
Metaphor for learning: an evolutionary algorithm

Jody Lee House

Dept. of Electrical and Computer
Engineering

Oregon Graduate Institute
Beaverton, OR 97006

503-748-1254
jhouse@ece.ogi.edu

Alexander Kain

Dept. of Computer
Science and Engineering

Oregon Graduate Institute
Beaverton, OR 97006

503-748-1539
kain@cse.ogi.edu

James Hines

Sloan School of Business
Massachusetts Institute of

Technology
Cambridge, MA 02139

617-253-9413
jhines@mit.edu

Abstract
The organizational algorithm is examined as a
computational approach to representing
interpersonal learning. The structure of the
algorithm is introduced and described in context
to the simple genetic algorithm. A comparison is
made of the performance of both algorithms with
respect to three different test functions: a simple
single-peaked function, the standard Matlab
“peaks” function (Mathworks 1998), and a
multiple occurrence of a single-optimum
Gaussian function. Algorithm performance is
discussed relative to traditional optimization
figures of merit as well as with respect to a
learning analogy.

1 INTRODUCTION

Interpersonal human learning is similar to the simple
genetic algorithm (Hines 1997). In this paper we first
present the context in which we are interested in such
learning, then we give an explicit representation of this
learning using the organizational algorithm, and finally
we consider the performance of human learning by
benchmarking the organizational algorithm to the simple
genetic algorithm. We make this comparison using three
different test functions: a simple single-peaked function,
the standard Matlab “peaks” function, and a multiple
occurrence of a single optimum Gaussian function. The
algorithm performance is discussed relative to traditional
optimization figures of merit as well as with respect to a
learning analogy.

Context. For our research learning is important because
it is at the heart of organizational evolution – a process
(and perhaps the only process) by which companies,
schools and other human associations could improve over
time. At its heart, improvement is a form of interpersonal
learning – a process by which one person passes on ideas
to another.

Organizational improvement is difficult because
organizations are complex. The complexity of General
Motors, Hewlett Packard, AOL, a law firm or even a
mom- and pop grocery store exceeds by many orders of
magnitude anyone’s ability to understand and
deterministically control. The complexity is both in the
raw number of interacting entities (employees, machines,
furniture, orders, customers, roads…) and in the feedback
loops that interconnect these entities. Humans – even
augmented by computers – are incapable of storing the
massive detail (Simon 1976) required for a
comprehensive understanding of organizations and are
notoriously poor at understanding the implications of
intertwined positive and negative feedbacks (Kofman,
Sterman et al. 1997).

As a result of our cognitive limitations, organizational
improvement is unlikely to come from anyone ″figuring it
all out″. Instead, improvement will likely come from an
evolutionary process. Evolution is important to
organizational improvement precisely because its
processes do not depend on anyone figuring out why
things work or fail to work. We need to be more precise
about what evolves in organizations.

We believe the most important thing that evolves in an
organization is a policy. Indeed, we view policies as quite
comparable to biological genes. By policy we mean an
explicit or implicit decision rule in the usual system
dynamics sense (Forrester 1961). For example, a manager
might set prices by the implicit rule: Raise prices when
inventories are low, and lower prices when inventories are
high. The policy is implicit as long as it remains unspoken
or unwritten. Articulating the policy, perhaps by
recording it in a policy manual, could make it more
explicit. Of course, people might change their approach to
pricing even without updating the manual. In this case,
the new approach would be a policy, while the old
procedure recorded in the manual would no longer be a
policy in our use of the term. A policy is a rule or
procedure that people actually use to make a series of
decisions. In this case, the policy gives rise to a

continuing stream of particular decisions to raise or lower
price.

A policy in an organization is comparable to a gene in a
cell. A gene is a segment of DNA (or, in some organisms,
RNA) that acts as a set of instructions for the ongoing
production of a particular protein. The proteins then
catalyze reactions in the cell. Indeed, no necessary
chemical reaction occurs in a cell without a protein
catalyst that is coded by a gene (Steele, Lindley et al.
1998). Genes produce a continuing stream of action in the
cell, while policies produce a continuing stream of action
in the company.

