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Abstract

For pattern recognition, the decision trees
(DTs) are more efficient than neural networks
(NNs) for two reasons. First, the computa-
tions in making decisions are simpler. Sec-
ond, important features can be selected au-
tomatically during the design process. On
the other hand, NNs are adaptable, and thus
have the ability to learn in changing environ-
ment. Noting that there is a simple map-
ping from DT to NN, we can design a DT
first, and then map it to an NN. By so doing,
we can integrate the symbolic (DT) and the
sub-symbolic (NN) approaches, and have ad-
vantages of both. For this purpose, we should
design DT's which are as small as possible. In
this paper, we continue our study on the evo-
lutionary design of the decision trees based
on genetic programming, and propose two
new methods to reduce the tree sizes. The
effectiveness of the new methods are tested
through experiments with a character recog-
nition problem.

1 Introduction

It is known that decision trees (DTs) are very efficient
for pattern recognition (Meisel, 1973), (Gelfand, 1991)
and (Henrichon, 1969)). Actually, as long as pattern
recognition is considered, a DT is more efficient than
a neural network (NN). There are mainly two reasons.
First, the computations in making decisions are sim-
pler — only one feature is used in each non-terminal
(hidden) node, and the only computation can be a
very simple comparison (say, z; < a?). Second, im-
portant features can be selected automatically during
the design process. Actually, when many features are
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provided, only a few of them are often useful for mak-
ing correct decisions. In using an NN, since we do not
know which feature is important, the only thing we
can do is to use all features.

However, the DTs do not have the adaptive or learn-
ing ability, and thus they cannot be used in chang-
ing environment. This problem can be avoided if we
map a DT to an NN. Actually, there is a very simple
mapping from DT to NN (Sethi, 1990). This map-
ping integrates the symbolic approach (DTs) and the
sub-symbolic one (NNs). Specifically, it makes DT's
adaptable, and at the same time, provides a system-
atic way for structural learning of NNs. In addition,
since the features are well selected, the NNs obtained
from this mapping may have much fewer connections
than those designed directly. The key point here is to
design a DT which is as small as possible. To design
an optimal DT, however, is not so easy. It has been
proved that designing optimal binary decision trees is
an NP-complete problem (Hyafil, 1976).

Recently, many authors have tried to solve different
kinds of NP-complete problems using the evolution-
ary approach. In our study, we have also used genetic
programming (GP) to the design of DTs (Shirasaka,
1998) and (Zhao, 1999). Since all kind of DTs can be
reduced to binary decision trees (BDTs), we consider
BDTs only. The GP used in our research is the same
as the original algorithm given in (Koza, 1994) except
that the goal is different. Therefore, most of the dis-
cussions given here may be useful also for the study of
general GP.

The purpose of this paper is to study how to use GP
to produce BDTs with smaller sizes. Various methods
have been proposed in the literature to reduce the sizes
of the BDTs or the computer programs produced by
GP (Iba, 1994) and (Zhao, 1999), but results obtained
up to now are still not good enough to apply GP to
neural network learning. In this paper, we propose



two new approaches based on the concept of divide-
and-conquer. The first one is a bottom-up approach,
which tries to divide the pattern space into many small
parts first, and then merge them into larger and larger
spaces. The second approach is top-down, which tries
to divide the pattern space into two smaller parts, and
then four, and so on. In both approaches, the idea
is to design small BDTs first, and then use them as
sub-programs in designing larger and more powerful
BDTs. The effectiveness of the new methods will be
tested through experiments with a simple handwritten
character recognition problem.

2 A Brief Review of the Binary
Decision Tree

In our study, a binary decision tree (BDT) is defined as
a list of 7-tuples. Each 7-tuple corresponds to a node.
There are two kinds of nodes: non-terminal node and
terminal node. Specifically, a node is defined by

node = {t,label, P, L, R,C, size}

where

e { is the node number. The node with number

t = 0 is called the root.

e label is the class label of a terminal node, and it
is meaningful only for terminal nodes.

e P is a pointer to the parent.
P=NULL.

for the root,

e [ and R are the pointers to the left and the right
children, respectively. For a terminal node, both
pointers are NULL.

e (C is a set of registers. For a non-terminal node,
n = C[0] and a = C[1], and the classification is
made using the following comparison:

feature, < a? (1)

If the result is YES, visit the left child; otherwise,
visit the right child. For a terminal node, C[i] is
the number of training samples of the i-th class,
which are classified to this node. The label of a
terminal node is determined by majority voting.
That is, if

Clk] = max Cli) (2)

then, label = k.

e sizeis the size of the node when it is considered as
a sub-tree. This parameter is useful for selecting

good trees during evolution. The size of the root
is the size of the whole tree, and the size of a
terminal node is 1.

