
Adaptive Learning for Poker

Luigi Barone and Lyndon While

Department of Computer Science,

The University of Western Australia,

Western Australia, 6907

fluigi, lyndong@cs.uwa.edu.au

Abstract

Evolutionary algorithms are more than func-

tion optimisers | they adapt and learn in

dynamic environments. In this paper, we use

this implicit learning characteristic of evo-

lutionary algorithms to create a computer

poker player capable of adapting to di�er-

ent opponent strategies. We identify several

important poker principles and use these as

the basis for a hypercube of evolving popu-

lations of poker playing candidates. We sim-

ulate the most commonly employed strate-

gies of human players and report experiments

that demonstrate the emergent adaptive be-

haviour of our evolving poker player. In

particular, we show that our evolving poker

player develops di�erent techniques to coun-

teract the di�erent playing styles employed

by its opponents in order to maximise per-

sonal winnings. We compare the strategies

evolved by our poker player with a compe-

tent static player to highlight the importance

of adaptation and demonstrate the improved

performance of our approach. Finally we

discuss a real-world implementation of our

model that recently competed in the annual

rec.gambling.poker Hold'em poker elimina-

tion tournament. Our poker player had some

success, winning a few hands, �nishing in the

top 22% of players.

1 Introduction

Evolutionary computation uni�es under one umbrella

term the di�erent studies in computer science that use

neo-Darwinian evolution as an adaptive optimisation

tool to solve problems in computers. These algorithms

employ a population of candidate solutions that evolve

under the in
uence of a �tness metric until a solution

emerges that satis�es the criteria of the problem.

Beyond the genetic level of modelling evolution [9] lies

the �eld of evolutionary algorithms, where evolution

is modelled as behavioural linkages between parents

and o�spring. Encompassing evolutionary program-

ming [8] and evolutionary strategies [12], evolutionary

algorithms model problems in terms of phenotypic be-

havioural traits instead of populations of genetic ma-

terial. The underlying complex genetic transforma-

tions are ignored, with changes to phenotypic traits

assumed to follow a Gaussian distribution with zero

mean di�erence and a given standard deviation. While

evolutionary programming deals with the creation of

�nite state machines, the �eld of evolutionary strate-

gies uses a vector based representation of behavioural

traits. There are two common forms [15]: a (� + �)

strategy uses � parents to generate � o�spring, with

the next generation chosen from the combined popu-

lation of parents and o�spring. A (�; �) strategy, �

parents again generate � o�spring, but the next gen-

eration is chosen only from the o�spring population.

Poker is a card game in which the players are dealt

cards and then take turns to bet money into a com-

munal pot. The aim of the game is to win as much

money as possible from opponent players. At each

turn, a player may either:

1. fold: conceding all interest in the pot,

2. call: matching the (possibly zero) previous bet,

3. raise: making a bet that exceeds the previous bet.

Play proceeds until each active player has placed an

equal amount of money in the pot. At the conclusion

of the deal, the player forming the best hand is deemed

the winner and is awarded the pot. Variants of poker

use di�erent numbers of betting rounds, interspersed

with the replacement, receipt, or revelation of cards.



Poker is interesting because it is a game of imper-

fect information. Unlike games of perfect information

(e.g. chess), in which players have complete knowledge

about the state of the game, players of games of im-

perfect information must infer their relative strength

in the game using only the public information avail-

able to them. With incomplete or imperfect informa-

tion, players can attempt to deceive their opponents by

falsely portraying strength (or weakness) about their

position in the game| the correct handling of this im-

perfect information is essential for optimal play. Fun-

damental to good poker is the ability to deduce oppo-

nents' playing styles in order to exploit their weak-

nesses. This requires adaptive learning in order to

maximise winnings against di�erent playing styles.

In this work, we study the most widely played poker

variant, Texas Hold'em [10]. As with most poker vari-

ants, a maximum of three raises is allowed during each

betting round.