The creative mechanisms in evolution are mutation and
recombination. In genetic mutation, part of a DNA
molecule is physically changed, producing a new gene.
In our analogy, genetic mutation corresponds to policy
change, intentional or unintentional, and (like mutation)
produces either favorable or unfavorable results (Meszias
and Glynn 1993). The result of such a change, for better
or worse, is a new policy. Genetic recombination occurs
when two DNA molecules mix to form a new DNA
molecule. In a company, genetic recombination
corresponds to a particular kind of organizational
learning: Inter-personal learning whereby a person
combines a part of someone else’s ideas with his or her
own (Holland, Holyoak et al. 1986; Miner and Mezias
1996).

In higher animals, sexual reproduction encourages the
dissemination and recombination of genetic material.
Natural selection is the process by which beneficial
recombinants (and mutations) are retained, while
deleterious ones are discarded. Sex and selection in the
natural world correspond in the corporate world to the
various ways in which companies identify certain
employees as exemplary and encourage other employees
to learn from (or imitate) them (Nei 1987; Smith 1989;
Gillespie 1991; Brown 1992; Brown 1995; Leach 1996).
We call these processes of identification and
encouragement “pointing and pushing mechanisms”. For
example, pay and organizational position are two ways
that a company can point to outstanding performers. Pay
and position can serve a pushing function as well:
Employees are motivated (“pushed”) to learn via their
desire to rise in the pay scale and in the hierarchy.1 Other
pointing and pushing mechanisms are also possible.

1.1 METHODOLOGY

Agent-based models are built around simulated agents –
or, in our case, managers. Each agent has one or more
policies that can control aspects of the organization (e.g.
setting prices, or deciding on the number of programmers
to hire). The key interaction between agents is learning
from another manager, thereby changing the policy and,
thus, eventually changing the performance of the
organization.

1 Pushing successful people to share policies with others may also be
necessary (Constant, Sproull et al. 1996).

In our study of organizational evoluation, we use system
dynamics, agent-based modeling and evolution algorithms
in the following way: A system dynamics model
represents the underlying physics of the organization as
well as all policies that are not evolving. Evolving policies
are carried by agents (individual managers) who learn
from one another via a process that is similar to a genetic
algorithm.

The simulation environment allows us to investigate the
conditions and trade-offs that influence the rate at which
organizations improve their policies. Conditions include
number of teams, team size, frequency of mixing and
evaluating, promotion (or other pointing and pushing)
policies, number of managers, complexity of evaluation
criteria, complexity of policies, number of policies, and
many others. An example of a trade-off is between the
ability to discriminate between good and bad policies on
the one hand and, on the other hand, the speed by which a
policy spreads. As the number of teams increase, the rate
by which policy changes disseminate will slow, while the
ability to discriminate between beneficial and deleterious
changes will increase.

2 TECHNICAL OVERVIEW

The simple genetic algorithm and the organizational
algorithm are implemented for this presentation in
Matlab. In the next few sections, the technical details of
the simple genetic algorithm and the organizational
algorithm are described. Also, the fitness functions
implemented to evaluate the different algorithms are
discussed along with the experimental test matrix.

2.1 DATA STRUCTURES

The system dynamics project model used in the
application of the organizational algorithm acts on float
type variables. For simplicity in the analysis and
comparison of the initial organizational algorithm, the
learning processes (crossover) and innovation (mutation)
in the genetic algorithm and the organizational algorithm
act on binary values. Conversion from float notation to
binary is achieved by the method discussed in
Michalewicz, (Michalewicz 1992).

2.2 SIMPLE GENETIC ALGORITHM

The simple genetic algorithm is designed according to the
method outlined in Goldberg (Goldberg 1989). For
convenience, the sequence of events followed in the
algorithm is listed below.

a. Randomly initialize the population

b. Evaluate the fitness of each individual

c. Compare individual performance and rank the
individuals

d. Select by a rank-based roulette process a teacher for
each individual

e. Allow crossover between teachers and learners
according to the probability of crossover

f. Select at random between the two children, the
teacher, and the learner

g. Apply innovation to the individuals who will
innovate (according to the probability of mutation)

h. Return to step (b.) for at least N generations, where N
is the population size

The selection process in the simple genetic algorithm will
enable it to seek the optimum value in a population
regardless of crossover and mutation processes. Trade-
offs exist in the parameterization of the simple genetic
algorithm: between population size, probability of
crossover, and probability of mutation.

