A hybrid decision tree/genetic algorithm for coping with the problem
of small digunctsin data mining

Deborah R. Carvalho

Alex A. Freitas

Pontificia Universidade Catolicado Parana (PUCPR) Pontificia Universidade Catoli cado Parana (PUCPR)

Postgraduate program in applied computer science
R. Imaculada Conce cao, 1155. Curitiba— PR
80215901. Brazl

Universidade Tuiuti do Parana (UTP)
Computer Science Dept.
Av. Comendador Franco, 186. Curitiba-PR
80215090 Brazil
deborah@utp.br

Abstract

The problem of small diguncts is a serious
chall enge for data mining algorithms. In esence
small diguncts are rules covering a small
number of examples. Due to their nature, small
digunctstend to be aror prone and contribute to
a deaease in predictive accuracy. This paper
proposes a hybrid dedsion treggenetic algorithm
method to cope with the problem of small
diguncts. The basic idea is that examples
belonging to large diguncts are classfied by
rules produced by a dedsion-tree #&gorithm,
while examples belonging to small disuncts
(whose dasdfication is considerably more
difficult) are dassfied by rules produced by a
genetic algorithm spedfically designed for this
task.

1 INTRODUCTION

In the context of the well-known clasdfication task of
data mining, the discovered knowledge is often expressd
as a set of IF-THEN rules, since this kind o knowledge
representation is intuitive for the user. From a logicd
viewpoint, typically the discovered rules arein digunctive
normal form, where each rule represents a digunct and
each rule ondition represents a conjunct. A smal
digunct can be defined as a rule which covers a small
number of training examples (Holte & al. 1989).

In general rule induction agorithms have a bias that
favors the discovery of large diguncts, rather than small
diguncts. This preference is due to the beief that it is

Postgraduate program in applied computer science
R. Imaculada Conce cao, 1155. Curitiba— PR
80215-901. Brazil
alex@ppaia.pucpr.br
http://www.ppg a.pucpr.br/~alex
Tel./Fax: (55) (41) 330-1669

better to capture generalizations rather than
spedalizations in the training set, since the latter are
unlikely to be valid in the test set (Danyluk & Provost
1993.

Hence at first glance smal diguncts are not important,
sincethey tend to be aror prone. However, a degoer study
of theisaue of small digunctsreveals that in fact they are
guite interesting in the @ntext of data mining, for the
following reasons:

(8 Although each disunct covers a small number of
examples, the set of all small diguncts can cover a large
number of examples. For insance (Danyluk & Provost
1993 report a rea-world applicaion where small
diguncts cover roughy 50% of the training examples.
Therefore, if the rule induction dgorithm ignores small
diguncts and discovers only large diguncts, classfication
acauracy will be significantly degraded.

(b) Some small disuncts cover examples that represent
rare @ses in the applicaion domain, which constitutes an
interesting concept to be discovered. Actually, bearing in
mind that one of the goals of data mining is to discover
previoudy-unknown rules, small-digunct rules tend to ke
more interesting than large-digunct rules, since the latter
are more likely to be previousy-known by the user
(Provost & Aronis 199%).

In this paper we propose a hybrid dedsion tredgenetic
algorithm method for rule discovery that copes with the
problem of small diguncts. The basic idea is that
examples belonging to large diguncts are dassfied by
rules produced by a dedsion-tree #&gorithm, while
examples belonging to smdl diguncts (whose
classfication is considerably more difficult) are classfied
by rules produced by a new genetic dgorithm,
spedfically designed for discovering samall-digunct rules.

The rest of this paper is organized as follows. Sedion 2
discusses related work. Sedion 3 describes our hybrid
dedsion tredgenetic algorithm method for rule discovery.

This sedion assumes that the reader is familiar with
dedsion-trees, which is a very well-known knowledge
discovery paradigm in data mining, and focus on a
detail ed description of a new genetic dgorithm proposed
in this paper. Sedion 4 reports the results of experiments
evaluating the performance of the proposed method on a
case study dataset. Finaly, sedion 5 presents the
conclusions and some future reseach diredions.

