Multi-objective pattern and feature selection by a genetic algorithm

Hisao I shibuchi

Dept. of Industrial Engineering
Osaka Prefedure University
1-1 Gakuen-cho, Sakai, Osaka 599-8531, JAPAN
E-mail: hisaoi @ie.osakafu-u.ac.jp
Phone: +81-722-54-9350

Abstract

This paper discusses a genetic-algorithm-based
approach for sdleding a smal number of
representative instances from a given data set in
a pattern clasdfication problem. The genetic
agorithm adso sdeds a smal number of
sgnificant features. That is, instances and
features are smultaneously seleded for finding a
compact data set. The sdeded ingances and
features are used as a reference set in a neaest
neighbor clasdfier. Our goal is to improve the
clasdfication performance (i.e, generalization
ability) of our neaest neighbar classfier by
searching for an appropriate reference set. In this
paper, we first describe the implementation of
our genetic algorithm for ingance and feature
seledion. Next we discuss the definition of a
fitness function in our genetic algorithm. Then
we e&amine the dasdfication performance of
neaest neighbor clasdfiers designed by our
approach through computer simulations on
artificial data sets andred-world data sets.

1. INTRODUCTION

Genetic algorithms (Holland, 1975 have been
successfully applied to various problems (Goldberg,
1989. Genetic algorithms can be viewed as a general-
purpose optimization technique in dscrete search spaces.
They are suitable for complex problems with multi-modal
objedive functions. Their appli caion to ingance seedion
was proposed by (Kuncheva, 1995) for designing neaest
neighbor clasdfiers In her approach, the clasgfication
performance of sdeded instances was maximized by a
genetic algorithm. A pendty term with resped to the
number of sdleded instances was added to the fitness
function of her genetic algorithm in (Kuncheva, 1997) for
maximizing the dassfication ability and minimizing the
size of neaest neighbor classfiers. In the design of
neaest neighbor clasdfiers, genetic algorithms were also
used for sdeding features in (Siedlecki and Sklansky,

Tomohar u Nakashima

Dept. of Industrial Engineering
Osaka Prefedure University
1-1 Gakuen-cho, Sakai, Osaka, 599-8531, JAPAN
E-mail: nakashi @ie.osakafu-u.ac.jp
Phone; +81-722-54-9351

1989 and finding an appropriate weight of each featurein
(Kelly, Jr. and Davis, 1991, and Punch et al., 1993).

In the neaest neighbor clasdfication (Cover and Hart,
1967, each new instance is clasdfied by its neaest
neighbor in areferenceset. Usualy all the given ingances
are used as thereference set for clasgfying new instances.
For deaeasing the number of instances in the reference
set and improving its classfication performance various
approaches to instance seledion have been proposed (for
example, seeHart, 1968, Dasarathy, 19%, and Chaudhuri
et al., 1994). Some of those approaches intended to find
the minimum reference set that can corredly clasdfy all
the given ingances. The main advantage of the genetic-
algorithm-based approach in (Kuncheva, 1997 is its
flexibility in the handling o the tradeoff between the
clasdfication ability and the size of reference sets. The
tradeoff is handled by weight values with resped to these
two objedives in the fitnessfunction. This means that the
genetic algorithm does not always sarch for the reference
set that cen corredly classfy all the given ingances.
Much gamale reference sets with dightly inferior
clasdfication ability can be found if the weight value for
the size of referencesetsislarge.

In our former work (Ishibuchi and Nakashima, 1999,
2000, we proposed a GA-based approach to the design of
compact reference sets with high classfication ability by
instance and feature seledion. Our approach used several
ideas 2uch asinstance sdedion (Kuncheva, 1997), feature
seledion (Siedlecki and Sklansky, 1989, and biased
mutation probabiliti es (Ishibuchi et a., 1997. In this
paper, we examine two definitions of a fitnessfunction in
our genetic algorithm for ingtance and feature seledion.
Our fitness function is basicaly defined by the
clasdfication performance of a reference set, the number
of seleded instances, and the number of seleded features.
One definition, which was used in our former work, is
based on the dassfication results on the given instances
by a reference set. This definition is to find compact
reference sets that can corredly clasify amost al the
given ingances. In the other definition, the dassfication
of each instanceis performed by a reference set excluding

that instance (asin the leaving-one-out procedure). That is,
each instancein the reference set isnot seleded asits own
neaest neighbor in the @ culation of the fitnessfunction.
This definition of the fitness function is to find compact
reference sets with high generalization ability. The same
idea & the semnd definition has been used in some
instance seledion methods (Wilson, 1972 and Kuncheva,
1995 1997).

