
Enhancing the GA’s Ability to Cope with Dynamic Environments

Mark Wineberg

Intelligent Systems Research Unit
School of Computer Science

Carleton University
Ottawa, Canada, K1S 5B6
wineberg@scs.carleton.ca

(613) 520-2600 x 1857

Franz Oppacher

Intelligent Systems Research Unit
School of Computer Science

Carleton University
Ottawa, Canada, K1S 5B6
oppacher@scs.carleton.ca

(613) 520-2600 x 3520

Abstract:

The Shifting Balance Genetic Algorithm
(SBGA) is a pluggable module for a GA (or any
other Evolutionary Algorithm) based on a
modification of Sewall Wright’s shifting balance
theory. The SBGA is intended to enhance a
GA’s ability to adapt to a changing environment.
Here we describe the detailed mechanisms
required to implement the SBGA as well as an
experiment that shows that the SBGA not only
outperforms the GA in a difficult dynamic
environment, but actually seems to thrive in such
an environment.

1 INTRODUCTION

In (Oppacher, and Wineberg, 1999) we developed the
“shifting balance” addition to evolutionary algorithms
called the SBGA (Shifting Balance Genetic Algorithm).
This is a pluggable module that can be added to any
evolutionary algorithm (GA, ES or EP). In this paper,
however, we will only concentrate on the GA.

Added to the main population of the GA are a series of
smaller, helping populations called colonies. The main
population, called the core, is responsible for exploring
the area of the search space that seems most promising,
i.e. performing exploitation, while the colonies explore
the areas of the search space where the core population
doesn’t yet have a presence. For the colonies to maintain
their distance from the core, they must have information
as to how far they are away from the core. This requires a
mathematically precise definition of distance from a
chromosome to a population, which we have obtained
from cluster analysis.

In this paper we will describe the detailed mechanisms by
which the colonies are forced away from the core, and by
which the migrants entering the core are integrated and
exploited. Finally, we will present some new results that
show that the SBGA not only outperforms the classical

GA in dynamic environments, but that it actually thrives
in such scenarios.

2 MOVING THE COLONY
ELSEWHERE

2.1 INTRODUCTION

There are two main tasks to accomplish when keeping the
colony away from the core: detecting when the colony is
too close to the core, and actually moving the colony
away when so detected. The detection mechanism will be
dealt with in §2.3 and §2.4, while the procedure for
moving the colony, if found too close to the core, will be
developed below.

2.2 KEEPING COLONY AWAY FROM CORE

For the SBGA to perform as desired, a mechanism is
needed that allows a population to relocate to other places
in the search space, thus escaping from a local maximum.
Previously, to escape a local optimum, most GA
implementations invoked a blind restart. A less haphazard
approach could be developed if we had a method of
determining whether an individual from the colony is
searching in the same area as the core. We could use this
distance measure as a fitness function for the members in
the colony when the colony becomes too close to the core.
The members will then be selected for reproduction, not
only according to their objective function value but also
according to their ‘distance’ from the core. They will
evolve into a new area of the search space.

Fortunately the distance from a member of a population to
the entire population is a well-known concept in cluster
analysis. In GA terminology such a distance is simply the
average Hamming distance between the given member
and all other members of the population. This concept is
easily extended to encompass the distance from a single
member of one population to an entire second population.

Since we intend the colony to follow the objective
function’s landscape, even as it moves away from the
core, we are faced with a bi-objective optimization task.
We handle this bi-objective optimization as follows:

The population for the next generation is split into two
sections. The first section is selected under the objective
function, and the second under the distance to the core.
When filling a sub-population, the parents are selected
from the previous generation’s entire population.
However, the fitness function used during the selection is
the one associated with the sub-population being filled.

Notice that under this approach, when selection occurs,
the two fitness criteria are kept separate thus avoiding the
problem of averaging out into mediocrity. Furthermore,
this approach avoids the possibly counterproductive
crossover of a member selected under one criterion with a
member selected under a wholly different criterion.
Instead, crossover is only performed on chromosomes that
have been selected under the same criteria. Like mates
with like.