In previous papers [2, 3], we presented two frame-

works for designing adaptive learning poker players us-

ing evolutionary algorithms. Both our previous works

restricted the adaptation to one opponent strategy at

a time and used a simpli�ed version of the game, lim-

iting the game to one betting round. In this paper,

we lift these restrictions. Section 2 reviews previous

attempts at computer based poker players. Section 3

describes our updated model for adaptive learning in

the full game of poker. Section 4 describes experimen-

tal results that demonstrate the adaptive behaviour

of our approach. In particular, we demonstrate that

the model evolves strategies capable of winning against

vastly di�erent playing styles | the specialisation al-

lowing the player to win more than the generalised

strategy it was based on. Section 5 concludes the work.

2 Previous Poker Models

The �rst theoretical work with the game of poker was

conducted by von Neumann and Morgenstern in the

1940s [18]. Applying game theory to a very simpli�ed

version of poker, they demonstrated the need for de-

ception, called bluÆng, for competent play. Attempts

were made to adapt their approach to more realistic

versions of the game [1, 13], but with only limited suc-

cess. Typically these approaches fail due to their inad-

equate handling of several poker principles (e.g. bet-

ting position) that are fundamental to the game.

Many books have been written on how to play poker,

included some by today's experts [10, 16]. Suggest-

ing a simple mechanical approach, and while typically

statistically inclined, these books are usually not very

systematic or rigorous in their approach. As these ap-

proaches are non-adaptive, considering the average re-

sult of each hand, models based on this methodology

can never be optimal.

The earliest research into designing computer-based

poker players was by Findler and was based on a se-

ries of simple heuristics and statistical models [5, 7].

Findler devised a number of algorithms that bet in a

well-de�ned deterministic manner, revealing informa-

tion that could be exploited by a competent human

player. He concluded that static models were unsuc-

cessful and that adaptive algorithms were required for

successful play [6]. Findler conducted a number of ex-

periments to estimate commonly-arising probabilities,

using them to de�ne game-speci�c heuristics for his

poker model. He progressed onto examining some sim-

ple learning strategies and assigned a subjective eval-

uation of their relative performance in comparison to

some existing mathematical models, but did not draw

any conclusive results.

Work at The University of California [11] has concen-

trated on using a variant of the game-tree approach

used in games of perfect information to solve games of

imperfect information. They have applied their system

to a very simpli�ed game of poker using a reduced deck

and two players, with some interesting results. How-

ever, the size of the game tree seems to be a limiting

factor, with the authors conceding it is unlikely that

they will ever solve the complete game.

The Computer Poker Research group at the Univer-

sity of Alberta is currently working towards creating a

world-class poker player [14]. After initially creating a

poker program based on static expert knowledge, they

concluded adaptive play and opponent modelling are

essential for strong play [4]. Using an adaptable array

of weights to modify opponent starting hand proba-

bilities, their program attempts to adapt to di�erent

playing styles by observing the betting tendencies of

opponents.

3 An Adaptive Poker Player

We propose the use of evolutionary algorithms as an

adaptive learning mechanism in the design of an evolv-

able poker player. As a result of competition for space

in a population, population members need to learn

which poker-playing strategies are successful in or-

der to propagate into future generations. We embed

this implicit evolutionary learning process in our poker

player to make it adaptive | the adaptation is essen-

tial to learn opponent playing styles and to exploit op-

ponent weaknesses in order to maximise personal win-



nings. We structure our poker player as a hypercube

of populations of di�erent betting suggestions with a

(1 + 1) evolutionary strategy as the learning mecha-

nism.

3.1 Poker Principles

We incorporate �ve important principles of the game

of poker into our model. The �rst principle is hand

strength. With a strong hand, a player should often

raise, trying to maximise the stakes when there is high

probability of winning. Correspondingly, when hold-

ing a weak hand, a player should normally fold.

