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Abstract 
The organizational algorithm is examined as a 
computational approach to representing 
interpersonal learning. The structure of the 
algorithm is introduced and described in context 
to the simple genetic algorithm. A comparison is 
made of the performance of both algorithms with 
respect to three different test functions: a simple 
single-peaked function, the standard Matlab 
“peaks” function (Mathworks 1998), and a 
multiple occurrence of a single-optimum 
Gaussian function. Algorithm performance is 
discussed relative to traditional optimization 
figures of merit as well as with respect to a 
learning analogy. 

1 INTRODUCTION 

Interpersonal human learning is similar to the simple 
genetic algorithm (Hines 1997).  In this paper we first 
present the context in which we are interested in such 
learning, then we give an explicit representation of this 
learning using the organizational algorithm, and finally 
we consider the performance of human learning by 
benchmarking the organizational algorithm to the simple 
genetic algorithm. We make this comparison using three 
different test functions: a simple single-peaked function, 
the standard Matlab “peaks” function, and a multiple 
occurrence of a single optimum Gaussian function. The 
algorithm performance is discussed relative to traditional 
optimization figures of merit as well as with respect to a 
learning analogy. 

Context.  For our research learning is important because 
it is at the heart of organizational evolution – a process 
(and perhaps the only process) by which companies, 
schools and other human associations could improve over 
time.  At its heart, improvement is a form of interpersonal 
learning – a process by which one person passes on ideas 
to another.   

Organizational improvement is difficult because 
organizations are complex. The complexity of General 
Motors, Hewlett Packard, AOL, a law firm or even a 
mom- and pop grocery store exceeds by many orders of 
magnitude anyone’s ability to understand and 
deterministically control. The complexity is both in the 
raw number of interacting entities (employees, machines, 
furniture, orders, customers, roads…) and in the feedback 
loops that interconnect these entities.  Humans – even 
augmented by computers – are incapable of storing the 
massive detail (Simon 1976) required for a 
comprehensive understanding of organizations and are 
notoriously poor at understanding the implications of 
intertwined positive and negative feedbacks (Kofman, 
Sterman et al. 1997). 

As a result of our cognitive limitations, organizational 
improvement is unlikely to come from anyone ″figuring it 
all out″.  Instead, improvement will likely come from an 
evolutionary process. Evolution is important to 
organizational improvement precisely because its 
processes do not depend on anyone figuring out why 
things work or fail to work.  We need to be more precise 
about what evolves in organizations. 

We believe the most important thing that evolves in an 
organization is a policy.  Indeed, we view policies as quite 
comparable to biological genes.  By policy we mean an 
explicit or implicit decision rule in the usual system 
dynamics sense (Forrester 1961). For example, a manager 
might set prices by the implicit rule: Raise prices when 
inventories are low, and lower prices when inventories are 
high. The policy is implicit as long as it remains unspoken 
or unwritten. Articulating the policy, perhaps by 
recording it in a policy manual, could make it more 
explicit. Of course, people might change their approach to 
pricing even without updating the manual.  In this case, 
the new approach would be a policy, while the old 
procedure recorded in the manual would no longer be a 
policy in our use of the term.  A policy is a rule or 
procedure that people actually use to make a series of 
decisions. In this case, the policy gives rise to a 



continuing stream of particular decisions to raise or lower 
price.   

A policy in an organization is comparable to a gene in a 
cell. A gene is a segment of DNA (or, in some organisms, 
RNA) that acts as a set of instructions for the ongoing 
production of a particular protein. The proteins then 
catalyze reactions in the cell. Indeed, no necessary 
chemical reaction occurs in a cell without a protein 
catalyst that is coded by a gene (Steele, Lindley et al. 
1998). Genes produce a continuing stream of action in the 
cell, while policies produce a continuing stream of action 
in the company. 