2. GENETIC ALGORITHMS

2.1 CODING

Let us asume that m labeled instances x, =
(Xps - Xpn)» P=12,...m are given from c classes in
an n-dimensional pattern space where X; isthe value of
the i-th feature in the p-th ingance Our task isto sded a
small number of representative instances together with a
few significant features for designing a compact neaest
neighbar classfier with high clasdfication ability. Let
PaL be the set of the given m insances: Py =
{X1,X2,...Xm} . We dso denote the set of the given n
features as Fp | ={fq, fo,...,fn} where f; isthe labe
of the i-th feature. Let F and P be the set of sdeded
features and the set of sdeded instances, respedively,
where FOFa, and POPR, . We denote the
referenceset as S=(F,P).

For handiing aur instance and feature seledion problem
by genetic algorithms, every reference set S=(F, P) is
coded asabinary string o thelength (n+m) as

S = ga, A, 5 S, MM$y,, (@0}
where g denotes the inclusion (g =1) or the exclusion
(g =0) of the i-th feature fij, and s, denotes the
inclusion (s, =1) or the exclusion (s, =0) of the p-th
instance xp, . The feature set F and the instance set P are
obtained by decoding the string Sas foll ows:

F={fla=1i=12..n}, @
P:{Xplsp:l p=12,...m. ©)

2.2 FITNESSFUNCTION

In our neaest neighbor clasdfication with the reference
st S=(F,P), the neaest neighbar xp of a new
instance x isfound from the instance set P as

dr (xp,X) = min{d (xp, X)X OP}, (@)

where de (X, X) is the distance between x, and X,
which isdefined by the feature set F as

dr (Xp,x) = /_%:(Xpi -%)?. ®

When the ingance set P does not include any instance, the
clasdfication of new insances is aways rejeded. The
clasdfication is aso rgeded when the feature set F does
not include any feature.

In our ingance and feature seledion problem, the number
of sdleded instances and the number of selected features
areto be minimized, and the dassfication performance of
the reference set S=(F, P) is to be maximized. Thus
our problem isformulated as foll ows:

Minimize |F |, minimize |P |,
and maximize Performance(S) , (6)

where |F | is the number of features in F, |P| is the
number of instances in P, and Performance(S) is a
performance measure of thereferenceset S=(F,P) . The
performance measure is defined based on the
clasdfication results of the given m ingances by the
referenceset S=(F,P).

In our former work (Ishibuchi and Nakashima, 1999,
2000, we defined the performance measure
Performance(S) by the number of corredly classfied
instances by S=(F,P). Each indance Xxq
(9=12,.., m) was classfied by its neaest neighbor xj,
which is defined as

de (Xps Xq) =min{dg (X, Xg) [Xp P} @)
We denote this performance measure for the reference set
S as Performance, (S). It should be noted that the
following formulation corresponds to the instance
seledion problem for finding the minimum consistent set
that can corredly clasdfy all the given instances (for
example, see Wil son, 1972 and Dasarathy, 1994):

Minimize | P | subjed to Performances (S) = m, (8
where S=(Fp,P) and POPy . From the
comparison between (6) and (8), we @n seethe difference

between our task and the instance seledion problem for
the minimum consistent set.

In the definition of the performance measure in
(Kuncheva, 19%, 1997) for the instance seledion, when
an instance xq was included in thereference set, xq was
not seleded as its own neaest neighbor. In the antext of
instance and feature seledion, this means that the nearest
neighbor x5 of xq is Eleded asfollows:

d,:(xﬁ,xq)
_ Omin{de (Xp, Xq) [Xp OP}, if xq OP,
= Hin{de (xp,Xq) [Xp OP —{xg}}, if xqOP.

