic algorithm, infeasible plans would be generated about 1% of the time, and these were immediately deleted from 
all generations and replaced with feasible plans.  Several objectives were identified for this problem, but the results that we 
will now present involved only two objectives.  The first was the minimization of cost minus revenues.  Costs included the 
construction and right-of-way costs of upgrading corridors, and revenues included the property and sales tax revenues from 
residential and commercial land.  The second objective was the minimization of change from the status quo.  This objective 
was quantified by summing the product of property value, area, and a degree-of-change factor over all zones and all land 
adjacent to corridors.  Degree-of-change factors were empirically set to represent the severity of change in a zone or corridor 
from its current classification to its future planned classification.  We will refer to these two minimized objectives as the 
“cost objective” and the “change objective”. 
 
A genetic algorithm was developed to solve this problem.  We ran the algorithm for 1000 generations with a generation size 
of 100 feasible plans.  Tournament selection was used with a tournament size of 6.  Single-point crossover was used with a 
crossover probability of 1.0.  The mutation probability started at 0.035 in the first generation and was linearly decreased to 
zero in the last generation.  Elitism was implemented by copying two plans from each generation to the next.  These plans 
consisted of the plan with the lowest value of the cost objective, and the plan with the lowest value of the change objective. 
 
The genetic algorithm was executed with the Pareto-ranking fitness function and the maximin fitness function.  Generations 
1, 200, 400, 600, 800, and 1000 are plotted in scaled objective space in Figures 7 and 8.  In each figure a baseline curve 
approximating the universal Pareto front for this problem is shown for reference.  Designs in the Pareto subsets of the 
generations in these figures are shown with dark dots while dominated designs are shown with light dots.  Note that 
dominated designs may still exist in final generations.  This is to be expected because crossover and mutation of designs on 
the Pareto front of one generation may produce dominated designs in the next generation.  Thus, the solution from the genetic 
algorithm should be taken as the Pareto subset of the final generation. 
 
Note that in the final generations, the Pareto-ranking fitness function leads to clustering, while the maximin fitness function 
causes the final generations to spread out along the Pareto front.  The algorithm was executed several times with different 
random number sequences, and the results were similar each time. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

        Generation 1    Generation 200    Generation 400 
 
 
 
 
 
 
 
 
 
 
 
 

        Generation 600   Generation 800    Generation 1000 
Figure 7:  Pareto-Ranking Fitness Function 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

        Generation 1    Generation 200    Generation 400 
 
 
 
 
 
 
 
 
 
 

 
 
        Generation 600   Generation 800    Generation 1000 

Figure 8:  Maximin Fitness Function 
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CONCLUSIONS 
 
A new fitness function for multi-objective genetic algorithms has been presented and investigated.  Genetic algorithm 
performance with this fitness functions was compared to the performance with the traditional Pareto-ranking fitness function 
on a real-world test problem.  The Pareto-ranking fitness function led to clustering of designs in the final generations while 
the new fitness function did not.   
 
The new fitness function is called the maximin fitness function.  This function is designed to achieve both diversity and 
closeness to the universal Pareto front in multi-objective genetic algorithms without having to employ niche induction 
techniques.  The maximin fitness function is derived directly from the definition of Pareto optimality and is naturally 
extended to problems with N objectives.  Its simple form makes implementation easy. 
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