The creative mechanisms in evolution are mutation and 
recombination. In genetic mutation, part of a DNA 
molecule is physically changed, producing a new gene.  
In our analogy, genetic mutation corresponds to policy 
change, intentional or unintentional, and (like mutation) 
produces either favorable or unfavorable results (Meszias 
and Glynn 1993). The result of such a change, for better 
or worse, is a new policy. Genetic recombination occurs 
when two DNA molecules mix to form a new DNA 
molecule. In a company, genetic recombination 
corresponds to a particular kind of organizational 
learning: Inter-personal learning whereby a person 
combines a part of someone else’s ideas with his or her 
own (Holland, Holyoak et al. 1986; Miner and Mezias 
1996).  

In higher animals, sexual reproduction encourages the 
dissemination and recombination of genetic material.  
Natural selection is the process by which beneficial 
recombinants (and mutations) are retained, while 
deleterious ones are discarded.  Sex and selection in the 
natural world correspond in the corporate world to the 
various ways in which companies identify certain 
employees as exemplary and encourage other employees 
to learn from (or imitate) them (Nei 1987; Smith 1989; 
Gillespie 1991; Brown 1992; Brown 1995; Leach 1996). 
We call these processes of identification and 
encouragement “pointing and pushing mechanisms”. For 
example, pay and organizational position are two ways 
that a company can point to outstanding performers. Pay 
and position can serve a pushing function as well: 
Employees are motivated (“pushed”) to learn via their 
desire to rise in the pay scale and in the hierarchy.1  Other 
pointing and pushing mechanisms are also possible. 

1.1 METHODOLOGY 

Agent-based models are built around simulated agents –
or, in our case, managers. Each agent has one or more 
policies that can control aspects of the organization (e.g. 
setting prices, or deciding on the number of programmers 
to hire).  The key interaction between agents is learning 
from another manager, thereby changing the policy and, 
thus, eventually changing the performance of the 
organization. 

                                                           
1 Pushing successful people to share policies with others may also be 
necessary (Constant, Sproull et al. 1996). 

In our study of organizational evoluation, we use system 
dynamics, agent-based modeling and evolution algorithms 
in the following way: A system dynamics model 
represents the underlying physics of the organization as 
well as all policies that are not evolving. Evolving policies 
are carried by agents (individual managers) who learn 
from one another via a process that is similar to a genetic 
algorithm. 

The simulation environment allows us to investigate the 
conditions and trade-offs that influence the rate at which 
organizations improve their policies.  Conditions include 
number of teams, team size, frequency of mixing and 
evaluating, promotion (or other pointing and pushing) 
policies, number of managers, complexity of evaluation 
criteria, complexity of policies, number of policies, and 
many others.  An example of a trade-off is between the 
ability to discriminate between good and bad policies on 
the one hand and, on the other hand, the speed by which a 
policy spreads. As the number of teams increase, the rate 
by which policy changes disseminate will slow, while the 
ability to discriminate between beneficial and deleterious 
changes will increase. 

2 TECHNICAL OVERVIEW 

The simple genetic algorithm and the organizational 
algorithm are implemented for this presentation in 
Matlab. In the next few sections, the technical details of 
the simple genetic algorithm and the organizational 
algorithm are described. Also, the fitness functions 
implemented to evaluate the different algorithms are 
discussed along with the experimental test matrix. 

2.1 DATA STRUCTURES 

The system dynamics project model used in the 
application of the organizational algorithm acts on float 
type variables. For simplicity in the analysis and 
comparison of the initial organizational algorithm, the 
learning processes (crossover) and innovation (mutation) 
in the genetic algorithm and the organizational algorithm 
act on binary values. Conversion from float notation to 
binary is achieved by the method discussed in 
Michalewicz, (Michalewicz 1992).  