2.3 THE PERCENTAGE OVERLAP

2.3.1 Keeping the Proper Distance from the Core
While Still Following the Fitness Landscape

In order to implement the above bi-objective approach to
moving the colony away from the core, we need to
determine the portion (κ) of the population governed by
the objective function1. How should this parameter be set?

If we were to keep κ constant, say κ = 1

2 , a constant
pressure would eventually drive the colony away from the
core as far as possible. To state it mildly, this is not the
behavior that one wants the system to have!

It is now obvious that a measure is needed to regulate the
value of κ for the colony, keeping it small to zero when
far from the core while increasing it when it is close. In
other words, we want to measure the overlap between two
populations. Since all we have to work with are distances,
our definition of population overlap is perforce distance-
based.

2.3.2 Finding the Percentage Population Overlap

Let Core be a core population of size n and Colony be a
colony population of size m. Now, let xi be the number of
core members that are closer to the ith member of the
colony than they are to the core. This can be more
formally stated as follows: let Xi be the multi-set
corresponding to the colony member di ∈Colony such
that

Xi = {c | c ∈Core,dist(c, di) ≤ dist(c, Core)}

1 Obviously, (1 - k) would be the proportion of the size of the sub-
population selected by the distance.

then we can define xi = Xi .

Now the percentage of the core that are closer to the ith

member than they are to each other is
xi

n
 and so the

average,
1

m

x i

ni=1

m

∑ , is the total fraction of the core that the

colony is close to. This is what κ is supposed to measure!

So, after factoring out the 1
n , we obtain a formula for the

split ratio:

κ
o

=
1

m ⋅ n
x

i

i =1

m

∑ .

κ
o
is called the percentage overlap.

The percentage overlap departs somewhat from our
intuitive notions of the properties that an “overlap” should
have. For example if we compare two identical
populations we would think that they should completely
overlap, i.e. that κ should be 1. However, in most cases

we would find κ to be much smaller than 1. A percentage
unary overlap would only occur if all members of the
colony were at the center, i.e. all had zero distance to the
core population. Any spread in the colony population will
lower the percentage overlap. This means that κ, thus
defined, is conservative in the sense that the resulting
system follows the fitness landscape more readily than it
pushes away from the core.

Unfortunately there is a major problem with the definition
of κ as it stands. Since the distance from each colony
member to each core member must be computed and
treated separately (there is a comparison for each core
member / colony member pair) instead of averaged, there
will be m ⋅n such comparisons. Each comparison takes
O(l) time, where l is the length of the chromosome.
Consequently the algorithm to compute κ will have an

O(l ⋅m ⋅n) time complexity. Since this must be done for
each colony, if there are k colonies the time complexity
becomes O(k ⋅ l ⋅m ⋅ n). Now the total population size is
N = k ⋅ m +n . Normal settings for k, m and n have
n ≈ k ⋅ m since the core group should be a lot larger than
the colonies to do proper exploitation, yet the colonies
must be large enough not to suffer excessively from
random drift. Therefore N = k ⋅ m +n ≈ 2n , which means
that n ≈ k ⋅ m ≈ N

2 . Consequently k ⋅m ⋅n ≈ N
2 ⋅ N

2 ≈ N2 ,
and so the time complexity can now be seen to be
O(l ⋅ N 2) .

Since the time complexity of the GA is only O(l ⋅ N) , if κ
is calculated by the means of percentage overlap, the
SBGA will have caused a slowdown in the performance
of the GA. Another approach will have to be found.

2.4 THE PERCENTAGE SIMILARITY

2.4.1 Finding the Percentage Similarity

Since the percentage population overlap is so
computationally expensive, we will look for other
methods to accomplish the task. We do not expect to find
another method with exactly the same properties
(otherwise it would probably have the same time
complexity). However, as long as the new measure is
conceptually similar to the percentage overlap, prevents
the colony from being in the same area as the core, and
has a time complexity no greater than that of the GA, it
will be preferable.

