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Abstract

A hybrid method of evolutionary algorithms
is introduced in this study. The hybrid method
includes two additional operations, acceleration
and migrating operations. These two operations
are used for the improvement of the convergence
speed without decreasing diversity among the
individuals. The hybrid method incorporated
with multiplier updating is introduced to solve a
dynamic optimization problem with constraints.
This method can use the population size of five
to obtain a more satisfactory solution, as
compared to the original algorithm of differential
evolution and BCPOL solver in IMSL library.

1. Introduction

Evolutionary algorithms (EAs) are a class of
stochastic search and optimization methods that include
genetic algorithms, evolutionary programming,
evolution strategies, genetic programming, and among
their variants (Back, et al., 1997). Recently, some
engineering optimization problems have been solved by
EAs, because EAs are robust and suitable for finding
optimum effectively with a smaller probability of falling
in local optima than other algorithms. Differential
evolution (DE) developed by Stron and Price
(1996,1997) is one of the best EAs. This method has
been proved a promising candidate to solve real valued
optimization problems. In DE, the fitness of an
offspring is one-to-one competed to that of the
corresponding parent. The one-to-one competition,
which is different from the other EAs, has a faster
convergent speed. However, this faster convergence
results in a higher probability toward finding a local
optimum or getting premature convergence. This fact

results from diversity of population descending faster
during solving progress. This drawback could be
overcome by using a larger population. By doing so, a
lot of computation time is expended to evaluate the
fitness function. This fact is particularly obvious by
using DE to solve optimal control problem (Wang and
Chiou, 1997). In order to avoid the use of larger
population, a hybrid method of DE is introduced in this
paper.

Most engineering optimization problems include
equality or/and inequality constraints. During the last
few years EAs incorporated with several methods for
handling such constrained optimization problems.
Michalewicz and Schoenauer (1996) have surveyed and
compared several constraint-handling techniques. The
penalty methods transform the constrained problem into
an unconstrained problem by penalizing those solutions,
which are infeasible. However, the penalty function
methods are easy to program. The main limitation of the
penalty functions is the degree to which each constraint
is penalized. Powell (1978) has noted that the classical
optimization methods including penalty functions have
certain weaknesses when penalty parameters are large.
Such penalty functions tend to ill behaved near the
boundary of the feasible domain where the optimum
points usually lie. In this paper, the multiplier updating
method is introduced to handle the constrained
optimization problems to overcome such drawbacks.

2. Hybrid Differential Evolution

Hybrid differential evolution (HDE) is a simple
population based stochastic function method and has
extended from the original algorithm of DE (Storn and
Price, 1996; 1997). The original algorithm of DE is used
to solve the unconstrained nonlinear programming
problems. The HDE with penalty function method has
applied to solve fuzzy decision making problems (Wang,



et al., 1998). The basic operations of DE are similar to
the conventional EAs as listed in Table 1.

By using EAs to optimize a function, the user
generally has to decide a good trade-off between
convergence and diversity. The convergence means fast
descending even to a local minimum. On the other hand,
the higher diversity guarantees higher probability of
finding a global minimum. This trade-off procedure in
DE can be achieved by slightly adjusting a mutation
factor �m  and the population size N p . By increasing

N p  and simultaneously reducing �m  slightly, DE gets

more robust. By doing so, a lot of computational time
should be expended to evaluate the fitness function.
This fact is particularly obvious by using DE to solve
optimal control problems due to expending extensive
CPU time to solve differential equations. Two
additional operations as expressed in Table 1 are
embedded in HDE to overcome such drawbacks. The
basic operations of HDE are illustrated as follows:

1. Representation and Initialization
The HDE structure is a parallel direct search

algorithm, which uses N p  vectors of the decision

parameters u � u j� � , i.e., U i
G

pi N� 1 2, ,...,  as a

population for each generation G. The decision vector

(referred to chromosome) is represented as u uNu1 ,... ,� � .
Here, the decision parameters (genes), u j , are directly

coded by real values within its corresponding bounds.
The initial population is randomly selected and should
try to cover the entire search space uniformly in the
form:
U u u ui i pi N0 1� � � �min max min( ), ,...,� (1)

where � i  is the uniformly distributed random number.

Here, umin  and umax  are expressed as the lower bound
and upper bound of the decision parameters.