The second principle is opponent strategy. As previ-

ously suggested, di�erent opponents can employ vastly

di�erent strategies. A generalised strategy, while po-

tentially sound, will not be as successful against an op-

ponent as a strategy optimised from play against that

opponent. To maximise winnings, a player must be

able to counteract all di�erent opponent playing styles

and recognise when to use each counter-measure. This

competence is responsible for noting which opponent

is using which strategy.

The third principle is position. This competence con-

siders where in the betting round the player is forced

to act. Being �rst or second to act (called early posi-

tion) places a player at a disadvantage as the player has

no idea how subsequent players will act. However, a

player in late position has seen how others have acted

and already has information to start inferring possi-

ble hand strengths of opposing players. Late position

players are often able to play hands more aggressively.

The fourth principle is risk management. Risk man-

agement is responsible for examining how much money

is required to remain in contention to win. When con-

sidering risk management, a player determines if a call

or raise is justi�ed in terms of expectation, compar-

ing the size of the potential winnings with the size of

the stake required to remain in contention to win (i.e.

the odds). When there are many players contesting a

pot, a player can often a�ord to risk a small amount

of money on a long shot because the size of the pot

justi�es the small risk | the expectation is positive.

The last principle is game stage. This competence

is responsible for noting that di�erent strategies are

required at di�erent stages in the game. As a hand

progresses, more information is revealed and the �nal

result becomes more certain. For example, a small

pair before the 
op is quite favourable and worthy of a

raise, but with a non-favourable 
op and against many

opponents, this hand should probably be folded.

3.2 Determining a Game Action

At each betting round, each player in turn must decide

whether to fold, call, or raise. For good players, the

decision is based on their ability to estimate (either by

calculation or from experience) the probability of win-

ning from any given game state. We equip our evolving

poker player with this ability by allowing it to enumer-

ate all possible opponent starting hands to determine

the correct number of hands lost to, tied with, and won

against. Note however, that the calculated probabil-

ity refers to the likelihood of winning against random

opponent hands and does not incorporate information

inferred about opponent hand strength from opponent

betting patterns. For example, to simply ensure pos-

itive expectation may give up potential winnings, es-

pecially against players who can be easily blu�ed.

We observe the following about expert players:

� Their likelihood of raising increases as the proba-

bility of winning increases.

� Their likelihood of folding decreases as the prob-

ability of winning increases.

� Their likelihood of calling is maximal when they

are unsure about their relative strength in the

game, decreasing as their con�dence increases.

This allows for the opportunity of winning, while

minimising potential losses if beaten.

Using these observations, we model action determina-

tion with the following functions:

eval(c) =
c

1:0� c

fold(x ) = exp(�eval(b) � (x � a))

call(x ) = eval(c)� exp(�eval(b)
2
� (x� a)2)

raise(x ) = exp(eval(b) � (x+ a� 1:0))

where x is the independent variable corresponding to

the probability of winning from a given game state.

The constants a, b, and c de�ne the shape of each

function. For the fold(x ) and raise(x ) functions, a

de�nes the intersection point with the function f(x) =

1, while b controls the gradient of the function. For

the call(x ) function, a de�nes the mid-point of the

Gaussian, b controls the width of the function, while

c controls the maximum allowable value. The eval(c)

function maps a number in the range [0::1] to the range

[0::1) with eval (0:5) = 1. Hence, all constants can be

constrained to the range [0::1].

These three functions determine the game action of our

poker player. The probability of winning from the cur-

rent game state is calculated and is used to determine a



response for each betting action by using the functions

de�ned above. The responses from each function are

transformed into probabilities and are used to prob-

abilistically determine the action of the poker player.

We group these seven constants together and call the

grouping a candidate.

The computational requirements for an accurate calcu-

lation of the probability of winning from a given game

state exceeds current computing resources and hence

some approximation is required. We employ a lookup

table for pre-
op strength calculation and only ever

calculate the probability of winning against a single

opponent. Following Billings et al. [4], we approxi-

mate the probability of winning against n players by

raising the single-opponent probability by n.