2.3 ORGANIZATIONAL ALGORITHM

The organizational algorithm differs from the simple
genetic algorithm in four aspects. First, all of the
individuals remain in the population throughout the
simulation. Second, in each generation every individual
makes a decision whether or not to learn (according to
some probability of learning). Third, once the individuals
are ranked according to their relative performance, an
additional promotion (or demotion) is applied to the
population. The promotion of the individuals creates
positions that are used in the selection process. The
promotion process is described in the next section.
Finally, the processes of learning and promotion can be
applied within a subset of the total population, a team.
The team-based learning process is also described in a
later section. The steps followed in the organizational
algorithm are described below.

a. Randomly initialize the population

b. Evaluate the fitness of each individual

c. Compare individual performance and rank the
individuals

d. Promote each individual according to the rank and a
promotion base value

e. Select by a position-based roulette process a teacher
for each individual who will learn (according to the
probability of learning)

f. Allow crossover between teachers and learners

g. Select at random from the two children to replace the
learner

h. Apply innovation to the individuals who will
innovate (according to the probability of mutation)

i. Return to step (b.) for at least N generations, where N
is the population size

2.3.1 Promotion

Each individual in the population has an assigned
position. Because the individuals survive throughout the
simulation, the positions become the historical record of

each individual. The policies (or phenotypes) of the
individuals can change drastically from one generation to
the next. However, the positions can only vary according
to the promotion base assigned to the simulation. For a
promotion base value of 2, the promotion is applied to
each individual according to the following equation:

Positionnew=Positionold*2K

Where K is defined by:

A quick study of K shows that at its upper bounds K=1,
and at its lower bounds K= -1. Therefore, the highest
ranked individual (the best performing) receives the
largest promotion (a doubling of position), whereas the
lowest ranked individual receives a demotion (a halving
of position).

We have adopted this addition to the genetic algorithm in
order to better represent the motivation behind who we
choose to learn from. People choose their teachers not just
based upon their most recent success, but also due to a
whole range of personality characteristics and historical
performance.

From one product generation to the next, the CEO of the
company (supposedly the fittest manager) is not demoted
to the lowest position within the company if he or she
enforces a disastrous policy. More realistically, the CEO
is either forced to leave the organization or to take a
slightly lesser role in management. Similarly, in the
organization algorithm, position takes on a multiplicative
process – one seen in the K-12 education system. A
student performing at an above average level at a young
age is put into an honors track for education. The student
will be less likely as time progresses to leave this more
challenging track, whereby the ‘less fit’ scenario is true
for the child placed into the special needs track from an
early age.

2.3.2 Teams

Teams are used in the simulator when we are interested in
studying alternatives to an individual-based hierarchy in
an evolving organization. A team of managers work
together to determine how to manage a project (or to
make decisions that impact any dynamic system). Here, a
description is given of how teams are implemented in the
simulator.

In a population of N individuals, generate T teams
containing an equal number of individuals, NT.

a. Each individual is defined by a set of policies and a
position.

b. The team decides on a single team-based set of
policies, ei, according to:

()
1

)1(

1*2 −
−

−=
Sizepopulation

rank
K

c. The fitness is evaluated for each team using the
team’s set of policies.

d. Rank each team from 1 to T.

e. Establish a promotion factor for each team according
to the previously described promotion criteria.

f. Promote every individual according to the team
promotion factor.

g. Make new teams. In this paper, the new teams are
reassigned by placing the highest T individuals in
separate teams, and then assigning the next T highest
individuals in separate teams, and so forth until all of
the individuals are placed.

h. Allow teammates to learn from one another by
roulette method.