2. Mutation
The mutation operation of DE and HDE is the

essential ingredient, compared to the other EAs. The
mutation operation at the (G-1)-th generation begins by
randomly selecting two population individuals U j

G�1

and U k
G�1 . These two individuals are then combined to

form a difference vector D jk . A perturbed individual

�U i
G�1  is therefore generated based on the parent

individual U p
G�1  by:
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In DE, the mutation factor �m � 0 10, .�  is fixed and set

by the user to ensure the fastest possible convergence.
However, the mutation factor in HDE is randomly
selected at every generation to obtain a more perturbed
individual. Figure 1 shows a two-dimensional example
that illustrates the mutually different individuals that
play a part in the generation of the mutant individual.
The difference of two random individuals acts as a
search direction in the solving space. The mutation
factor selected between zero and one is used to yield a
perturbation to ensure the fastest possible convergence.
Consequently, the mutant individual in (2) is essentially
a perturbed replica of the parent individual. If the
population diversity is small, the candidate individuals
will rapidly cluster together so that the individuals are
unable to be further improved. This fact may result in a
premature convergence.

3. Crossover Operation
In order to increase the local diversity at the next

population, the crossover operation is performed to
reproduce an offspring at the next generation. In this

crossover operation, the perturbed individual �U i
G  in (2)

and the current individual U i
G�1  are chosen by a

binomial distribution to generate a new individual. The
binomial crossover operation is therefore expressed as

u
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if a random number

otherwise;
(3)

where the crossover factor CR � 0 1,  is fixed and set

by the user. Herein, uji
G  is the j-th gene of the i-th

individual at the G-th generation.

4. Selection and Evaluation
In HDE, the evaluation function of an offspring is

one-to-one competed to that of its parent. This
competition means that the parent is replaced by its
offspring if the fitness of the offspring is better than that
of its parent. On the other hand, the parent is retained in
the next generation if the fitness of the offspring is
worse than that of its parent. Two selection steps are
performed in this evaluation operation. The first
selection step is a one-to-one competition, and the next
step is to select the best individual in the population.
These steps are expressed as

U U Ui
G

i
G

i
G

pJ J i N� �

�arg min , , ,...,1 1� � � �� � (4)

� arg min ( ), ,...,U Ub
G

i
G

pJ i N� � 1� � (5)

where argmin means the argument of the minima and J
is the fitness function. From equation (5), we keep the
last improvement of individuals and the best individual
at each generation.



5. Acceleration
The acceleration operation and migrating operation

in HDE act as a trade-off operator. The accelerated
operation is used to speed up convergence. However,
faster convergence usually results in finding a local
minimum. The migrating operation is used to escape
this local point. A new population of candidate
individuals is randomly migrated away from the best
individual to the whole search domain. Accordingly, the
diversity of the candidates can be retained by the
migrating operation.

According to our experience by using DE to solve
optimization problems, the best fitness does not descend
continuously from generation to generation. It usually
descends toward a better next one after several
generations. In this situation, the acceleration operation
can be used to overcome such a drawback. If the
mutation and crossover operations do not improve the
best individual at the present generation any longer, the
steepest descent method is applied to push the best
individual to obtain a next better point. The acceleration
operation is, therefore, expressed as
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where �Ub
G  is the best individual obtained from

equation (5). The gradient of the objective function,
�J , can be approximately calculated with finite

difference. The step size � a � 0 1,�  in (6) is determined

with the descent property. At first, � a  is set to be one

to obtain the new individual Ub
N . The fitness function

J b
NU� �  is then compared with J b

GU� � . If the descent

property is obeyed, i.e.,

J Jb
N

b
GU U� � � �� (7)

then Ub
N  becomes a candidate at the next generation to

replace the worst individual. On the other hand, if the
descent property fails, the step size reduces by 0.5 or 0.8,
and the steepest descent method is repeated to find Ub

N

until � a J�  is small enough or the assigned iterations
achieve. As a result, the best fitness should be at least
equal to or smaller than J b

G( )U �1  as observed from
equation (7).