Many results have been obtained during the last
two decades for construction of BDTs (Meisel, 1973),
(Gelfand, 1991),(Quinlan, 1986) and (Henrichon,
1969). To construct a BDT, it is assumed that a train-
ing set consisting of feature vectors and their corre-
sponding class labels are available. The BDT is then
constructed by partitioning the feature space in such
a way as to recursively generate the tree. This proce-
dure involves three steps: splitting nodes, determining
which nodes are terminal nodes, and assigning class
labels to terminal nodes. Among them, the most im-
portant and most time consuming step is splitting the
nodes. Actually, if we want to find the best feature for
splitting each node, and find the optimal BDT for a
given training set, the problem is NP-complete (Hyafil,
1976).

As pointed out earlier, if we adopt the evolutionary
algorithms (EAs) in designing the BDTs, we may find
much better solutions than conventional methods. In
the recent years, many authors have used EAs to
solve different kinds of NP-complete problems. Among
many EAs, GP is most suitable for designing BDTSs,
because the genotype can be considered as a decision
tree directly.

3 Evolutionary Design of Binary
Decision Trees

The algorithm used for designing BDTs is almost the
same as GP, except that the goal is different. There-
fore, GP can be adopted with minor revision. On the
other hand, many of the discussions given here may be
useful also for the study of general GP.

The over-all evolution process is the same as the stan-
dard GA. Similar to GP, an individual is defined as
a BDT, which represents both the genotype and the
phenotype. These individuals can be initialized using
a stze > 1. In the experiments given in this paper, we
often initialize the trees with size=3, 5, or 7.

The fitness of a decision tree is defined by

Ncar'rec
: (3)

fitness = ——
Ntotal

where N_orrect 18 the number of correctly classified
samples, and Nigtq; is the total number of training
samples. The BDTs designed based on this definition,
however, are usually very large. These kind of trees are
not optimal in any sense, and cannot be used as the



prototypes for further design of NNs. In this paper,
we will investigate some methods for reducing the tree
size. These methods will be discussed in the following
sections.

The above fitness can be calculated as follows. First,
present all training samples to an individual and clas-
sify them. If a sample z is classified to a terminal node,
then

node.Cllabel(x)]++ (4)

where a C-language like expression is used. Second,
determine the label of each terminal node by majority
voting. Finally, find the fitness of a BDT by

fitness = node.C[node.label]. (5)

total VT erminals

During evolution, evaluation, selection, crossover and
mutation are performed iteratively, until some stop-
ping criterion is satisfied. For the selection operation,
we can adopt any existing method. In our study, we
just adopt the following simple strategy (truncate se-
lection): in every generation, rs X N of the individuals
with the lowest fitness are replaced by offspring of the
better individuals, where r; is the selection rate, and
N is the population size.

The crossover operation is the same as that used in
the standard GP. That is, for two parents (selected
at random), choose one sub-tree (including the whole
tree) at random for each parent, and then exchange
the sub-trees. The mutation operator is the same as
that used in the GA. Note that in designing a BDT, it
is not necessary to perform mutation on the terminal
nodes. For each nonterminal node, C[0] and C[1] are
encoded as binary strings. The mutation operator just
reverses each bit according to a given rate. Because
the number of features and the range of the feature
values are usually different, C[0] and C[1] should have
different word (gene) length.

4 Methods for Reducing Tree Sizes

Reducing the solution size is also an important topic in
the study of general GP. For example, we can put the
description length as a penalty in the fitness function,
and try to find solutions with the minimum description
length (MDL) (Iba, 1994). In our study, however, we
do not adopt this method, because it is difficult to
determine the weight of the penalty function.

In our study, we first proposed a simple method for
reducing the solution size (Shirasaka, 1998). In this
method, a size is assigned to each node (sub-tree) of a

sub-tree(0-5)
size = 13

sub-tree(0-5)
size = 13

sub-tree(6-9)
size = 17

Figure 1: Divide a large tree into many

tree, and then the individuals are sorted according to
the following rules:

o if tree[i].fitness > tree[j].fitness, tree[i] is better,

o if tree[i] fitness = tree[j].fitness, and treeli].size <
tree[j].size, tree[i] is better.