2RELATED WORK

(Holte & a. 1989) investigated three posshle solutions
for coping with small diguncts, namely: (a) Eliminating
all rules whose number of covered training examples is
below a predefined threshold. In effect, this corresponds
to eiminating al small diguncts regardless of their
estimated performance (b) Eliminating only the small
diguncts whose etimated performanceis poar. (c) Using
a spedficity bias for small diguncts (while using a
generdlity bias for large diguncts). The third approach
turned out to be partly (but not entirely) successful.

(Ting 1994) proposed the use of a hybrid data mining
method to cope with small diguncts. His method consists
of usng a dedsion-tree &gorithm to cope with large
diguncts and an instance-based leaning (IBL) agorithm
to cope with small diguncts. The basic ideaof this hybrid
method is that IBL algorithms have a spedficity bias,
which should be more suitable for coping with small
diguncts. In a high level of abstraction, the basic idea of
this method is similar to our hybrid dedsion-treggenetic
algorithm method. However, Ting's method has the
disadvantage that the IBL algorithm does not discover any
high-level, comprehensible rules. By contrast, we use a
genetic algorithm that does discover high-leve,
comprehensible small-disunct rules, which is important
in the mntext of datamining.

(Weiss 1995 investigated the interaction of noise with
rare @ses (true eceptions) and showed that this
interaction led to degradation in classfication accuracy
when gmall-digunct rules are diminated. However, these
results have alimited utility in practice sincethe analysis
of thisinteraction was made possble by using artificially
generated data set. In real-world data sets the corred
concept to be discovered isnot known apriori, sothat it is
not posshleto make a tea distinction between noise and
true rare cases. (Weiss 1998) did experiments $owing
that, when noise is added to real-world data sets, small
diguncts contribute disproportionaly and significantly for
the total number of classfication errors made by the
discovered rules.

3 A HYBRID DECISION-TREE /
GENETIC-ALGORITHM METHOD
FOR RULE DISCOVERY

As mentioned in the introduction, we propose a hybrid

method for rule discovery that combines dedsion trees
and genetic dgorithms. The basic ideais to use awell-

known dedsion-tree adgorithm to classfy examples
belonging to large diguncts and wse a new genetic
algorithm to discover rules classfying examples
belonging to small diguncts. This approach tries to
combinethe best of bath worlds. Dedsion-tree dgorithms
have a bias towards generdlity that is well suited for large
diguncts, but not for small diguncts. On the other hand,
genetic algorithms are robust, flexible dgorithms which
tend to cope wel with attribute interactions (Freitas
2000, (Noda et d. 1999), and can be more easily tailored
for coping with small diguncts.

The proposed method discovers rules in two training
pheses. In the firg phase we run C4.5, a well-known
dedsion tree induwction agorithm (Quinlan 1993). The
induced, pruned treeis transformed into a set of rules in
the usua way - that is, each path from the rocat to a leaf
node rresponds to a rule predicting the dass pedfied
in the crresponding leaf node. Hence, a dedsion tree
with d leaves is transformed into arule set with d rules (or
diguncts). Each of these rules is considered either as a
smal digunct or as a “large’ (non-small) digunct,
depending on whether or not its coverage (the number of
examples covered by therule) is small er than or equal to a
given threshold.

The second phase mnsists of using a genetic dgorithm to
discover rules covering the examples belonging to small
diguncts. We have devel oped a new genetic dgorithm for
this phase, which will be described in detail below.

Once the secnd training phase is over, examples in the
test set are dasdfied as follows. For each test example,
we first chedk whether the example is covered by some
large-digunct rule. If so, the example is classfied by the
corresponding rule, which is one of the rules induced by
the dedsion tree #gorithm. Otherwise the example is
classfied by some small-digunct rule, which is one of the
rules discovered by our genetic algorithm.

It should be noted that the small-digunct rules discovered
by our genetic algorithm cen overlap each other.
Therefore, if a test example is to be dassfied by some
small digunct rule, there might be one of the following
two kinds of rule @nflict.

Firgt, there might be more than one small-digunct rule
covering the test example. If thisis the @ase, the example
is classfied by the highest-quality rule among all small-
digunct rules covering the examples. The quality of arule
is measured by the value of the fitnessfunction computed
by the genetic dgorithm - described in sedion 3.3.
Second, there might be no small-digunct rule @vering
the test example. If this is the @se, the example is
classfied by a default rule. This is a rule which simply
predicts the mgjority classof the target dataset. A similar
procedure is aso used in several rule induction
algorithms.