6. Migration operation
The rate of convergence can be improved by the

acceleration operation. However, faster descending
usually results in finding a local minimum or getting
premature convergence. In addition, performing the
acceleration operation frequently can result in that the
candidate individuals gradually clustered around the
best individual so that the diversity of the population

decreases quickly. Furthermore, the clustered
individuals cannot reproduce the next better individuals
by the mutation and crossover operations. This fact
results in a premature convergence due to the
diminishing of the difference vector as observed from
equation (2) and (3). As a result, the migrating operation
should be performed to regenerate a new population.
The new candidates are regenerated based on the best
individual Ub

G . The jth gene of the ith individual is
therefore regenerated by

u
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where � ji  and �

� ji  are the uniformly distributed

random numbers. Here, u j min  and u j max  are expressed

as the lower and upper bounds of the jth gene of the
decision parameters. This diversified population is then
used as the initial decision parameters to escape the
local point.

The migrating operation in HDE is performed only
if the measure of population diversity fails to match the
desired tolerance. The measure �

�
 in this study is

defined as
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where � 1  and � 2  are the desired tolerance for the
population diversity and the gene diversity with respect
to the best individual. Here, � ji  is defined as an index

of gene diversity. Its value of zero means that the jth
gene of the ith individual closely clusters to the jth gene
of the best individual.

The migrating operation is performed only if the
degree of population diversity is smaller than the
desired tolerance � 1 . The degree of population
diversity is between zero and one as observed from (9).
Its value of zero implies that all genes cluster around the
best individual. Conversely, the value of one indicates
that the current candidate individuals are a complete
diversified population. The desired tolerance for
population diversity is accordingly assigned within this
region. The tolerance of zero implies that the migrating
operation in HDE is switched off, whereas, the tolerance
of one implies that the migrating operation is performed
at every generation.

Figure 2 shows a numerical example to describe the



concept of the degree of population diversity. Suppose
we attempt to minimize a function with two variables,
and the tolerance, � 2 , of gene diversity is set to 0.1.
Assume that after some generations of HDE, we get the
following population
u1 10 10� . , .� � , u2 105 30� . , .� � , u3 13 2 0� . .� � ,
u4 15 106� . , .� �
Let the first individual u1  is the best one. The degree of
population diversity in this example is explained that
two third of genes in this population is dissimilar to the
best individual. As presented, fewer dissimilar
individuals is harder to explore better offspring by the
mutation and crossover operations. This fact results
from a premature convergence. Therefore, if the degree
of population diversity is smaller than the assigned
tolerance, the migrating operation should be performed
to regenerate a next diversified population.

3. Dynamic Optimization Problem

A dynamic optimization problem for a fedbatch
bioreactor system is considered in this example for
illustrating and evaluating the proposed method. The
dynamic equations of mass balance for the fedbatch
process are expressed as follows:
d x

d t
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dV
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where x is the concentration of cell mass, s is the
concentration of glucose, p1  is the concentration of

ethanol, p2  is the concentration of glycerol, Yp s1 /  is

the ethanol yield factor, and Yp s2 /  is the glycerol yield

factor. In this study, the unstructured kinetic models for
the specific cell growth and product formation are
expressed as following:
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The kinetic parameters in Eq.(16)-(18) have been
determined by Jang and Wang (1998) and shown in
Table 2.

Some physical constraints should be considered in
the optimization problem. The total volume of the
bioreactor is bounded by
g V t Vf1 0� � �� � (19)

In addition, the stoichiometry of the ethanol and
glycerol formation from glucose must be obeyed in the
fermentation process, so that two additional constraints
for each specific yield factor are restricted by
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From stoichiometric point of view, both theoretical

yield factors, �

/Yp s1
 and �

/Yp s2
, for the ethanol formation

from glucose are 0.51. If the constraints (20) and (21)
are not included in the optimization problem, the

unrealistic predicted values of p t f1� � may be found. In

order to reduce the separation cost, the residue sugar is
restricted by
g s t sr4 0� � �� � (22)

where sr  is the desired residue sugar.
The goal of this optimization problem is to

determine the optimal feed rate F t( )  and fermentation

time t f  to maximize the ethanol production rate. The

objective function is therefore expressed as

max ( ) ( ) ( ) ( ) /
,F t t

f f f
f

J p t V t p V t
� �

� �� � 0 0 (23)

where the decision variables are bounded in the solution
space as follows:
0 � �F t F( ) max (24)

t t tf f fmin max� � (25)