There are two key differences to team-based learning
versus individual learning. First, the teams must form a
combined set of policies (a combined phenotype) with
which to manage. Second, learning only occurs within the
bounds of the teams. For example, a population of 50
individuals with 10 teams will have 5 individuals per
team. At the beginning of every generation, each
individual will have the opportunity to learn from the rest
of the team (the other 4 individuals). In the same sized
population, a team size of 1 will mean that the probability
of crossover is effectiverly zero (the individual can only
learn from himself). A team size of 50 will result in a
population with random promotion – as there is only a
single team for ranking. The result for a single team is
learning drift – the individuals select from their teachers
with no hierarchical basis.

2.4 FUNCTIONS FOR COMPARISON AND
TEST MATRIX

The maximization of three evaluation functions are
implemented as fitness criteria for both the simple genetic
algorithm and the organizational algorithm. The
evaluation functions are chosen to demonstrate the
relative ability to optimize by the two algorithms as well
as to examine the impact of team-based hierarchies on the
optimization. The first function, De Jong (f1), is similar to
a function applied in De Jong’s thesis; a simple approach
to a single optimum value (Figure 1). The second
function, peak-norm (f2), is a multiple-optima landscape
with a unique maximum value (Figure 2). The third
function, peak-same function (f3), possesses multiple
equivalent optimums (Figure 3).

Experiments were run on the simple genetic algorithm,
the organizational algorithm, and the organizational
algorithm with the population divided into teams. The
sensitivity of each of these algorithms to the parameters

probability of crossover, probability of mutation, and
population size were made using the second fitness
function, peak-norm.

Figure 2. Matlab peaks function, f2, used for the
majority of the comparison experiments.

Figure 1. De Jong function, f1, with the
corresponding boundary on x and y.

∑=
N

ipositionPositioncumulative
1

∑=
N

iiei eiposition
Positioncumulative

Team
1

**
1

)y)(x(

)yx(

))(yx(

e

eyx
x

ex)((x,y)f

22

22

22

1

53

12
3

3

1

5
10

13

−+−

−−

+−−

−

 −−−

−=

33

33

≤≤−
≤≤−

y

x

∑ +−= 22
1 50),(yxyxf 12.512.5

12.512.5

≤≤−
≤≤−

y

x

The experiment parameters are listed in Table 2. Each
experiment was completed five times with the same
varying random seeds in the population initialization. The
simulations were carried out for 125 generations.

Table 2. Matrix of Experiments (E) on the Simple Genetic
Algorithm

E PMutation PCrossover N T

PMutation 0, 0.001,
0.005,
0.01,
0.02, 0.1

0.5 50 1

PCrossover 0 0, 0.1,
0.5, 1

50 1

N 0.005 0.5 10, 26,
50, 100,
200

1

T (OA
only)

0.001 0.5 50 1, 5,
10, 25,
50

Each of the different algorithms was also examined for
performance over the three different fitness functions. The
motivation for implementing a function with multiple
same-valued optimums (peak-same) was to study the
phenomenon of population clustering on multiple
solutions.

2.5 PERFORMANCE METRICS

The performance of the simple genetic algorithm and the
organizational algorithm was compared for the accuracy

of solution upon which the population converges, and the
number of generations it takes to find a consensus. For
each of the experiments, the mean fitness was calculated
across the five simulations characterized by a different
random seed for population initialization.

For this presentation, solution convergence is defined as
the point at which the mean fitness for a given simulation
shows a derivative with respect to generation of less than
10% that endures for at least three generations.

3 RESULTS AND DISCUSSION

3.1 ACCURACY

The genetic algorithm is a powerful search engine – it
maintains diversity in its solution space while seeking out
what would ultimately be a global maximum. A human
population might attempt to seek a global maximum in an
organization, but human mental models add inherent
biases to this search process. Also, individuals are often
part of multiple organizations (family, work, extended
family, friends from college, etc.). These other
organizations add the potential for innovation (mutation)
to feed into an individual’s set of policies. Thus, the
organizational algorithm is a better representation of
human learning as demonstrated in the comparison of the
two algorithms with respect to accuracy and convergence
time.