2.2 SIMPLE GENETIC ALGORITHM 

The simple genetic algorithm is designed according to the 
method outlined in Goldberg (Goldberg 1989). For 
convenience, the sequence of events followed in the 
algorithm is listed below.   

a. Randomly initialize the population  

b. Evaluate the fitness of each individual 

c. Compare individual performance and rank the 
individuals 

d. Select by a rank-based roulette process a teacher for 
each individual 



e. Allow crossover between teachers and learners 
according to the probability of crossover 

f. Select at random between the two children, the 
teacher, and the learner 

g. Apply innovation to the individuals who will 
innovate (according to the probability of mutation) 

h. Return to step (b.) for at least N generations, where N 
is the population size 

The selection process in the simple genetic algorithm will 
enable it to seek the optimum value in a population 
regardless of crossover and mutation processes. Trade-
offs exist in the parameterization of the simple genetic 
algorithm: between population size, probability of 
crossover, and probability of mutation.   

2.3 ORGANIZATIONAL ALGORITHM 

The organizational algorithm differs from the simple 
genetic algorithm in four aspects. First, all of the 
individuals remain in the population throughout the 
simulation. Second, in each generation every individual 
makes a decision whether or not to learn (according to 
some probability of learning). Third, once the individuals 
are ranked according to their relative performance, an 
additional promotion (or demotion) is applied to the 
population. The promotion of the individuals creates 
positions that are used in the selection process. The 
promotion process is described in the next section. 
Finally, the processes of learning and promotion can be 
applied within a subset of the total population, a team. 
The team-based learning process is also described in a 
later section. The steps followed in the organizational 
algorithm are described below. 

a. Randomly initialize the population  

b. Evaluate the fitness of each individual 

c. Compare individual performance and rank the 
individuals 

d. Promote each individual according to the rank and a 
promotion base value 

e. Select by a position-based roulette process a teacher 
for each individual who will learn (according to the 
probability of learning) 

f. Allow crossover between teachers and learners  

g. Select at random from the two children to replace the 
learner 

h. Apply innovation to the individuals who will 
innovate (according to the probability of mutation) 

i. Return to step (b.) for at least N generations, where N 
is the population size 

2.3.1 Promotion 

Each individual in the population has an assigned 
position. Because the individuals survive throughout the 
simulation, the positions become the historical record of 

each individual. The policies (or phenotypes) of the 
individuals can change drastically from one generation to 
the next. However, the positions can only vary according 
to the promotion base assigned to the simulation. For a 
promotion base value of 2, the promotion is applied to 
each individual according to the following equation: 

Positionnew=Positionold*2K 

Where K is defined by: 

 

A quick study of K shows that at its upper bounds K=1, 
and at its lower bounds K= -1.  Therefore, the highest 
ranked individual (the best performing) receives the 
largest promotion (a doubling of position), whereas the 
lowest ranked individual receives a demotion (a halving 
of position). 

We have adopted this addition to the genetic algorithm in 
order to better represent the motivation behind who we 
choose to learn from. People choose their teachers not just 
based upon their most recent success, but also due to a 
whole range of personality characteristics and historical 
performance.  

From one product generation to the next, the CEO of the 
company  (supposedly the fittest manager) is not demoted 
to the lowest position within the company if he or she 
enforces a disastrous policy. More realistically, the CEO 
is either forced to leave the organization or to take a 
slightly lesser role in management. Similarly, in the 
organization algorithm, position takes on a multiplicative 
process – one seen in the K-12 education system. A 
student performing at an above average level at a young 
age is put into an honors track for education. The student 
will be less likely as time progresses to leave this more 
challenging track, whereby the ‘less fit’ scenario is true 
for the child placed into the special needs track from an 
early age. 

2.3.2 Teams  

Teams are used in the simulator when we are interested in 
studying alternatives to an individual-based hierarchy in 
an evolving organization. A team of managers work 
together to determine how to manage a project (or to 
make decisions that impact any dynamic system). Here, a 
description is given of how teams are implemented in the 
simulator. 