©)

We denote the performance measure defined in this
manner as Performanceg(S). The instance sdedion
problem discussed in (Kuncheva, 1995) can be written as

Maximize Performanceg(S) , (10)
where S=(Fa ,P) and PO Py, -

These two definitions of the performance measure ae
different only in the clasgfication of instances included in
the reference set. When a smal number of instances are
seleded and included in the reference set (e.g., 1/30 o the
given ingances), these two definitions are dmost the
same because most instances are dasdfied in the same
manner. Thusit seans that we will obtain almost the same
results from these two definitions. This expedation is
examined by computer simulationsin the next sedion.

The fitness value of the reference st S=(F,P) is
defined by the weighted sum of our threeobjectives as

fitness(S) = Wpegrformance LPerformance(S)

(1)
~We OF |-Wp 0P|,

where Wpgrformance, W, and Wp are user definable
non-negative weights. Since the three objedives in our
instance ad feature sdedion probdem in (6) are
combined into the single scalar fitnessfunction in (11), a
single-objective genetic dgorithm is used for seaching
for a singe solution. Of coursg, it is possble to use multi-
objedive genetic algorithms for seaching for multiple
non-dominated solutions asin (Ishibuchi et a., 1997).

2.3 BASIC ALGORITHM

We use a genetic algorithm for maximizing the fitness
function in (11). In our genetic dgorithm, first a number
of binary strings (say, Npop strings) of the length
(n+m) arerandomly generated. Next a pair of stringsare
randomly seleded from the current population to generate
two strings by crossover and mutation. The seledion,
crosover, and mutation are iterated to generate Ny,
strings. The newly generated N, strings are added to
the airrrent population to form an enlarged population of
the size 2[N,,,. The next population is constructed by
sdeding the best Npg, strings from the enlarged
population. The population update is iterated until a pre-
spedfied stopping condition is satisfied. Our genetic
algorithm is written as foll ows:

Step 1 (Initialization):

Randomly generate N, stringsof thelength (n+m) .
Step 2 (Genetic Operations):

Iterate the following procedures Npg,/2 times for

generating Ny, strings.

1)Randomly sdlead a pair of strings from the airrent
population.

2)Apply a crosover operation to the seleded pair of
strings for generating two offspring. In computer
simulations of this paper, we use the uniform crossover.

3)Apply a mutation operation to each bit value of the two
strings generated by the aossver operation. The
mutation operation changes the bit value from 1 to O or
fromOto 1.

Step 3 (Generation Update):

Add the newly generated Ny, strings in Step 2 to the
current population of the Npg, strings to form an
enlarged population of the size 2[N,,,. Seled the best
Npop strings with the largest fitness values from the
enlarged population to form the next population.

Step 4 (Termination Test):
If a pre-spedfied stopping condition is not satisfied,
return to Step 2. Otherwise end the algorithm.

Our genetic algorithm is different from the standard
implementation (Goldberg, 1989) in the sdedion and
generation update procedures. In our agorithm, the
seledion of parent strings for the crosover is performed
randomly. The seledion of good strings is performed in
the generation update procedure. In this snse, the
generation update procedure of our genetic agorithm can
be viewed as a sdedion procedure for generating a
mating pod from which parent strings are randomly
seleded. We adopted this implementation acoording to
the firg attempt of the appli caion of genetic algorithms to
instance seledion in (Kuncheva, 1995 1997). We dso
examined a more standard implementation based on the
roulette whed sdledion with the linea scaling and a
singe dite string. Simulation results of these two
implementations were almost the same. So we only report
simulation results by the above implementation.

24 ILLUSTRATIONBY SIMPLE EXAMPLE

Let us illustrate owr approach to instance and feature
seledion by a simple numerical example in Fig. 1 (a)
where 30 ingances from each class are given. We
attificialy generated this smple eample with 60
instances only for illustration purpose. In Fig. 1 (a), the
clasdfication boundary is drawn by the neaest neighbor
clasdfication using all the given ingances. We used our
genetic algorithm with the parameter spedfications:

String length: 62 (2 features and 60 instances),
Population size: Npop =50,
Crosoover probability: 1.0,

Mutation probahility: 0.01,

Stopping condition: 1000 generations,

Wei ght values: WPerformance =10; W|: =1; Wp =1,
Performance measure: Performancea (S) .