3.3 The Evolutionary Structure

No one poker principle is suÆcient by itself. A good

poker player will considered all the poker principles

outlined above in order to make an informed decision

about the game. We use a hierarchical structure for

our evolving poker player | the poker player con-

sisting of a hypercube of populations of candidates.

We segment our hypercube into four dimensions: one

representing position, one representing risk manage-

ment, one representing game stage, and one represent-

ing opponent strategy. The hand strength competence

is considered in the strength calculations mentioned

above.

The position dimension is sub-divided into three divi-

sions: early, middle, and late. The risk management

dimension is classi�ed into four divisions: one for each

of the possible number of bets to call, starting from

zero, up to and including three bets. The game stage

dimension is segmented into the four betting rounds in

the game: pre-
op, post-
op, post-turn, and post-river

(or showdown). The opponent strategy dimension is

sub-divided into segments for each di�erent opponent,

but may be reduced by combining segments of like-

minded opponents. We note that we can easily expand

our model to include more poker principles by adding

extra dimensions to the hypercube.

Each element of the hypercube consists of a population

of candidates, with each candidate consisting of seven

values in the range [0::1]: two each for the constants in

the fold and raise functions, and three for the constants

in the call function. These values evolve over time in

our evolutionary model and are used to determine the

action of the poker player.

Excluding the opponent strategy dimension, the dis-

cretised hypercube uniquely describes one population

of candidates for each possible game state. When our

poker player is asked to act, the game state is discre-

tised and the corresponding population is used to de-

termine the action. From the selected population, one

candidate is chosen as representative for the player.

The choice of candidate cycles through all population

members as the population is consulted from hand to

hand. At the end of a hand, feedback about the suc-

cess in the hand (how much was won or lost) is re-

ported directly back to the chosen population. The

representative candidate, along with all other candi-

dates from the same population suggesting the same

action, receives this feedback | the feedback used to

build a �tness score. As the player is often required to

make multiple actions per hand, feedback about poker

playing success is reported to all used candidates.

This unique discretisation of game state fails when

considering play against multiple opponents. Depend-

ing on its position, our poker player will often be com-

peting against multiple active (un-acted opponents are

assumed active) players. For each active opponent, we

determine a betting action as before assuming this to

be the only opponent in the game. Requiring to beat

all opponents, we choose the tightest (least costly) ac-

tion reported as the action for our poker player. Feed-

back is only reported to the population used.

Evolution of the population occurs when each candi-

date has been used a �xed number of times. Evolution

occurs via a (1 + 1) evolutionary strategy, with muta-

tion occurring on all seven real values of the parent.

4 Experimental Results

Our experiments use an evolutionary strategy ap-

proach to extend the results of previous research into

computer poker. We follow the same experimental

structure as our previous works on adaptive learning

for the game of poker [2, 3].

4.1 Opponents

Research by Sun and Wu [17] indicates that genetic

algorithms, when used to play the game of Othello,

over-adapt to the weaknesses of the current competi-

tion, resulting in poor performance against opponents

with previously unencountered strategies. They sug-

gest using a number of di�erent coaches to train evolv-

ing players to ensure the evolution of a strong general

player. However, in the game of poker, di�erent oppo-

nent playing styles require di�erent strategies in order

to maximise winnings against each opponent. We take

the view that our poker player should start from a pre-

built general strategy and adapt to the weaknesses of



that opponent's playing style | the specialisation es-

sential for discovering opponent weaknesses.

Real-world poker players are typically classi�ed as one

of four types (listed in ascending order of ability):

� Loose-Passive: over-values its hands, but rarely

raises, being fearful of large pots.

� Loose-Aggressive: over-values its hands, raising

often to increase potential winnings.

� Tight-Passive: plays few hands, usually with a

high probability of winning, but rarely raises.

� Tight-Aggressive: plays few hands, usually with a

high probability of winning, raising often.