Since the n comparisons between each colony member
and all the core members is responsible for the large time
complexity, let us weaken the previous method and just
calculate the distance of a colony member to the core
group as a whole. This distance can be computed for
every colony member in O(k ⋅ l ⋅m) time. (The distance
between a chromosome and a population, defined as the
average Hamming distance from the chromosome to the
members of the population, can be re-expressed as

Dist(chr ,P) =
1

l
(1− fP |k (gk))

k =1

l

∑ . Here gk is the gene

from chromosome chr at locus k, and fP |k (g) is the
frequency of a gene at locus k across population P. Since
the same gene frequencies can be used for any
chromosome, it only needs to be computed once.
Consequently, the above equation can be computed in
O(l) time for any chromosome in the colonies and hence
in O(k ⋅ l ⋅m) time for every member in the colonies).
Since we usually keep the total number of members in the
colonies equal to the core population size,
O(k ⋅ l ⋅m) ≈ O(l ⋅n) thus keeping the total time
complexity of the GA unchanged as required.

Now instead of comparing a core member’s distance to
the core with its distance to a colony member we compare
its distance to the core with the colony member’s distance
to the core. If distance to the core of a core member is
greater than the colony member’s distance to the core it is
deemed to be ‘outside’ the colony member. Conversely if
its distance is less it is considered to be ‘inside’. Since
distance to a population is just the converse of similarity,
a chromosome's having a smaller distance to a population
is equivalent to its being more similar to that population.
Consequently core members that are ‘outside’ of a colony
member are less similar to the core than is that colony
member.

As with the percentage overlap, we wish to know what
fraction of the core population is to be considered too
similar to the colony member. But instead of judging
similarity by the number of core members that are too
close to the colony member, we look at the number of
core members with a greater distance to the core than the

colony member’s distance to the core as evidence of the
colony member’s similarity to the core.

We can now define ri, which is the analog to xi, as the
number of core members whose distance to the core is
greater than the colony member's distance to the core. By
the same token, ri can be thought of as the number of core
members that are less similar to the core than the given
colony member.

We will now present a formal definition of ri. Let Ri be
the multi-set corresponding to the colony member
di ∈Colony such that

Ri = {c | c ∈Core,dist(di,Core) ≤ dist(c, Core)}.
Then we can define ri = Ri .

Now
ri

n
 is the percentage of the core that is less similar to

the core itself than is the ith member of the colony. We
shall call this the percentage similarity to the ith member.

We can now average all the percentage similarities of all
members together to produce the average percentage

similarity of the colony, which is
1

m

ri

ni=1

m

∑ . This average

represents the total fraction of the core that, when
compared with itself, is found to be less similar than the
comparison of the colony to itself. This is the percentage
similarity2.

We can now use the percentage similarity as the new split
ratio:

κ s =
1

m ⋅n
ri

i= 1

n

∑ .

2.4.2 An Algorithm for Computing the Population
Similarity

To prepare for the computation of the percentage
similarity, the distance to the core must first be computed
for all members in all colonies as well as for all members
in the core. Each member is then labeled as to whether it
belongs to the core or a colony and then all of them are
combined into a single population.

Now all of the ri values for all of the colony members can
be found. The combined population is first sorted by
distance to the core and then traversed in reverse sort
order. Each core member encountered during the traversal
is tallied into a running count. This count therefore
contains the number of core members that are further
from the center of the core than those members of the
colonies not yet seen, which is what the ri values are. So,
when a colony member is encountered the current running
count is stored as its ri value.

2 In our previous paper (Oppacher and Wineberg, 1999) percentage
similarity was called containment.

To handle ties, two different sort orders have to be
created, producing two different ri values for each
member: one where ties are included and one where they
are excluded. To include ties, the tied core members must
be placed higher in the sort order than the colony member
that they are tied with. Then when the array is traversed in
descending order, the tied core members are encountered
before the colony member and so are included in the
colony member’s ri value. To exclude ties the opposite
sort order is used. Now the colony member is encountered
before the core members that it tied with. Therefore those
core members will not be included in the colony members
ri value. Both inclusive and exclusive ri values must be
stored for each colony member.

Once the ri values are found the percentage similarity for
each colony can be calculated in short order. All members
from a colony are canvassed to find their ri values. These
are then summed together into two numbers, Rincl and
Rexcl, which are averaged together to find R the true
similarity sum for the colony. Finally, to arrive at the
percentage similarity, this sum is first divided by m, the
colony size, and then by n, the core size, as per the
definition of κs.