Our genetic algorithm seleded 11 ingances and the two
features (i.e, no feature was removed). The sdeded
instances are shown in Fig. 1 (b) together with the
clasdfication boundary generated by them. In Fig. 1 (b),
all the given instances are wrredly clasdfied. Since we
used the large weight value (i.e., Wperformance =10) for
the performance measure Performance, (S), we had a
100% classfication rate on the given ingances by the
seleded reference set. In Fig. 2 (a), we show a simulation
result by the performance measure Performanceg(S) .
The other parameters including the weight values were
spedfied in the same manner asin Fig. 1 (b). In Fig. 2 (a),
a single instance is misclassfied by the seleded nine
instances. The dasdfication boundary in Fig. 2 (d) was
drawn by the seleded instances. In the case of the second
definition of the performance measure, each instance in
thereference set is not classfied by itself when the fitness
value is evaluated. Thus the incluson of misclassfied
instances in the reference set does not always improve the
performance measure. On the ntrary, the inclusion of
misclassfied ingances always correds the dassfication
of those patterns in the @se of the first definition. The
difference between these two definitions is also discussed
in the next sedion through computer simulations.

Our genetic agorithm with different weight values
generates different reference sets. For example, three
instances in Fig. 2 (b) were sdleded by our genetic
algorithm with Wperformance = 0.5 (The other parameters
were the same as in Fig. 1 (b)). In Fig. 2 (b), three
instances are misclasdfied by the sdeded ingtances.
Sincea larger weight value (i.e.,, Wp =1) is asdgned to
the number of sdleded instances (i.e, |P|) than the
number of corredly classfied instances (i.e,
Performance, (S)), a reference set with a 100%
clasdfication rate on the given instances does not always
have the maximum fitnessvalue. As a result, our genetic
algorithm seleded the reference set in Fig. 2 (b), which
can not corredly classfy all the given instances. In
computer simulations with small weight values for the
performance measure, the secnd feature f, (i.e, Xo-
axisin Fig. 2 (b))) was often removed. Actually, it was
not sdeded by our genetic agorithm with
Whperformance = 0.5 in 25 aut of 30 independent trials.

@® and ©: Selected instances

eo: Class1 o: Class2

@ (b)

Figure 1: Given instances and seleded instances.

@® and ©: Selected instances @ and ©: Selected instances

(b)
Figure 2: Example of seleded instances that can not
corredly classfy all the given instances.

2.5 BIASED MUTATION

As we @n see from the coding medianism of each
reference set into a binary string, our instance and feature
seledion method is computationally intensive. The string
length is (n+m) where n isthe number of features and
m is the number of instances. Thus the size of the search
spaceis 2"*™M, which isteribly large espedally when the
number of given instances is large. Since the number of
features is usualy much smaller than the number of
instances in many red-world pattern clasdfication
problems, we @mncentrate on how to effectively decrease
the number of sdeded instances by our genetic algorithm
in this subsedion.

Let us examine the dfed of the crosover and mutation
on the number of instances included in each sring. Since
the aosover just exchanges bit values between two
parent grings, the total number of sdeded instances in
the parent strings is exactly the same as that in their
offspring. This means that the crossover does not change
the number of ingtances on the average. Of course, strings
with fewer instances are more likely to survive the
generation update due to the definition of the fitness
function. Thus the average number of selected instances
in each population gradualy deaeases by iterating the

generation update.

On the mntrary, the mutation tends to increase the
average number of sdeded ingances. We illugdrate this
fact usng smple numerical calculation. Let my be the
number of instances included in a gring before the
mutation. We dso denote the number of excluded
instances in the string by my where mg+my=m (mis
the number of given ingances). Among the my instances
included in the string, the mutation removes p,, [y
instances from the string on the average where p,,, isthe
mutation probability. At the same time, the mutation adds
some instances to the gtring by changing some 0'sto 1's.
The epeded value of the number of added instances is
PmOy. Thus the epeded value of the number of
seleded instances after the mutation is calculated as