For our experiments, we use a table con�guration,

called the mixed table, consisting of one evolving

poker player, three tight-passive players, and six loose-

aggressive players. For reference, we de�ne two tables

containing only one type of opponent strategy. The

loose table has one evolvable poker player and nine

loose-aggressive players. The tight table has one evolv-

able poker player and nine tight-passive players. When

playing against loose-aggressive players, our evolving

poker player needs to counteract the high variance play

of the loose-aggressive players. Against tight-passive

players, the evolving poker player needs to exploit their

timidness in order to maximise personal winnings.

4.2 Experiment 1

Experiment 1 demonstrates the learning ability of evo-

lutionary algorithms in the game of poker. Starting

with a randomly constructed poker player, we show

that our model rapidly evolves an competitive player

against a range of di�erent opponents. Each epoch,

each player starts with a \stack" of 1000 units. An

epoch comprises 100 hands of play. Each population

in the hypercube consists of 20 candidates. Each pop-

ulation member is used 25 times before the population

is subjected to reproduction.

Figure 1 plots the stack size of the evolving poker

player at the end of each epoch at the mixed table.

The graph shows an upward trend in the return of the

evolving poker player, corresponding to a fall in the

return of both the loose-aggressive and tight-passive

players. Initially, the evolving randomly-de�ned poker

player plays rather badly and loses a large proportion

of its stack. However, at the 71st epoch, the return of

the evolving poker player is �rst positive and a rapid

increase in pro�t is realised. After approximately 200

epochs, the rate of increase levels o�, but the number

of losing sessions decreases over time.

0 500 1000 1500 2000 2500
Epoch

−2000

0

2000

4000

6000

S
ta

c
k

Figure 1: Stack Size Versus Epoch for the Evolving

Poker Player at the Mixed Table

4.3 Experiment 2

Experiment 2 demonstrates adaptive behaviour from

a �xed playing style. As expressed previously, we take

the view that our poker player should start from a

generalised playing strategy and adapt to the weak-

nesses of the competition at hand. This adaptation is

essential in order to maximise winnings | a general

strategy will not be able to exploit the weaknesses in

an opponent's playing style as well as a strategy opti-

mised from play against that opponent. We used the

ideas of Findler's static poker players [6] to design a

simple, but competent, tight-aggressive player as our

starting point. We name this player A.

We evolved A for 1000 epochs at the mixed table,

naming the strategy evolved for play against the tight-

passive players at the end of the last epoch Atight. We

name the strategy evolved for play against the loose-

aggressive players at the end of the last epoch A
loose.

Figure 2 shows the post-river evolved controller for

A
tight. Each plot represents the average candidate of

each hypercube element in the evolving poker player.

The x-axis of each plot is the probability of winning,

and is the independent variable in the betting func-

tions of the candidate. Each plot shows the probabil-

ity of following each of the three betting actions: fold

(thin solid line), call (thick solid line), and raise (thin

broken line).

As expected, the evolved controller of Atight suggests

playing a tighter strategy (playing less hands) as the

number of bets to call increases (left to right) | the

player has realised that opponent raises indicate that

they probably hold a good hand. The evolved con-

troller also suggests playing a tighter strategy as the



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2: The Evolved Controller of Atight

Position gets later top-bottom (early to late) and bets-to-call increases left-right (0{3).

position of the evolving poker player becomes earlier

(bottom to top). This is most evident in the zero bets

to call elements of the hypercube. In early position,

with zero bets to call, the evolved controller of Atight

predominately suggests calling. However, when in late

position and zero bets to call, the controller suggests

raising a lot more often. These two situations are re-

markably di�erent and are a consequence of the tight-

passive player's fear of raises.

In late position, the evolving player can be con�dent

that all previously acted players do not value their

chances of winning highly (they would have raised oth-

erwise) and because of their tightness can be blu�ed

out of the pot by raising. However, in early position,

bluÆng with a weak hand is dangerous as even a very

tight player knows to raise when holding a good hand.

Only in the cases of holding a very good hand will

the controller suggest not folding when there are more

than zero bets to call.