2.4.3 The Time Complexity of the Percentage
Similarity Algorithm

In the preparation stage, the distance to the core of all
members in the system is computed in O(l ⋅ N) , see 2.4.1,
where N = k ⋅ m +n , and all populations are combined
into a single population in O(N) . Thus the total time
complexity for the preparation stage isO(l ⋅ N) .

When computing the ri values, the complete population is
first sorted, which takes O(N log N) , and then iterated
through to compute and store the ri values, which takes
linear time. So the time complexity of this stage is
O(N log N) .

Finally the ri values are summed for each population,
which is again a linear time computation, and the
percentage similarity is computed, which is constant for
each colony. So in total, the final stage takes linear time.

Overall, since O(N log N) < O(l ⋅ n) (this is so because
log N < l in order for the GA to be useful, otherwise
enumeration could be used instead), the percentage
similarity algorithm takes O(l ⋅ N) time to compute. As
the GA also has a O(l ⋅ N)time complexity, computing the
split ratio in this way only adds a constant overhead to the
GA. This is in direct contrast with the percentage-overlap
method, with its O(l ⋅ N 2) time complexity.

2.4.4 Summary

We have now finished our description of the mechanism
that drives colonies to search in areas where the core isn’t,

while allowing the colonies to stay in promising areas of
the search space.

The main component of the mechanism actively moves
the colony away from the core. This is done in an
evolutionary way by selecting parents for the colony’s
next generation based, in part, on the distance to the core.

To move away from the core while still following the
fitness landscape demands a dynamic way to determine
how much of the colony should be selected by distance to
the core. This is done with the help of the concept of
percentage similarity, which yields an algorithm with
better time complexity than does the concept of
percentage overlap.

3 MIGRATION FROM COLONY TO
CORE

3.1 THE MIGRATION

The preceding section dealt with the problem of keeping
the colonies away from the core so that they can explore
novel territory. The mechanism that accomplishes this
causes information flow, albeit indirectly, from the core to
the colony. However, the information flow must go two
ways. Not only do the colonies need to access information
about the core, but the core must also receive information
from the colonies. Otherwise the core would be
independent from the colonies, and the colonies will not
be aiding the search but only absorbing resources. The
mechanism that closes this feedback loop between core
and colonies is migration.

In the SBGA, the colony sends members, called migrants,
back to the core. If a colony sends a member with great
potential to the core it will after a few generations start to
dominate the core and shift the location of the population
to the area of gene space where the originating colony is
located. The colony will then have to move into a new
area because of the core avoidance mechanism,
potentially into an area with a still larger local optimum,
thus driving the system ever ‘upwards’.

During migration the colony may send all of its members
to the core or only some portion thereof. The colony
members could be randomly selected, selected
stochastically according to fitness, or, represent an elite
subgroup. All of the above techniques have been used in
the various island model parallel GAs, see (Pettey, 1987),
(Tanese, 1989) and (Cohoon, 1991)). In the SBGA system
as implemented, the colony members are chosen as an
elite subgroup.

Since migration of the colony members disrupts the core
group, time is given for the colony to evolve potentially
useful members. The number of generations between the
movement of colony members to the core is called the
migration interval. To reduce the pressure on the core
even more, immigration is staggered between the
colonies. For example, if there are eight colonies and the

migration interval is four, two of the colonies send
immigrants to the core each generation. However, for any
given colony, four generations pass before colony
members are allowed to migrate again.

3.2 THE INTEGRATION OF THE MIGRANTS

Just like all multiple-population based GAs, the SBGA
needs a method to integrate the migrants arriving from the
colony into the core’s population. There are two different
strategies used in the GA literature; they are briefly
sketched below.

The first technique is to replace current members of the
host population with the new immigrants ((Pettey, 1987)
(Tanese, 1987) (Whitley, 1990)). The host members to be
replaced can be selected by many means: randomly, based
on fitness, or based on similarity using the Hamming
distance (as done in Crowding).

The second approach is similar to the (µ, λ) technique of
evolutionary strategies, but uses GA style selection and
reproduction. The host population is temporarily enlarged
by the migrants (analogous to µ) and then pared down
again to its normal size (analogous to λ) after
reproduction. In other words, selection for reproduction is
performed on the extended population, host members plus
immigrants, but there will only be λ offspring. This
technique has been used by (Cohoon, 1991) in their
GAPE system.