My = My~ Py [y + Py i - (12
Sincea small number of instances are to be selected from
a large number of given instances in our ingance and
feature seledion, my should be much smaler than m
and m. For example, let us asuume that we have a binary
string with 10 instances out of 1000 instances (i.e,
m=1000 my =10, and my =990. In this case, the
expeded value iy of the number of sdeded instances
after the mutation is ce culated as foll ows:

m =108 when p, =0.1, (13
m, = 19.8 when p,, =0.01, (14
ffy = 10.98 when p,, = 0.001. (15

From these @l culations, we @n see that large mutation
probabilities prevent our genetic algorithm from
deaeasing the number of seleded instances.

For demongrating the effect of the mutation on the
number of sedleded instances, we applied our genetic
algorithm to anumerical example with 50 instances from
each of two classs (i.e., 1000 ingances in tota). In this
numerical example, we generated 500 ingtances from each
classusing the normal distribution N(u,Zk) where Py
is amean vedor, X, isa @variancematrix, and k is the
class labe (k=1,2). We spedfied gy and Zy as
follows:

P 0
H1=(01), p2=@10), 2;=2, E)O 0.3 E (16)
In our genetic algorithm, we eamined three
spedfications of the mutation probability for instance
seledion: py, =0.1, 0.01, 0.001. The other parameters
were spedfied in the same manner as in Fg. 1 (b).
Simulation results are shown in Table 1 where the CPU
time was measured by a PC with a Pentium 11 400MHz

processor. From this table, we can see that the large
mutation probability prevented our genetic dgorithm
from finding compact reference sets. We can also seethat
the larger the size of reference sets is, the longer the
computation timeis.

Table 1. Simulation results on pattern classfication
problems with 1000 instances.

Mutation | Performancea(S) | |P| CPU time
0.1 9657.0 3410 | 317.8 (min.)
0.01 99710 26.0 | 1083 (min.)
0.001 99780 167 | 821 (min.)

Our trick for effedively deaeasing the number of
seleded instances is to hias the mutation probability
(Ishibuchi and Nakashima, 1999, 2000). In the biased
mutation, a much larger probability is assgned to the
mutation from “s, =1" to “s, =0" than the mutation
from“s, =0" to “ s, =1". That is, we use two different
mutation probeabilities p,(1 - 0) and p,(0 - 1) for
instance seledion (i.e, for the last m bits of each binary
string). Since the number of features is usually much
smaller than the number of instances in many real-world
pattern classfication probems, we use the standard
unbiased mutation for feature sdledion. That is, the
mutation probability py, isnot biased for the first n bits
of each binary string.

In the same manner as in the above computer smulations
with the unbiased mutation, we applied our genetic
algorithm with the biased mutation to the pattern
clasdfication probem with 1000 instances. The three
mutation probabiliti es were spedfied as p,(1 - 0) =0.1,
Pm(0 - 1) =0.001, and py, = 0.1. The following average
results were ohtained from threeindependent trials.

Performancey (S) =9967.0, | P |= 4.3, CPU time: 49 min.

From these results, we @n seeour genetic algorithm with
the biased mutation cen efficiently search for compact
reference sets.

3. PERFORMANCE EVALUATION

3.1 DATA SETS

We used six data sets: two data sets were atificially
generated using normal distributions, and the others were
red-world data sets used in the literature. In our computer
simulations, we applied our genetic algorithm to each data
set after normdizing given attribute values to red

numbers in the unit interval [0,1]. In the neaest neighbor
clasdfication based on the Euclidean distance such
normalization may be essentia for handling data sets
including features with different magnitudes. Each data
set is briefly described in the foll owing.

Data St | from Normal Distributions with Small Overlap:
We generated a two-classpattern classfication problem in
the unit square [0,1] x[0,1] . For each class we generated
50 ingances using the normal distribution N(pg,Zk)
where g and X were spedfied asfollows:

420
H1=(01), H2=(10), lezzzg)o 042E 17

Data St Il from Normal Distributions with Large
Overlap: We generated a two-class pattern classfication
problem in the same manner asin the above data set using
larger variances. We spedfied the normal distribution of
each classasfollows:

6% 0

H1=(01), H2=(0), Z =23, g)o 0.62 E (19
Iris Data: The iris data set is one of the most commonly
used data sets in the literature. This data set consists of
150 instances with four features from three d¢asses (50
instances from each clas9. The best result reported in
(Weissand Kulikowski, 1991) was a 2.0% error rate on
test data (i.e., unseen instances) by linea discriminants.