In a population of N individuals, generate T teams 
containing an equal number of individuals, NT.  

a. Each individual is defined by a set of policies and a 
position.  

b. The team decides on a single team-based set of 
policies, ei, according to: 

( )
1

)1(

1*2 −
−

−=
Sizepopulation
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K



 

c. The fitness is evaluated for each team using the 
team’s set of policies. 

d. Rank each team from 1 to T. 

e. Establish a promotion factor for each team according 
to the previously described promotion criteria. 

f. Promote every individual according to the team 
promotion factor. 

g. Make new teams. In this paper, the new teams are 
reassigned by placing the highest T individuals in 
separate teams, and then assigning the next T highest 
individuals in separate teams, and so forth until all of 
the individuals are placed. 

h. Allow teammates to learn from one another by 
roulette method. 

There are two key differences to team-based learning 
versus individual learning. First, the teams must form a 
combined set of policies (a combined phenotype) with 
which to manage. Second, learning only occurs within the 
bounds of the teams. For example, a population of 50 
individuals with 10 teams will have 5 individuals per 
team. At the beginning of every generation, each 
individual will have the opportunity to learn from the rest 
of the team (the other 4 individuals). In the same sized 
population, a team size of 1 will mean that the probability 
of crossover is effectiverly zero (the individual can only 
learn from himself). A team size of 50 will result in a 
population with random promotion – as there is only a 
single team for ranking. The result for a single team is 
learning drift – the individuals select from their teachers 
with no hierarchical basis.  

2.4 FUNCTIONS FOR COMPARISON AND 
TEST MATRIX  

The maximization of three evaluation functions are 
implemented as fitness criteria for both the simple genetic 
algorithm and the organizational algorithm. The 
evaluation functions are chosen to demonstrate the 
relative ability to optimize by the two algorithms as well 
as to examine the impact of team-based hierarchies on the 
optimization. The first function, De Jong (f1), is similar to 
a function applied in De Jong’s thesis; a simple approach 
to a single optimum value (Figure 1). The second 
function, peak-norm (f2), is a multiple-optima landscape 
with a unique maximum value (Figure 2). The third 
function, peak-same function (f3), possesses multiple 
equivalent optimums (Figure 3).  

Experiments were run on the simple genetic algorithm, 
the organizational algorithm, and the organizational 
algorithm with the population divided into teams. The 
sensitivity of each of these algorithms to the parameters 

probability of crossover, probability of mutation, and 
population size were made using the second fitness 
function, peak-norm.  

Figure 2. Matlab peaks function, f2, used for the 
majority of the comparison experiments.  

Figure 1. De Jong function, f1, with the 
corresponding boundary on x and y. 
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The experiment parameters are listed in Table 2. Each 
experiment was completed five times with the same 
varying random seeds in the population initialization. The 
simulations were carried out for 125 generations. 

 

Table 2. Matrix of Experiments (E) on the Simple Genetic 
Algorithm 

E PMutation PCrossover N T 

PMutation 0, 0.001, 
0.005, 
0.01, 
0.02, 0.1 

0.5 50 1 

PCrossover 0 0, 0.1, 
0.5, 1 

50 1 

N 0.005 0.5 10, 26, 
50, 100, 
200 

1 

T (OA 
only) 

0.001 0.5 50 1, 5, 
10, 25, 
50 

 

Each of the different algorithms was also examined for 
performance over the three different fitness functions. The 
motivation for implementing a function with multiple 
same-valued optimums (peak-same) was to study the 
phenomenon of population clustering on multiple 
solutions.  

2.5 PERFORMANCE METRICS 

The performance of the simple genetic algorithm and the 
organizational algorithm was compared for the accuracy 

of solution upon which the population converges, and the 
number of generations it takes to find a consensus. For 
each of the experiments, the mean fitness was calculated 
across the five simulations characterized by a different 
random seed for population initialization. 