Since the purpose of the colonies is to add diversity to the
core, a large fraction of the colony will be sent to the core,
perhaps the entire population. Consequently, if a
substantial number of colonies send migrants, the core
will be inundated with new members. Since the
replacement approach (the first technique of those
presented above) incorporates the new members by
replacing the old core members, all or most of the
members of the core could be replaced by new
immigrants. As the purpose is to add diversity to the core
– not replace it!! – the (µ, λ) method of immigration
absorption will be used.

The competition during migrant integration is very fierce.
Since the core population is reduced to its normal size
during reproduction, the selection pressure exerted on the
bloated core exceeds that experienced by a normal GA
population. If the migrants from the colonies have very
poor fitness with respect to the core, they will not be
selected during reproduction and will have no effect on
the core at all. Any migrant that makes it into the core
intact deserves to be there! However, since the selection is
not deterministic, colony migrants do have a chance of
being selected as a parent and so can influence the next
core generation, if not intact, then in part.

4 THE BEHAVIOR OF THE SBGA IN
DYNAMIC ENVIRONMENTS

4.1 PURPOSE

In our GECCO’99 paper, we showed that the SBGA
outperforms the GA in both stationary and dynamic
environments. Here we attempt to analyze its behavior in
the dynamic environment in much greater detail in order
to gain a deeper understanding why the SBGA performs
as well as it does.

For GECCO’99 we found that the SBGA outperformed
the GA in dynamic environments under the many settings
of migration interval, dimensionality, and function speed
that we looked at. However, in order to compute all of the
possible combinations of settings, only 3 repetitions of
each combination could be done. Since we learned that
any setting will do, we will now run only one setting 111
times to achieve more detailed insights with statistical
significance.

4.2 EXPERIMENTAL DESIGN

This experiment was done using the F2 function from the
De Jong test suite composed with the one dimensional
version of the Griewangk Function (F8). The combined
function is called the F8F2 function, described in
(Whitley, 1996), see Table 1. This minimization function
is non-symmetric, linearly separable, increases in
difficulty as the dimension increases, and has a known
minimum at (1, 1). The solutions to F8F2 were encoded
using Gray coding.

Table 1: The F8F2 fitness function

F2 : f x, y() = 100 x2 − y()2
+ 1− x()2

x, y ∈ −2.048,2.047[]
Minimum when x1 = x2 = 1 (F2 = 0)

F8 : f x()= 1 +
x 2

4000
− cosx x ∈ −512,511[]

Minimum when x = 0 (F8 = 0)

F8F2(x1,x2,x3,…,xn) = F8(F2(x1,x2)) + F8(F2(x2,x3)) +
… + F8(F2(xn-1,xn)) +F8(F2(xn, x1))

Minimum when xi = xj = 1 (F8F2 = 0)

To better understand how the SBGA would handle itself
in a dynamic environment, we compared it to the GA
running both algorithms on the F8F2 fitness functions of
dimensionality 5, for 750 generations. For the first 150
generations, F8F2 was held stationary allowing both
systems to converge on the global minimum. In the
experiment convergence typically occurs by generation
90.

In the experiment, both the GA and SBGA were given the
following (common) parameter settings: the probability of
mutation = 0.006 per bit, and the probability of one-point
crossover = 0.7. Linear rank selection with elitism was
used. The slope was set to be as steep as possible (i.e.
with Max = 2.0).

The SBGA was given 10 colonies of 100 members each.
The colony size was chosen to reduce the amount of
random drift, yet keep the colonies relatively small in
size. The core group size was set to 1000, an amount
equal to the size of all the colonies combined. During
migration 25 elite members of a colony are sent to the
core group. The immigration interval was set to 5
generations (so in every generation, only 2 colonies are
sending members to the core).

The GA was given a population of 2000, equal to the total
population of the SBGA system.

The environment undergoes a simple translation in
phenotype space along the hyper-diagonal. This motion is
kept at a constant speed for 600 generations, at which
point the global minimum has moved from the point (1, 1)
to the point (1.5, 1.5). Since the genome is 60 bits long,
the environment changes, on average, approximately half
a bit per generation

The best fitness value of the population is recorded every
generation, as is the median of the population and the
diversity3 of the population.