The feed rate F t( )  in this dynamic optimization
problem is in terms of time so that such a problem is an
infinite dimensional problem. To solve this problem
efficiently, the feed rate is first approximated by a finite
set of control actions F j( )  in the time interval

t t tj j�

� �1  by

F t F j j Nu( ) ( ), ,...,� � 1 (26)

where Nu  is the number of time partitions. In order to
avoid a wide variation of feed control action, each
action is bounded by
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The infinite dimensional problem (11)-(25) is then
approximated as a parameter selection problem. In order
to solve the constrained optimization problem, the
penalty function method transforms the constraints into
the unconstrained problem as
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where the decision vector u  consists of the control
actions F j( )  and the fermentation time t f , and the

state variables z( )t  is expressed as

z � x s p p V
T

, , , ,1 2 . Here, the penalty parameters � k

are positive constant and the bracket operator in (28) is
defined as g gk k

�

� max ,0� � . Penalty terms

associated with the constraints are added to the
objective function. In such a way, penalty terms reflect
the violation of the constraints and assign the high cost
of the penalty function to candidate points far from the
feasible region. While we use HDE to solve the penalty
problem, any candidate individuals that violate the
constraints would inherit a worse fitness and be hard to
survive.

The main limitation of the penalty functions is the
degree to which each constraint is penalized. Powell
(1978) has noted that the classical optimization methods
including penalty functions have certain weaknesses
that become most serious when penalty parameters are
large. More seriously, large penalty parameters make
the penalty function ill conditioned so that it is difficult
to achieve a good solution. On the other hand, if the
penalty parameters are too small, the constraint
violation does not contribute a high cost to the penalty
function. Thus, the optimal solution based on the
penalty function may not be feasible. Therefore, how to
choose appropriate penalty parameters is not trivial.

Lagrange methods are classical methods for solving
real-valued constrained optimization problems
(Luenberger, 1984). Such methods can significantly
improve the drawbacks of penalty methods. Kim and
Myung (1997) have developed two-phase EP with
Lagrange method to solve real-valued constrained
optimization problems. In this paper, we introduce an
incorporated algorithm of HDE with multiplier updating
to solve the dynamic optimization problem. The
augmented Lagrange function for the dynamic
optimization is defined as
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where the corresponding multipliers are updated at each

generation as

� � �k
G

k
G

k
G

k
Gt t g t t

k

� 	 � 	 � 	 � 	
 �� � �

�

� � �1 1 1

1 4

max ( ), , ,

,...,

z u

and

� � �4 4
1

4
1

4
1 1

� �

�

�

�

�

�

� � � �k
G

k
G

k
G

k
G

ug k Nmax , , ,... ,� � (30)

where G  is the generation index in the HDE algorithm.

4. Computational Results

All computations were performed on a Pentium II
computer using Microsoft Windows NT. We use
Compaq Visual Fortran to implement the HDE
algorithm. The setting factors used for all runs are listed
as follows. The mutation factor �m  is taken as a

random number in [0,1]. The crossover factor � c  is set

to 0.5. Two tolerances, � 1  and � 2 , used in migration
operation are set to 0.05. The population size of 5 is
used in the computation to illustrate the performance of
HDE. The maximum generations of 50000 are used for
all runs.

The initial fed and residue concentrations of glucose
are set to be 200g/l and 0.1g/l in the computation. The
maximum feed rate and total working volume are
considered as 10. /l h  and 5l. In order to solve this
problem, the feed rate F t( )  is approximated by 10 time
partitions. At first, we use the penalty parameters of one
for the HDE with multiplier updating method (referred
to HDE-MUM) to solve this dynamic optimization
problem. The maximum production rate of 23.164g/h is
obtained as shown in Table 3. Such a computation uses
the acceleration operation of 3322, the migrating
operation of 171, and the total function call of 323623
which is equivalent to the CPU time of about 17
minutes on a Pentium II 400 computer. We perform the
problem 3 runs with various penalty parameters. Table 3
shows the best solution for the three runs. The best
solutions for the three runs are feasible and nearly
identical although the penalty parameters used for each
run are a wide difference. The HDE with the penalty
function method (HDE-PFM) is also applied to solve
the problem. The best solution for various penalty
parameters is also shown in Table 3 for comparison.



The objective function values obtained by HDE-PFM
are larger than those by HDE-MUM. However, the best
solutions obtained by HDE-PFM with � k � 1  and 10

are infeasible. While the penalty parameter is 106 , the
penalty function method is able to obtain a feasible
solution.