Figure 3. Peaks same function, f3, six single-
optimum Gaussian curves.

Figure 4 Mean Fitness as a Function of
Generation For a Range of Probability of
Mutation.

∑∑
−= =

−−−−−=
1

1

2

1

)6()6)1(((
2

22

),(
i j

iyx j

eyxf
1010

1010

≤≤−
≤≤−

y

x

0 20 40 60 80 100 1200

1

2

3

4

5

6

7

generation

m
ea

n
fit

ne
ss

OA

0

0.001

0.005

0.01

0.02

0.1

0

1

2

3

4

5

6

7

8

m
ea

n
fit

ne
ss

Peak Norm GA vs Pmutation

0

0.001

0.005

0.01

0.02

0.1

0 20 40 60 80 100 1200

1

2

3

4

5

6

7

generation

m
ea

n
fit

ne
ss

OA

0

0.001

0.005

0.01

0.02

0.1

0

1

2

3

4

5

6

7

8

m
ea

n
fit

ne
ss

Peak Norm GA vs Pmutation

0

0.001

0.005

0.01

0.02

0.1

Summaries in the form of the mean fitness of the
performance of the two algorithms with respect to the
probabilities of crossover and mutation are shown in
Figures 4 and 5. In Figure 4. the mutation study was
begun on a set of populations that were initialized with
every individual having a policy of zero. A summary is
also given of the performance of the two algorithms with
respect of population size in Figure 6. The labeling
convention that is used in these and the remainder of the
graphs presented is as follows: OA – organizational
algorithm, GA – genetic algorithm, and TM – team
implementation in the organizational algorithm.
Numerical labels adjacent to plot lines represent
corresponding parameter data as labeled in the figure
caption. When mean fitness is indicated as the y-axis, this
represent the mean fitness over the five runs for each
experiement initialized with a varying random seed.

Figure 4 indicates that the organizational algorithm is far
more susceptible to mutation than the genetic algorithm –
particularly in the later generations. The selection process
in the organizational algorithm results in a wide spread of
positions in the later generations. As a result, the roulette
selection method will be far more likely to select an
individual of high position even in the face of a
debilitating mutation. At worst, the individual will only
have a halving of position, still higher than the lowest
position by several orders of magnitude. The selection of
a mutated individual with a high position will quickly
result in a lemming-like behavior, whereby the remainder
of the population takes on the less fit policy. In contrast,
the genetic algorithm only compares the individuals from
one generation to the next – with a linear ranking scheme.
A mutation to a less fit policy is immediately seen by the
rest of the population and the individual dies.

The comparison of the two algorithms with respect to the
probability of crossover now with a truly randomized
initial population is shown in Figure 5. In the absence of
mutation, both algorithms demonstrate similar behavior at
high and low crossover probabilities. For the intermediate
cases, the organizational algorithm shows a poor ability to
seek an accurate and optimal solution.

The differences in the behavior of the two algorithms with
respect to the probability of crossover is partially
accounted for in the population size sensistivity of the two
algorithms (Figure 6). The organizational algorithm needs
to operate on a larger population in order to seek a more
accurate solution. This is primarily due to the survival of
all of the individuals throughout the simulation. A larger
population will more likely initially contain the alleles
necessary to produce a fit policy. As a result, the larger
population will approach a fitter solution prior to the
transition from a policy-based selection to one dependent
almost entirely on position.

3.2 SPEED OF CONVERSION

When the organizational algorithm is well-behaved, it
requires on the order of 20% more generational time to
converge (regardless of accuracy) as compared to the
genetic algorithm. The inclusion of team-based learning
requires an additional 10% generational time for
convergence.