Figure 3 shows the post-river evolved controller of

A
loose. The evolved controller for A

loose suggests a

signi�cantly di�erent strategy than A
tight, with over

15% of hands being played di�erently. This di�erence

re
ects the tendency of the loose-aggressive players

both to over-value their own hands (so you can't win

by bluÆng with a mediocre hand at the loose table)

and to stay in even against an opponent's raise (so you

can raise to maximise winnings without losing action).

When there is one or more bets to call, the evolved con-

troller of Aloose suggests a signi�cantly looser strategy

than that of Atight, choosing to call or raise more of-

ten than that of Atight. The evolving poker player has

learnt to respect the raises of the tight-passive play-

ers much more than those of the loose-aggressive play-

ers. With zero bets to call, the evolved controller of

A
loose suggests not bluÆng as often as the controller

of Atight, since loose-aggressive players are less likely

to be forced out of a hand. The evolving poker player

has learnt that tight-passive players respect the raises

of opponent players much more than loose-aggressive

players.

4.4 Experiment 3

Experiment 3 demonstrates that the evolved strate-

gies from Experiment 2 out-perform both A and each

other in their own \environments". We play A
tight

and A
loose at tables containing only tight-passive

and loose-aggressive players and demonstrate that the

evolved strategies outperform A. De�ning Wt(X) to

be the average return of a non-evolving player X at a

table t, we expect the four inequalities of Table 1 to

hold. The �rst two inequalities state that both evolved

strategies perform better than A at tables containing

only the opponent playing style used in their train-

ing. The other two inequalities state that the evolved

strategies suited for play at table t perform better than

players evolved at another table t0 when playing at t.



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 3: The Evolved Controller of Aloose

Position gets later top-bottom (early to late) and bets-to-call increases left-right (0{3).

Wtight(A
tight) > Wtight(A)

Wloose(A
loose) > Wloose(A)

Wtight(A
tight) > Wtight(A

loose)

Wloose(A
loose) > Wloose(A

tight)

Table 1: Inequalities for Our Poker Model

We �xed (no evolution) the strategies of Atight and

A
loose and played these players along with A against

the loose-aggressive and tight-passive players of the

loose and tight tables respectively. The results are

summarised in Table 2. Each �gure is the average of

1000 epochs' play at the appropriate table.

Wtight(A
tight) 1978

Wtight(A) -528

Wtight(A
loose) -361

Wloose(A
loose) 6119

Wloose(A) 5294

Wloose(A
tight) 4222

Table 2: Results of Players A, Atight and Aloose at the

Loose and Tight Tables

The results of Table 2 support our claim. Analysis

shows a statistical di�erence between the two means

of each inequality at the 5% level of signi�cance.

These results again highlight the fact that loose players

are easier to exploit than tight players. They show that

the evolving poker players have specialised to the play-

ing styles of the competition at hand and are able to

exploit the discovered weaknesses in their opponents'

strategies in order to maximise their winnings against

each strategy.

4.5 Real World Testing

To gain some real-world experience, we entered our

poker player in the annual, play-by-email no-limit

poker tournament collectively hosted by the Usenet

group rec.gambling.poker. The tournament started

with 987 competitors, including expert poker players

and authors of best-selling poker books. The tourna-

ment presented a new challenge to our poker player |

our player had never competed in a no-limit tourna-

ment structure before, having previously only played

in structured \ring" (continuous) games.

We took the evolved strategy A
tight and used this

as the base strategy for unknown competitors. We

approximated unrestricted opponent bets to a num-

ber of raises, dependent on the absolute size of the

bet and the size of the bet relative to their stack.

When suggesting a raise, we instructed our poker

player to double the size of the previous bet, but non-

deterministically allowed for greater sized bets.



Our poker player played a very conservative game,

playing few hands, but generally very solidly. Our

poker player was recently eliminated from the tourna-

ment, �nishing within the top 22% of players | even

managing to outlast one of the authors! We consider

this a very reasonable e�ort, especially considering it

had never competed in a fast-paced tournament be-

fore.