Appendicitis Data: The appendicitis data set consists of
106 instances with eight features from two classes. Since
one feature has Me missng values, we used seven
features as in (Weiss and Kulikowski, 1991) where ten
clasdfication methods were examined by the leaving-one-
out procedure for the appendicitis data. The best result
reported in their bodk was a 10.4% error rate on test data
by a machine leaning technique.

Cancer Data: The cance data set consists of 286
instances with nine features from two classs. This data
set was also used in (Weiss and Kulikowski, 1991) for
evaluating the performance of ten classfication methods
by random resampling where 70% of given instances
were used as training data. The best result reported in
their bok was a 22.9% error rate on test data by a
machine leaning technique.

Wine Data: The wine data set consigs of 178 insances
with 13 features from three d¢asses, which is available
from the machine leaning database in the University of
Cdlifornia, Irvine. Thisdata set was used in (Corcoran and
Sen, 1994 for evauating the performance of their
genetics-based machine leaning a gorithm.

3.2 PERFORMANCE ON TRAINING DATA

We applied aur genetic algorithm to the six data sets
using the foll owing parameter spedfications:

Population size: N, =50,
Crosoover probability: 1.0,
Murtation probability: py, = 0.01 for feature seledion,
pPm@ - 0)=0.1, py,(0 - 1) =0.01
for ingance seledion,

Stopping conditi on: 500 generations,
Weight values: Wpgrformance =5 W =1; Wp =1,
Performance measure:

Performance, (S) or Performanceg(S) .

All the given instances were used as training data in this
subsedion. The aim of computer smulations in this
subsedion is to compare the two definitions of the
performance measure. Our genetic algorithm was applied
to each data set 30 times for cdculating average results.
Average simulation results over 30 trials are summarized
in Table 2 and Table 3 where ech figure in parentheses
denotes the number of given features or given ingances in
each data set.

Table 2. Simulation results on training data using the first

performance measure.

Data set Features Ingances | Clasdfication
Data Set | 1.9(2) 14.5 (100 96.7%
DataSet!ll | 1.8(2) 31.0(100 94.4%

Iris 2.0(4) 6.1 (150 99.4%
Appendicitis| 3.3(7) 16.0 (106) 97.5%
Cance 5.1(9) 54.3 (286) 89.2%
Wine 6.3 (13) 5.9(178 100%

Table 3. Simulation results on training data using the
second performance measure.

Data set Features Ingances | Clasdfication
Data Set | 20(2) 6.2 (100 92.3%
DataSet!ll | 1.8(2) 12.3 (100 80.9%

Iris 2.6 (4) 7.6 (150 94.2%
Appendicitis| 3.2(7) 4.4 (106 91.8%
Cance 2.9(9) 27.2 (286 81.3%
Wine 6.6 (13) 7.3(178 99.9%

In Table 2 and Table 3, we used the first definition
Performance, (S) and the seond definition
Performanceg(S) of the peformance measure,
respedively. The first definition dredly evaluates the

clasdfication ability on training data for the evolution of
reference sats. As a result, we obtained higher
clasdfication rates on training data in Table 2 than Table
3. Such higher clasdfication rates were redized by
seleding much more instances for constructing reference
sets in the @se of data sets with large overlaps such as
Data Set 11, the appendiciti s data, and the cancer data. On
the other hand, in Table 3, the generalization ability of
each reference set on unseen data was estimated in our
genetic algorithm by the second definition. Thus the
clasdfication rates on training data in Table 3 are inferior
tothosein Table 2.

From the projedion of theiris datainto the x3- x4 plane,
we @n seethat these two features are important for the
clasgfication purpose of the iris data. These two features
were seleded by our genetic algorithm in 29 aut of the 30
tridlsin Table 2. In Table 3, { f3, f4} were selected in 16
trials, and {f,, f3, f4;} were sdeded in the other 14
trials.