The crossover process in the organizational algorithm
differs from that of the genetic algorithm in that for each
incident of crossover, only one individual learns (as
opposed to both parents exchanging information to create
two potentially different children). The slower learning
added to the increasing selection dependence on position

Figure 5. Mean Fitness as a Function of
Generation For a Range of Probability of
Crossover

Figure 6. Mean Fitness as a Function of
Generation for a Range of Population
Size

0 20 40 60 80 100 1200
1
2
3
4
5
6
7

generation

m
ea

n
fit

ne
ss OA

0
0.1

0.5

1

0
1
2
3
4
5
6
7
8

m
ea

n
fit

ne
ss

0

0.1
0.5 1

GA

0 20 40 60 80 100 1200
1
2
3
4
5
6
7

generation

m
ea

n
fit

ne
ss OA

0
0.1

0.5

1

0
1
2
3
4
5
6
7
8

m
ea

n
fit

ne
ss

0

0.1
0.5 1

GA 0 20 40 60 80 100 1200

1

2

3

4

5

6

7

generation
m

ea
n

fit
ne

ss

OA

10

26

50
100

200

0

2

4

6

8

10

m
ea

n
fit

ne
ss

GA

10

26
50

100
200

0 20 40 60 80 100 1200

1

2

3

4

5

6

7

generation
m

ea
n

fit
ne

ss

OA

10

26

50
100

200

0

2

4

6

8

10

m
ea

n
fit

ne
ss

GA

10

26
50

100
200

explain the difference between the algorithms in the
conversion time.

3.3 TEAM BASED DYNAMICS

The ability to work in a team-based environment has the
advantage of eliminating the personal sting attached to
individual demotion. However, as the team has to work
together to form policies with which to manage, the
potential exists for the individual with the really good
policy to never express this policy to the rest of the
population. In the simulation of the peak-norm function
with different team sizes, Figure 7, it appears that as the
number of teams in a fixed population grows the fidelity
of information transfer improves. As expected, for a team
size of 1 or 50, there is no goal-seeking behavior in the
algorithm.

In the comparison of the three different parameterizations:
simple genetic algorithm, organizational algorithm, and
team-based organizational algorithm (shown in Figure 8)
for each of the fitness functions, the team simulations
were completed with 10 teams of 5 individuals.

For the relatively simple fitness function, De Jong, all of
the different parameterizations perform well, showing
similar convergence rates and values. As the complexity
of the fitness function increases, to peak-norm, we see
degradation of the performance in both of the
organizational algorithm parameterizations. Both
convergence rate and accuracy are lost. A similar trend is
seen with the peak-same function.

From a performance perspective, the organizational
algorithm is not as powerful of an optimization tool as
that of the genetic algorithm. However, the focus of our
research is not to optimize, but to represent and better
understand learning within an organization. The
organizational algorithm provides a strong metaphor for
the impact of hierarchy in an organization on information
flow. A delicate balance exists between the use of
hierarchy to point to the individuals with the good ideas
and the use of an individual’s performance immediately
based upon those good ideas.

Larger capital producing organizations potentially suffer
from the focus on position in learning motivation. For
one, employees are not able to immediately see customer
response to their new car or dishwasher. Instead,
employees see an internal performance record that is
generated by someone with a higher position. In
consulting companies or law firms, the employees work
closer to their end product and immediately receive
feedback on their relative performance. This information
is often highly visible within the organization (i.e. number
of billable hours). The net result is that employees
determine who to learn from according to a metric tied
more directly to an individual’s performance.

The reality in all evolutionary algorithms, however, is that
hierarchy is a necessary mechanism for goal-seeking
behavior. Similarly, in human organizations the presence
of hierarchy enables people to seek better solutions for
themselves. We naturally compare and contrast our
colleagues in our conversations and interactions. These
rankings guide us in our learning.

4 CONCLUSIONS

Companies are sub-optimal, and our organizational
algorithm metaphorically describes some of the reasons
behind why this is. Cultural bias adds inertia that
debilitates our ability to accurately identify who to best