For this presentation, solution convergence is defined as 
the point at which the mean fitness for a given simulation 
shows a derivative with respect to generation of less than 
10% that endures for at least three generations. 

3 RESULTS AND DISCUSSION 

3.1 ACCURACY 

The genetic algorithm is a powerful search engine – it 
maintains diversity in its solution space while seeking out 
what would ultimately be a global maximum. A human 
population might attempt to seek a global maximum in an 
organization, but human mental models add inherent 
biases to this search process. Also, individuals are often 
part of multiple organizations (family, work, extended 
family, friends from college, etc.). These other 
organizations add the potential for innovation (mutation) 
to feed into an individual’s set of policies. Thus, the 
organizational algorithm is a better representation of 
human learning as demonstrated in the comparison of the 
two algorithms with respect to accuracy and convergence 
time.  

 

Figure 3. Peaks same function, f3, six single-
optimum Gaussian curves. 

Figure 4 Mean Fitness as a Function of 
Generation For a Range of Probability of 
Mutation. 
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Summaries in the form of the mean fitness of the 
performance of the two algorithms with respect to the 
probabilities of crossover and mutation are shown in 
Figures 4 and 5. In Figure 4. the mutation study was 
begun on a set of populations that were initialized with 
every individual having a policy of zero. A summary is 
also given of the performance of the two algorithms with 
respect of population size in Figure 6. The labeling 
convention that is used in these and the remainder of the 
graphs presented is as follows: OA – organizational 
algorithm, GA – genetic algorithm, and TM – team 
implementation in the organizational algorithm. 
Numerical labels adjacent to plot lines represent 
corresponding parameter data as labeled in the figure 
caption.  When mean fitness is indicated as the y-axis, this 
represent the mean fitness over the five runs for each 
experiement initialized with a varying random seed. 

Figure 4 indicates that the organizational algorithm is far 
more susceptible to mutation than the genetic algorithm – 
particularly in the later generations. The selection process 
in the organizational algorithm results in a wide spread of 
positions in the later generations. As a result, the roulette 
selection method will be far more likely to select an 
individual of high position even in the face of a 
debilitating mutation. At worst, the individual will only 
have a halving of position, still higher than the lowest 
position by several orders of magnitude. The selection of 
a mutated individual with a high position will quickly 
result in a lemming-like behavior, whereby the remainder 
of the population takes on the less fit policy. In contrast, 
the genetic algorithm only compares the individuals from 
one generation to the next – with a linear ranking scheme. 
A mutation to a less fit policy is immediately seen by the 
rest of the population and the individual dies.   

The comparison of the two algorithms with respect to the 
probability of crossover now with a truly randomized 
initial population is shown in Figure 5. In the absence of 
mutation, both algorithms demonstrate similar behavior at 
high and low crossover probabilities. For the intermediate 
cases, the organizational algorithm shows a poor ability to 
seek an accurate and optimal solution. 

The differences in the behavior of the two algorithms with 
respect to the probability of crossover is partially 
accounted for in the population size sensistivity of the two 
algorithms (Figure 6). The organizational algorithm needs 
to operate on a larger population in order to seek a more 
accurate solution.  This is primarily due to the survival of 
all of the individuals throughout the simulation. A larger 
population will more likely initially contain the alleles 
necessary to produce a fit policy. As a result, the larger 
population will approach a fitter solution prior to the 
transition from a policy-based selection to one dependent 
almost entirely on position. 

3.2 SPEED OF CONVERSION 

When the organizational algorithm is well-behaved, it 
requires on the order of 20% more generational time to 
converge (regardless of accuracy) as compared to the 
genetic algorithm. The inclusion of team-based learning 
requires an additional 10% generational time for 
convergence.  