5 RESULTS AND DISCUSSION

5.1 BEST OF THE GENERATION RESPONSE

The experiment has a stationary region for 150
generations, after which the environment moves along the
hyperdiagonal at a constant rate. In the stationary region
one expects an evolutionary system to rapidly close in on
the global optimum (at the price of decreasing diversity),
eventually either finding it, or approximating it. Once the
environment changes, the SBGA because of its design
should begin to track the global optimum sooner and with
a greater accuracy than the GA, which should have
experienced an extreme loss of diversity.

Figure 1 shows the fitness of the best individual for each
generation for both the GA and the SBGA. Confidence
bands are displayed around the mean curves, the SBGA’s
confidence band is in light grey, the GA’s is in dark grey.

The confidence bands are calculated to take into account
that the graph comprises 750 individual confidence
intervals, one for each generation. In order to compensate
for the effect of the multiplication axiom of probability
theory which would reduce our confidence level from
95% for any individual confidence interval to practically

3 The diversity of a population as used here is the average genetic
entropy across the population, averaged across all loci, see (Wineberg
and Oppacher, 1996)).

zero for the entire band, we use Bonferroni Joint
Confidence Invervals (Neter et. al., 1996, pp. 152-155).

 Looking at the graph, during the first 150 generations,
both the GA and SBGA converge rapidly to very low
fitness values (remember F8F2 is a minimization
problem) as expected. About generation 60, the two
curves begin to diverge; the SBGA begins to outperform
the GA. In fact the GA flatlines by generation 75 while
the SBGA continues to improve even until the
environment starts to move at generation 150.

Again, by looking at the graph after the environment has
started to move, one can discern two stages. In the first
stage, both systems drastically drop in fitness as a result
of having converged. In the second stage, the systems
recover somewhat, although they are still losing ground.
However the slope of the GA is far steeper than that of the
SBGA (until it plateaued) and the GA cannot track the
global as closely. The fitness difference between the GA
and the SBGA is far greater now than during the
stationary stage.

5.2 MEDIAN RESPONSE

Figure 2 shows the median fitness value of the population
for every generation (we have only recorded the median
of the core population for the SBGA). Unlike figure 1 the
111 median fitness values at a given generation are not
averaged, but rather the median is taken because we found
that the results were not normally distributed; the
distribution curves showed a large one sided tail which
heavily skews the results of an average.

As a result of the use of the median instead of the
average, one cannot use the standard confidence interval
around the mean. Instead, we used the Thompson-Savur
distribution-free confidence interval based on the sign test
(Hollander and Wolfe, 1973, pp. 48-49). Again because
we deal with 750 such confidence intervals, we must
apply the Bonferonni correction to keep the confidence
level up at 95%.

0.1

0.2

0.3

0.4

0.5

0 150 300 450 600

generation

GA

SBGA

Figure 1: The Fitness of the Best Member Per Generation

Figure 2 shows that the median response of the GA
population mirrors the curve for the best fitness found in
figure 1. However, this is not the case for the SBGA:
during the stationary phase, the fitness remains
surprisingly high even though the best of the SBGA is
lower than that of the GA. Furthermore, once the
environment starts to move, the median fitness actually
drops dramatically, even below that of the GA. This
counterintuitive behavior (the SBGA seems to be doing
worse on ‘average’ on the easier task) can be explained
when one takes the effect of the shifting balance into
account.

As the SBGA converges during the stationary phase, the
core envelops the region in which the global minimum
resides. The colonies, kept away from the core by the
distancing mechanism, cannot but help to have poor
members. These members are sent into the core, keeping
the median very high. Once the environment moves, the
core, due to its huge bulk, cannot respond quickly and so
its members become very unfit. However, the small,
quick moving colonies, which, by being outside the core
are most likely already near the new location of the
optimum, will send highly fit members back to the core.
These members will begin to dominate the core, thus
reducing the median.

It is this very fact that shows that the benefits of the
shifting balance theory are indeed operating. It also shows
that the SBGA thrives in a dynamic environment.