3.3 PERFORMANCE ON TEST DATA

In the previous sibsedion, we demonstrated that our
genetic algorithm can seled a small number of instances
together with only significant features. It was also shown
that the sdleded reference sets can corredly classfy
amost all the given instances. While we eamined
clasdfication rates on training data in the previous
subsedion, the performance of clasdfication systems
should be evaluated by classfication rates on test data
(i.e, unsee instances). In this subsedion, we examine the
generalization ability of selected reference sets.

Since the firg two data sets were atificially generated
from the given normal distributions, we @n generate
unsean ingtances from the same normal distributions. In
our computer smulations, 1000 instances (500 from each
clasg were generated as test data. That is, a reference set
sdeded from 100 instances was examined on 1000
instances a each trial. This procedure was iterated 50
times for Data Set | and Data Set I1. For the iris data and
the appendicitis data, we used the leaving-one-out (LV1)
procedure as in (Weissand Kulikowski, 1991). The LV1
procedure was iterated ten times for the iris data and the
appendicitis data. For the cancer data and the wine data,
we used the 10-fold crossvalidation (10CV) procedure.
In the 10CV procedure, the given ingtances are divided
into ten subsets of the same size. One subset is used as
test data, and the other subsets are used as training data.
Thisisiterated ten times © that all the subsets are used as
test data. The 10CV procedure was employed ten times
for the cancer data and the wine data

We used the same parameter values of our genetic
algorithm as in the previous aubsection. We examined the
two definitions of the performance measure (i.e,
Performance, (S) and Performanceg(S)). Simulation
results are summarized in Table 4. For comparison, we
also examined the generalization ability of the original
data sets before instance and feature seledion. From
Table 4, we @n see that the generalization ability was
improved by the use of Performanceg(S) in many data
sets. The improvement of the generalization ability is
clear in the appendicitis data and the cancer data with
large overlaps between different classes. On the contrary,
we @n not observe such clear improvement in the iris
data and the wine data. Those data sets, for which we
obtained high clasdfication rates on test data by the
original neaest neighbor classfiers, do not have large
overlaps between different classes in the pattern spaces.
From the comparison between the two definitions of the
performance measure, we can see that higher
clasdfication rates on test data were ohtained by the
second definition Performanceg(S) than the first
definition Performance, (S). This is becuse the first
definition is based on the classfication ability on training
data. That is, the evolution of reference sets guided by the
first definition tendsto overfit to training data. Asaresult,
instance and feature seledion based on the first definition
is not likely to improve the generdization ability of
neaest neighbor clasdfiers.

Let us briefly compare the smulation results in Table 4
with those by ten clasdfication methods reported in
(Weissand Kulikowski, 1991). The 96.9% clasdfication
rate for the iris data set in Table 4 is better than six
methods (e.g., 96.7% by the back-propagation algorithm).
The 85.7% clasdfication rate for the appendicitis data is
better than five methods. This result is almost the same as
the reported result 858% by the back-propagation
algorithm. The 73.6% clasdfication rate for the cancer
datais better than eight methods (e.g., 71.5% by the back-
propagation algorithm).

Table 4. Average clasdfication rates on test data.

Dataset |Original data| Perfa (S) Perfeg(S)
Data Set | 81.3% 80.2% 84.7%
Data Set I 60.6% 60.2% 64.8%

Iris 95.3% 96.9% 94.2%
Appendicitis| 80.2% 77.0% 85.7%
Cance 65.3% 68.3% 73.6%
Wine 95.3% 94.8% 96.5%