The crossover process in the organizational algorithm 
differs from that of the genetic algorithm in that for each 
incident of crossover, only one individual learns (as 
opposed to both parents exchanging information to create 
two potentially different children). The slower learning 
added to the increasing selection dependence on position 

Figure 5. Mean Fitness as a Function of 
Generation For a Range of Probability of 
Crossover 

Figure 6.  Mean Fitness as a Function of 
Generation for a Range of Population 
Size 
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explain the difference between the algorithms in the 
conversion time. 

3.3 TEAM BASED DYNAMICS 

The ability to work in a team-based environment has the 
advantage of eliminating the personal sting attached to 
individual demotion. However, as the team has to work 
together to form policies with which to manage, the 
potential exists for the individual with the really good 
policy to never express this policy to the rest of the 
population. In the simulation of the peak-norm function 
with different team sizes, Figure 7, it appears that as the 
number of teams in a fixed population grows the fidelity 
of information transfer improves. As expected, for a team 
size of 1 or 50, there is no goal-seeking behavior in the 
algorithm.  

In the comparison of the three different parameterizations: 
simple genetic algorithm, organizational algorithm, and 
team-based organizational algorithm (shown in Figure 8) 
for each of the fitness functions, the team simulations 
were completed with 10 teams of 5 individuals.  

For the relatively simple fitness function, De Jong, all of 
the different parameterizations perform well, showing 
similar convergence rates and values. As the complexity 
of the fitness function increases, to peak-norm, we see 
degradation of the performance in both of the 
organizational algorithm parameterizations. Both 
convergence rate and accuracy are lost. A similar trend is 
seen with the peak-same function.  

From a performance perspective, the organizational 
algorithm is not as powerful of an optimization tool as 
that of the genetic algorithm. However, the focus of our 
research is not to optimize, but to represent and better 
understand learning within an organization. The 
organizational algorithm provides a strong metaphor for 
the impact of hierarchy in an organization on information 
flow. A delicate balance exists between the use of 
hierarchy to point to the individuals with the good ideas 
and the use of an individual’s performance immediately 
based upon those good ideas. 

Larger capital producing organizations potentially suffer 
from the focus on position in learning motivation. For 
one, employees are not able to immediately see customer 
response to their new car or dishwasher. Instead, 
employees see an internal performance record that is 
generated by someone with a higher position. In 
consulting companies or law firms, the employees work 
closer to their end product and immediately receive 
feedback on their relative performance. This information 
is often highly visible within the organization (i.e. number 
of billable hours). The net result is that employees 
determine who to learn from according to a metric tied 
more directly to an individual’s performance. 

The reality in all evolutionary algorithms, however, is that 
hierarchy is a necessary mechanism for goal-seeking 
behavior. Similarly, in human organizations the presence 
of hierarchy enables people to seek better solutions for 
themselves. We naturally compare and contrast our 
colleagues in our conversations and interactions. These 
rankings guide us in our learning. 

4 CONCLUSIONS 

Companies are sub-optimal, and our organizational 
algorithm metaphorically describes some of the reasons 
behind why this is. Cultural bias adds inertia that 
debilitates our ability to accurately identify who to best 

Figure 7. Mean Fitness versus 
Generation For a Range of Number of 
Teams 

Figure 8. Mean Fitness versus 
Generation For Each Fitness 
Function 
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seek out for improvement. The organizational algorithm 
demonstrates how the combination of position and 
innovation in a population can lower the population to an 
even lesser performance as individuals follow their leader 
regardless of the quality of his or her idea. 

We have also demonstrated that the parameterization of 
an evolutionary algorithm can be altered to recreate the 
dynamics seen in different types of organizations. The 
simple genetic algorithm better represents a service-
related company, while a large capital producing 
company follows more closely the dynamics of the 
organizational algorithm. 

Finally, team-based learning has been examined as an 
alternative to individual hierarchy. While team-based 
learning inhibits the fidelity and rate of solution 
optimization, the net result is a population with a 
hierarchy that is decoupled from single individual 
performance. This result is one step towards using our 
understanding of organizational evolution to create better 
organizations. 
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