5.3 DIVERSITY

Figure 3 shows the diversity of the population for every
generation (we have only recorded the diversity of the
core population for the SBGA). Like figure 2, the 111
diversity values for a given generation have their median
taken because we found that the results were not normally
distributed. Consequently, the confidence bands are
computed in the same manner as the median fitness
results.

As expected, the GA rapidly loses almost all of its
diversity. Quite surprisingly the GA does recover very
quickly. After about 50 generations it is very close to the
diversity level which it will maintain for the rest of the
run.

Once again, the SBGA’s results are fairly surprising. At
first the SBGA behaves as one would predict: the
diversity stays very high. However, as soon as the
environment begins to move, the diversity rapidly
declines (albeit at a slower rate than the various diversity
changes that the GA experiences). As with the median
fitness behavior, this fact is also due to the effect of the
shifting balance. As fit colony members, from colonies
that are well positioned in the search space, migrate to the
core, they experience a selective advantage with respect
to the existant core members. Consequently they start to
outperform those original core members and begin to
‘take over’ the core. As a result, the core becomes
populated with individuals of similar genetic makeup, and
the diversity drops as the core shifts its position in gene
space.

6 CONCLUSION

The experimental results suggests that the SBGA does
indeed improve the behavior of the GA in dynamic
environments. This is especially noticeable if one
compares the small advantage that the SBGA has over the
GA in the stationary enviroment versus the vast relative
improvements obtained when the optimum started to
move.

This was achieved because extra diversity in the SBGA is
not generated blindly as with most extensions of the GA
which attempt to increase its adaptiveness. The SBGA
uses small subpopulations that are forced to explore in
other areas than the main population. Members from these
new regions are brought back to the main population to
enhance its diversity. However the subpopulations are not
blindly entering the novel territory but are doing so by
following the fitness landscape.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

GA

SBGA

generation

0 150 300 450 600

Figure 2: The Median Fitness of the Core Population Per
Generation

0.2

0.4

0.6

0.8

1.0

0 150 300 450 600

generation

SBGA

GA

Figure 3: The Diversity of the Core Population Per
Generation

Acknowledgments

We would like to thank Steffen Christensen for his help in
interpreting the data.

References

Cohoon, J., Hegde, U., Martin, W., and Richards, D.
(1987). Selection in Massively Parallel Genetic
Algorithms. In J.J. Grefenstette (Ed.), Proceedings of the
Second International Conference on Genetic Algorithms,
pp. 148-154. Hillsdale, New Jersey: Lawrence Erlbaum
Associates.

Hollander, M. and Wolfe, D. A. (1973). Nonparametric
Statistical Methods. New York: John Wiley & Sons.

Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman,
W. (1996). Applied Linear Statistical Models, Fourth
Edition. Chicago: McGraw-Hill.

Oppacher, F., and Wineberg, M. (1999). The Shifting
Balance Genetic Algorithm: Improving the GA in a
Dynamic Environment. In W. Banzhaf et. al. (Eds.) The
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-99), pp. 504-510. San
Francisco: Morgan Kaufmann.

Pettey, Leuze, & Grefenstette, (1987). A Parallel Genetic
Algorithm. In J.J. Grefenstette (Ed.), Proceedings of the
Second International Conference on Genetic Algorithms,
pp. 148-154. Hillsdale, New Jersey: Lawrence Erlbaum
Associates.

Tanese, R. (1989). Distributed Genetic Algorithms. In J.
D. Schaffer (Ed.), Proceedings of the Third International
Conference on Genetic Algorithms, pp. 434-439. San
Mateo, California: Morgan Kaufmann.

Whitley, D., and Starkweather, T. (1990). Genitor II: A
Distributed Genetic Algorithm. In the Journal of
Experimental and Theoretical Artificial Intelligence, 2,
189-214.

D. Whitley, K. Mathias, S. Rana and J. Dzubera (1996).
Evaluating Evolutionary Algorithms. In Artificial
Intelligence Volume 85, pp. 245-276, 1996.

M. Wineberg and F. Oppacher (1996). The Benefits of
Computing with Introns. In J. R. Koza, et. al. (Eds.)
Genetic Programming 1996: Proceedings of the First
Annual Conference, pp. 410-415. Cambridge
Massachusetts: MIT Press.