4. CONCLUSIONS

In this paper, we discussed ingance and feature seledion
for the design of compact neaest neighbor clasdfiers.
Through computer simulations on artificially generated
data sets and real-world data sets, we demonstrated that a
small number of instances were seleded together with
only significant features by our genetic algorithm. That is,
our genetic algorithm can simultaneously perform
instance seledion and feature sdledion. We dso
demonstrated that the generalization ability of neaest
neighbor clasdsfiers was improved by the use of the
seleded instances and features in some data sets. This
improvement was clea in the @ase of data sets with large
overlaps between different clases. We eamined two
performance measures used for calculating the fitness
value of each reference set in our genetic algorithm. One
performance measure was defined by the dasdfication
performance of the reference set on gven instances. That
is, the dassfication performance was evaluated by
classfying all the given ingances by the reference set.
This performance measure is siitable for finding the
minimum reference set that can corredly classfy all the
given indances. In the evauation of the other
performance measure, the dasdfication of all the given
instances is performed in a different manner. The point is
that every instance included in the reference set is not
used as its own neaest neighbar. In this manner, the
generalization ability of each reference set is evaluated in
the exeaution of our genetic algorithm. As shown by our
computer simulations, this performance measure is
suitable for seleding compact reference sets with high
generalization ability from data sets with large overlaps
between different classes.

Refer ences

Chaudhuri, D., Murthy, C. A., and Chaudhuri, B. B. 1994.
Finding a subset of representative points in a data set.
|EEE Trans. on Systems, Man, and Cybernetics, 24: 1416-
1424

Corcoran, A. L. and Sen, S. 1994. Using red-valued
genetic algorithms to evolve rule sets for classfication.
Proc. of 1st IEEE International Conference on
Evolutionary Computation. Orlando, FL. 120-124.

Cover, T. M. and Hart, P. E. 1967. Neaest neighbor
pattern clasdfication. IEEE Trans. on Information Theory,
13: 21-27.

Dasarathy, B. V. 199. Minima consstent set (MCS)
identification for optimal neaest neighbor dedsion
systems design. IEEE Trans. on Systems, Man, and
Cybernetics, 24: 511-517.

Goldberg, D. E. 198. Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading, MA,
Addison-Wesley.

Hart, P. 1968. The mndensed neaest neighbor rule. IEEE
Trans. on Information Theory, 14: 515-516.

Hoalland, J. H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, M1, University of Michigan Press

Ishibuchi, H., Murata, T., and Turksen, I. B. 1997. Single-
objedive ad two-objedive genetic algorithms for
seleding lingugic rules for pattern classfication
problems. Fuzzy Sets and Systems, 89: 135150,

Ishibuchi, H. and Nakashima, T. 1999. Evolution of
reference sets in neaest neighbor clasdfication, in B.
McKay et al.(eds.) Lecture Notes in Artificial Intelligence
1585: Smulated Evolution and Learning (2nd Asian-
Pacific Conference on Smulated Annealing, Canberra,
1998, Selected Papers). 82-89.

I shibuchi, H. and Nakashima, T. 2000. Pattern and feature
seledion by genetic dgorithms in nearest neighbor
clasdfication. International Journal of Advanced
Computational Intelligence (to appea).

Kdly, ., J D. and Davis, L. 1991. Hybridizing the
genetic algorithm and the k neaest neighbos
clasdfication agorithm. Proc. of 4th International
Conference on Genetic Algorithms, University of
California, San Diego, 377-383

Kuncheva, L. |. 1995. Editing for the k-nearest neighbors
rule by a genetic algorithm. Pattern Recognition Letters,
16: 809-814.

Kuncheva, L. I. 1997. Fitnessfunctions in editing k-NN
reference set by genetic algorithms. Pattern Recognition,
30: 10411049

Punch, W. F., Goaodman, E. D., Pe, M., Chia-Shun, L.,
Hovland, P., and Enbady, R. 1998. Further reseach on
feature sdedion and clasdfication using genetic
algorithms. Proc. of 5th International Conference on
Genetic Algorithms, University of lllinois at Urbana-
Champaign, 557-564.

Rumehart, D. E., McCldland, J L., and the PDP
Research Group. 1986. Parallel Distributed Processing.
Cambridge, MA. MIT Press

Siedledki, W. and Sklansky, J. 1989. A note on genetic
algorithms for large-scale feature seledion. Pattern
Recognition Letters, 10: 335-347.

Weiss S. M. and Kulikowski, C. A. 1991. Computer
Systems That Learn. San Mateo, CA. Morgan Kaufmann.

Wilson, D. L. 1972. Asymptotic properties of neaest
neighbor rules using edited data. IEEE Trans. on Systens,
Man, and Cybernetics, 2: 408-420.