Therefore, smaller trees will have higher probability to
be selected. The results obtained by using the above
method are much better than those obtained by using
GP directly. However, the tree sizes are still not small
enough for NN design. To reduce the tree sizes further,
we also tried some other methods in (Zhao, 1999), but
the results are not good enough either.

In this paper, we introduce two new approaches based
on the concept of divide-and-conquer. The basic idea is
to produce small sub-trees first, and then use them as
sub-programs. The sub-programs can be re-used many
times. This idea is based on the following observations:

o If we design a BDT using a large training set, the
tree will be large.

o If we design a BDT to classify all patterns in the
training set together, the tree will be large.

Thus, if we design a BDT for part of the training data,
or for classifying some of the patterns, the tree will be
smaller. Fig. 1 illustrates this idea. In this figure, a
circle is a node, and a triangle is a sub-tree. The sub-
trees are designed separately using GP for classifying
some of the patterns in the training set. The sizes of
the sub-trees are expected much smaller than that of
the tree designed directly for classifying all patterns.
In addition, the actual size of the tree in Fig. 1 is
smaller than it looks. Although the total size is 2 +



134+ 17+ 13 = 45, the actual size is 2+ 13 + 17 = 32
because a sub-tree can be re-used, and only one copy
is necessary to realize this tree.

The above idea sounds interesting, but there is a key
question here: how do we decompose the training set
into many smaller sub-sets from which smaller BDTs
can be designed ? To answer this question, we pro-
posed two methods: the first one is a bottom-up ap-
proach, and the second is top-down. We will give de-
tailed explanation for these two methods below.

4.1 Method-I: the bottom-up approach

To make the discussion more concrete, we use digit
recognition as an example. In the bottom-up ap-
proach, we first design BDTs for classifying digits of
only two different classes. For example, we can design
BDTs for distinguishing all 0’s from 1’s, all 2’s from
3’s, and so on. These trees are denoted by BDT(0,
1), BDT(2, 3), and so on. Then, using them as sub-
trees, we can design BDTs for classifying digits of four
classes (See Fig. 2). For example, using BDT(0,1) and
BDT(2,3) as sub-trees, we can design BDT(0, 1, 2, 3).
This process can be summarized as follows:

1. Find a BDT for classifying 0 and 1 using GP, keep
it as a sub-tree, which is denoted by BDT(0, 1). In
the same way, find BDT(2, 3), BDT(4, 5), BDT(6,
7) and BDT(8, 9).

2. Find a BDT for classifying (0, 1) and (2, 3). Com-
bine this tree with BDT(0, 1) and BDT(2, 3), we
get another sub-tree, denoted by BDT(0, 1, 2, 3),
which can classify 0, 1, 2, and 3. In the same way,
we can get BDT(6, 7, 8, 9).

3. Find a BDT which can classify (0, 1, 2, 3) and (4,
5) using GP. Combine this tree with BDT(0, 1, 2,
3) and BDT(4, 5), we get BDT(0, 1, 2, 3, 4, 5).

4. Finally, find a BDT for classifying (0, 1, 2, 3, 4, 5)
and (6, 7, 8, 9). Combine this tree with BDT(0,
1, 2, 3, 4, 5) and BDT(6, 7, 8, 9), we can get
BDT(0, 1, 2, 3,4, 5,6, 7, 8,9), which is the final
result.

4.2 Method-II: the top-down approach

In this method, we divide the whole training set into
two parts first. For example, we can find a BDT for
classifying (0,1,2,3,4,5) and (6,7,8,9). Then, we find
a BDT for classifying (0,1,2) and (3,4,5), and a BDT
for (6,7) and (8,9). This process is continued until the
current training set contains only patterns of the same
class.

Figure 2: The bottom-up approach for designing a bi-
nary decision tree for digit recognition

In practice, however, we do not know how to divide
the training set in advance. We just do this using GP.
For any sub-tree, we provide all patterns in the cur-
rent training set, and classify them into two categories:
patterns who belong to the left-nodes, and those who
belong to the right-nodes (see Fig. 3). Suppose that
there are n patterns in the i-th class, n; of them are
classified to the left-nodes, and ns = n — n; patterns
are classified to the right-nodes. Then, all patterns of
the i-th class will be classified to the left (right) cat-
egory if n; > my (ng > ny). In this case, if a pattern
of the i-th class is classified to a right (left) node, it is
considered as a mis-classification.