Figure 7. Mean Fitness versus
Generation For a Range of Number of
Teams

Figure 8. Mean Fitness versus
Generation For Each Fitness
Function

0 20 40 60 80 100 120

Peak Norm

0
1
2
3
4
5
6
7
8

generation

m
ea

n
fit

ne
ss

1

5

10
25

50

0 20 40 60 80 100 120

Peak Norm

0
1
2
3
4
5
6
7
8

generation

m
ea

n
fit

ne
ss

1

5

10
25

50

1
2
3
4
5
6
7
8

m
ea

n
fit

ne
ss

Peak Norm

OA
GA

TM

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

generation

m
ea

n
fit

ne
ss

Peak Same

34

38

42

46

50

m
ea

n
fit

ne
ss

De Jong

OA
GA

TM

OA
GA

TM

1
2
3
4
5
6
7
8

m
ea

n
fit

ne
ss

Peak Norm

OA
GA

TM
OA
GA

TM

GA

TM

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

generation

m
ea

n
fit

ne
ss

Peak Same

34

38

42

46

50

m
ea

n
fit

ne
ss

De Jong

OA
GA

TM
OA
GA

TM

GA

TM

OA
GA

TM
OA
GA

TM

GA

TM

seek out for improvement. The organizational algorithm
demonstrates how the combination of position and
innovation in a population can lower the population to an
even lesser performance as individuals follow their leader
regardless of the quality of his or her idea.

We have also demonstrated that the parameterization of
an evolutionary algorithm can be altered to recreate the
dynamics seen in different types of organizations. The
simple genetic algorithm better represents a service-
related company, while a large capital producing
company follows more closely the dynamics of the
organizational algorithm.

Finally, team-based learning has been examined as an
alternative to individual hierarchy. While team-based
learning inhibits the fidelity and rate of solution
optimization, the net result is a population with a
hierarchy that is decoupled from single individual
performance. This result is one step towards using our
understanding of organizational evolution to create better
organizations.

Acknowledgments

This work is supported by the National Science
Foundation, award # 9975942, and our corporate partners;
Eastman Chemicals, PriceWaterhouse Coopers, Hewlett
Packard, Pugh Roberts Associates, The Lincoln School,
and General Motors. The authors would also like to
acknowledge the support of Christy Dowding.

References

Brown, T. A. (1992). Genetics: A Molecular Approach.
New York, Chapman & Hall.

Brown, T. A. (1995). Gene Cloning: An Introduction.
New York, Chapman & Hall.

Constant, D., L. Sproull, et al. (1996). “The kindness of
strangers: The usefulness of electronic weak ties for
technical advice.” Organizational Science 7(2): 119-135.

Forrester, J. W. (1961). Industrial Dynamics. Portland,
OR, Productivity Press.

Gillespie, J. H. (1991). The Causes of Molecular
Evolution. New York, Oxford University Press.

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Reading, MA,
Addison Wesley Publishing Company, Inc.

Hines, J. (1997). Organizational Evolution. New England
Complex Systems International Conference, Nashua, NH.

Holland, J. H., K. J. Holyoak, et al. (1986). Induction:
Processes of Inference, Learning, and Discovery.
Cambridge, MA, MIT Press.

Kofman, F., J. D. Sterman, et al. (1997). “Unanticipated
Side Effects of Successful Quality Programs: Exploring a
Paradox of Organizational Improvement.” Management
Science 43(4): 503-521.

Leach, D. R. F. (1996). Genetic Recombination.
Cambridge, MA, Blackwell Science, Ltd.

Mathworks, Inc. (1998). Matlab ver 5.3. Natick,
Mathworks.

Meszias, S. J. and M. A. Glynn (1993). “The three faces
of corporate renewal: Institution, revolution, and
evolution.” Strategic Management Journal 14(2): 77-101.

Michalewicz, Z. (1992). Genetic Algorithms + Data
Structures = Evolution Programs. New York, Springer-
Verlag.

Miner, A. S. and S. J. Mezias (1996). “Ugly Duckling No
More: Pasts and Futures of Organizational Learning
Research.” Organization Science 7(1): 88-99.

Nei, M. (1987). Molecular Evolutionary Genetics. New
York, Columbia University Press.

Simon, H. A. (1976). Adminstrative Behavior. New York,
The Free Press.

Smith, J. M. (1989). Evolutionary Genetics. New York,
Oxford University Press.

Steele, E. J., R. A. Lindley, et al. (1998). Lamarck's
Signature: How Retrogenes are Changing Darwin's
Natural Selection Paradigm. Reading, MA, Perseus
Books.