The original algorithm of DE with penalty function
method (DE-PFM) was also applied to solve this
dynamic optimization problem for comparison. In the
original algorithm of DE, the mutation factor is fixed
and provided by a user. We tried various pair of
mutation and crossover factors for the original DE to
solve the problem. However, we always obtained a
premature solution using the fixed mutation factor. We
then used the random mutation factor at every
generation. The other setting factors are identical to
those used in HDE except switching off the migrating
and acceleration operations. The premature convergence
is still found by using the population size of five. A
satisfied solution was unable to be obtained by DE
using such a small population size due to the vanishing
of the mutation and crossover operations in (2) and (3).
A reasonable solution can be obtained by using the
population size of 20. Table 3 shows the best solution
for the three runs and the used total function call. From
this table, we observe that the DE-PFM with � k � 1
and 10 is unable to obtain a feasible solution.

We additional use a direct search method, a
subroutine BCPOL in IMSL Math/Library (1991), to
solve the dynamic optimization problem. Since the
solution obtained by the BCPOL subroutine is strongly
depended on the provided initial guess and stopping
tolerance, we therefore run the problem ten times with
randomly assigned initial guess and the stopping
tolerance of 10 7� . The maximum ethanol production
rate of 22.012g/h is obtained by the BCPOL with
penalty parameters of 106 . The total function call of
4514 is used in this case. However, the best solution is
smaller than that of HDE-MUM.

5. Conclusions

We have applied the HDE with multiplier updating
method to solve the constrained dynamic optimization
problem. The hybrid method includes an acceleration
operation and migrating operation so that the HDE can
use a population size of five to obtain a global solution.
Several methods have also employed to solve the
problem. From the comparison, the HDE-MUM can use
smaller penalty parameters to obtain a satisfied solution.
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Figure 1. An example of a two-dimensional objective
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Figure 2. Illustration of the clustered gene and
diversified individual with respect to the best individual.

Table 1. The basic operations of evolutionary algorithms and HDE.

Evolutionary Algorithm Hybrid Differential Evolution

1. Representation and Initialization
2. Mutation
3. Crossover operation
4. Selection and Evaluation
5. Repeat steps 2 to 4

1. Representation and Initialization
2. Mutation
3. Crossover operation
4. Selection and Evaluation
5. Accelerated operation if necessary
6. Migrating operation if necessary
7. Repeat steps 2 to 6

Table 2. The kinetic parameters and initial conditions of the problem

�m = 0.827 , Ks � 4.962 , KsI
� 357.14 , � p1

� 1.728 ,

� �Ks 10.262 , � �KsI
1013.8 , � p2

0� .214 , �� �Ks 70.723 ,

�� �KsI
4154.3, Yp s1

0 469/ .� , Yp s2
0 272/ .� , Kp1

� 49.477 ,

Kp I1
8 04� . , � �Kp1

398.757 , � �Kp I1
8 275. , �� �Kp2

10.79 ,

�� �Kp I2
2 449. , Kp2

= 413.987 , Kp I2
82108� . , x g l( ) . /0 16� ,

s g l( ) . /0 10 0� , p g l1 0 2 2( ) . /� , p g l2 0 0 0( ) . /� , V l( ) .0 15�



Table 3. The maximum ethanol production rate for various methods.

Item

    Method

max J

(g/h)

SIC TFC

� k � 1 23.164 2.4905E-8 323623

� k � 10 23.164 3.0441E-9 320836HDE-MUM
(Np=5)

� k � 106 23.046 6.9404E-9 300046

� k � 1 25.925 3.0480 256375

� k � 10 24.204 4.5355E-1 263148HDE-PFM
(Np=5)

� k � 106 23.118 5.4561E-6 307043

� k � 1 25.922 3.0676 1000020

� k � 10 24.159 4.2298E-1 1000020DE-PFM
(Np=20)

� k � 106 23.039 7.0329E-6 1000020

� k � 1 25.925 3.0455 3797

� k � 10 24.202 4.5302E-1 3721BCPOL-PFM

� k � 106 22.012 8.8971E-6 4514

SIC: Sum of the infeasible constraints defined as

SIC g t dt gk k

t

k
k k k

k

N
f

u

� � �

�

�

� �
�

�

�

�� �� � �z u� �� �,
0

1

4

4 4
1

1

TFC: Total function call