To evaluate a sub-tree, we provide all training patterns
(in the current training set) to the tree, assign each
pattern to a proper category (left or right), and then
count the number of correct classifications. The fitness
is defined by

number of mis — classt fications
size of current training set
(6)

When we get a tree with fitness 1 (or approximately
1), we adopt GP to training samples classified to the
left category and then to those belonging to the right
category. This is done recursively until all samples in
the current training set belong to the same class.

fitness =1 —

Note that each sub-tree (except the first one) can be
used many times by its parent sub-tree if the size of
the parent tree is larger than 3. The size of the whole
decision tree is roughly the sum of sizes of all sub-trees
obtained in the above recursive procedure.
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Figure 4: Part of training samples

5 Experimental Results

To verify the effectiveness of the methods proposed
in this paper, we conducted some experiments with a
simple digit recognition problem. In this problem, the
training set contains 360 samples of 9 classes (40 sam-
ples per class). The digits were written using mouse
in a 256 x 256 frame. Part of the samples are shown
in Fig. 4. The digit 9 is not considered because fea-
tures used in our experiment are rotational invariant
(and thus 6 and 9 are the same). Specifically, the fea-
tures are the crossing numbers on several concentric
circles, with the center of the concentric circles being
the center of gravity of the image.

5.1 Parameters

The parameters used in the experiments are given as
follows:

e the number of features (the concentric circles) is
16.

e the gene length for C[0] is 4 bit(2* = 16).

e Since the value of the features are integers less
than 8, the gene length for C[1] is 3.

e The population size is 200.
e The selection rate is 0.4.
e The crossover rate is 1.0.
e The mutation rate is 0.01.

e Initially, the sizes of 60 of the individuals are 3,
sizes of 70 of the individuals are 5, and sizes of all
other individuals are 7.

e The number of generation is 5000.

In selection, selection_rate x population_size of the
individuals are selected against, and they are replaced
by offspring of other individuals. One point crossover
is used.

5.2 Results of Method-I

Table 1 gives the results of 100 runs. In this table,
fitness is the recognition rate of the sub-trees for the
specified sub-set of the training set, and size is the size
of the best sub-trees after 5,000 generations. The fit-
ness and size are average values over 100 runs. sizemn
is the minimum tree size obtained in 100 runs. Table 2
shows the results obtained by using the method (called
old-method from now on) proposed in (Shirasaka,
1998). From these tables we can see that, in average,
Method-I can get smaller decision trees. However, if
we consider only the smallest tree in 100 runs, the old-
method is better. Note that Table 1 actually shows
the results obtained by combining Method-I and the
old method.

5.3 Results of Method-I1

Table 3 gives the experimental results of Method-II,
where as in Table 1, fitness and size are average
values over 100 runs, and size,,;, is the size of the
best tree obtained in 100 runs. Clearly, if we combine
Method-IT with the method proposed in (Shirasaka,
1998) (Method-II + Old in the table), we can always
get very good results: more than 50 percent size reduc-
tion in average (compared with the old method). The
minimum tree is also much smaller than that obtained
using the old method.

6 Conclusion

From the experimental results we can see that both the
bottom-up and the top-down approaches are, in aver-
age, very effective to reduce the tree size. Especially,



Table 1: The experimental results for Method-I

Sub-tree fitness size | Stz€min
BDT(0,1) 1 3 3
BDT(2,3) 0.999875 7 5
BDT(4,5) 1 3 3
BDT(6,7) 0.998125 | 9.6 7

BDT(0,1,2,3) 1 11.34 11
BDT(6,7,8) 1 3 3
BDT(0,1,2,3.4,5) 0.999667 | 32.92 21
BDT(0,1,2,3,4,5,6,7,8) | 0.998056 | 19.6 13
Whole 0.995417 | 89.46 72

Table 2: The experimental results for old method
fitness size S1Z€min
0.998555 | 117.32 55

Table 3: The experimental results for Method-II

Methods fitness | sizegpe | Siz€min
Method-IT alone | 0.993556 | 196.90 64
Method-IT + OId | 0.989278 | 50.46 34

by combining the top-down approach with the method
proposed in (Shirasaka, 1998), we can always get very
good results. Of course, it is still hard to make any
general conclusion because the problem considered in
this paper is still too simple. In the future, we would
like to do more experimental study using larger data-
base, and compare the GP approach with the conven-
tional ones (say, C4.5 proposed by Quinlan). Maybe
we can combine the conventional approaches with GP,
and get much better solutions. In addition, we would
like to map the results to neural networks, and discuss
the adaptability and generalization ability before and
after this mapping.
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