5 Conclusions

Poker, a game of simple rules, often requires complex

strategies for competent play. One of the most im-

portant qualities of a good poker player is the ability

to deduce opponent playing styles in order to exploit

individual weaknesses in each strategy. Dynamic al-

gorithms that learn and adapt to opponents' playing

styles are essential to maximise winnings.

In this paper, we discussed our model of adaptive

learning using evolutionary algorithms to learn the

game of poker. We used several important poker prin-

ciples to create a hypercube of populations of candi-

dates, using a discretisation of the game state to se-

lect a representative candidate. Our experimental re-

sults show that our evolving poker player can develop

di�erent techniques to counteract the di�erent strate-

gies employed by opponents, exploiting weaknesses to

maximise personal winnings. We have demonstrated

adaptive learning by showing that our poker player

out-performs a competent static player when played

against the same opposition.

References

[1] N. C. Ankeny. Poker Strategy: Winning with

Game Theory. Basic Books Inc., New York, 1981.

[2] L. Barone and L. While. Evolving adaptive play

for simpli�ed poker. In Proceedings of the 1998

International Conference on Evolutionary Com-

putation (ICEC '98), pages 108{113. IEEE Pub-

lications, 1998.

[3] L. Barone and L. While. An adaptive learning

model for simpli�ed poker using evolutionary al-

gorithms. In Proceedings of the 1999 Congress

on Evolutionary Computation (CEC '99). IEEE

Publications, 1999.

[4] D. Billings, D. Papp, J. Schae�er, and D. Szafron.

Opponent modelling in poker. In Proceedings of

the Fifteenth National Conference of the Ameri-

can Association for Arti�cial Intelligence, 1998.

[5] N. V. Findler. Computer model of gambling and

bluÆng. IRE Transactions on Electronic Com-

puters, pages 97{98, 1961.

[6] N. V. Findler. Studies in machine cognition using

the game of poker. Communications of the ACM,

23(4):230{245, 1977.

[7] N. V. Findler, H. Klein, and Z. Levine. Experi-

ments with inductive discovery processes leading

to heuristics in a poker program. In Cognitive

Processes and Systems, pages 257{266, 1973.

[8] L. J. Fogel. Autonomous automata. Industrial

Research, 4:14{19, 1962.

[9] J. H. Holland. Adaptation in Natural and Arti�-

cial Systems. University of Michigan Press, Cam-

bridge, MA, 1975.

[10] L. Jones.Winning Low Limit Hold'em. ConJelCo,

Pittsburgh, PA, 1994.

[11] D. Koller and A. Pfe�er. Generating and solv-

ing imperfect information games. In Proceedings

of the Fourteenth International Joint Conference

on Arti�cial Intelligence (IJCAI'95), pages 1185{

1193, 1995.

[12] I. Rechenberg. Cybernetic solution path of an

experimental problem. Royal Aircraft Establish-

ment, Library translation No. 1122, 1965.

[13] M. Sakaguchi and S. Sakai. Solutions of some

three person stud and draw poker. Math Japonica

37, pages 1147{1160, 1992.

[14] J. Schae�er, D. Billings, L. Pea, and D. Szafron.

Learning to play strong poker. In Proceedings

of the Sixteenth International Conference on Ma-

chine Learning, 1999.

[15] H.-P. Schwefel. Numerical Optimization of Com-

puter Models. John Wiley and Sons, England,

1981.

[16] D. Sklansky. The Theory of Poker. Two Plus Two

Publishing, Las Vegas, NV, 1987. Formerly titled

\Winning Poker".

[17] C.-T. Sun, Y. H. Liao, J. Y. Lu, and F. M. Zheng.

Genetic algorithm learning in game playing with

multiple coaches. In Proceedings of the IEEE In-

ternational Conference on Evolutionary Compu-

tation, pages 239{243, 1994.

[18] J. von Neumann and O. Morgenstern. Theory

of Games and Economic Behaviour. Princeton

University Press, 1944.