Finally, note dso that these kinds of rule conflict cannot
occur if the test example is to be dassfied by a large-
digunct rule, since these rules have mutualy exclusive

and exhaustive mverage, due to that fact that they were
diredly generated from theinduced dedsion tree

3.1 OVERVIEW OF A GA FOR DISCOVERING
SMALL-DISSJUNCTSRULES

In this ®dion we describe our genetic algorithm (GA)
developed for discovering small-disunct rules - i.e rules
covering the examples in leaf nodes of a dedsion tree
considered to be a small digunct, as explained above.

The firg step in the design of a GA for rule discovery is
to dedde what an individua (candidate solution)
represents. In our case, each individual represents a small -
digunct rule. The genome of an individua consigs of the
conditionsin the antecalent (IF part) of therule. The goal
of the GA is to evolve rule mnditions that maximize the
predictive acauracy of the rule, as evaluated by a fitness
measure - described below. The mnsequent (THEN part)
of the rule, which spedfies the predicted class is not
represented in the genome. Rather, it is fixed for a given
GA run, so that al individuas have the same rule
consequent during all that run.

Each run of our GA discovers a singe rule (the best
individual of the last generation) predicting a given class
for examples belonging to a given small digunct. Since
we neeal to dscover several rules to cover examples of
several classsin severa different smal diguncts, we run
our GA severd times for a given dataset. More predsdly,
we nedl to run our GA d * c times, where d is the number
of small diguncts and c is the number of classes to be
predicted. For a given small digunct, the k-th run of the
GA, k=1,....c, discoversarule predicting the k-th class

At first glance this is a @mputationally expensive
approach for rule discovery. However, note that in our
approach each GA run will use asitstraining set - for the
purpose of fitness computation - only the few (about 10)
examples belonging to a given small digunct. Therefore,
we avoid the well -known battlenedk of most GAs for rule
discovery, which is the long time taken to evaluate an
individual’s fitness when mining large datasets. Indeed,
the computational results reported in sedion 4 confirm
that the total processing time associated with all the runs
of our GA isrelatively short.

The next subsedions describe in detail the individua
representation, the fitness function, and the genetic
operators used in our GA.

3.2 INDIVIDUAL REPRESENTATION

In our GA each individud represents the antecedent (IF
part) of a small-digunct rule. More predsdy, each
individual represents a conjunction of conditions
composing a given rule aitecedent. Each condition is an
attribute-value pair - seebelow.

The rule antecalent contains a variable number of rule
conditions, since one does not know a priori how many
conditions will be necessary to compose a goad rule. In
practice, for implementation purposes, one has to spedfy

both a lower limit and an upper limit in the number of
conditions of a rule antecedent. In our GA the minimum
number of rule @nditions is 2. Although this number
could be set to 1, recl that or GA is seaching for
small-digunct rules. It is very unlikely that a rule with a
single ondition can accurately predict the dass of an
example belonging to a small digunct, so a lower limit of
2 seans to make sense.

The maximum number of rule mnditionsis more difficult
to determine. In principle, the maximum number of rule
conditi ons could be m, where misthe number of predictor
attributes in the dataset. However, this would have two
disadvantages. First, it could lead to the discovery of very
long rules, which goes againg the desire to discover
comprehensible rules. Seond, it would require a long
genome to represent individuals, which tends to increase
processng time. To avoid these problems, we use a
heurigtics to seled the subset of attributes that is used to
compose rule onditions.

Our heurigtics is based on the fact that different small
diguncts identified by the dedsion-tree algorithm can
have several rule mnditions in common. For instance
suppose that two sibling leaf nodes of the dedsion tree
were deemed small diguncts and let k be the number of
ancestor nodes of these two leaf nodes. Then the two
corresponding rule antecealents have k - 1 conditions in
common. Therefore, it does not make much sense to use
these common conditions in the rules to be discovered by
the GA. Rather, for each small digunct, the genome of a
GA individual contains only attributes that were not used
to label any ancestor of the leaf node defining that small
digunct.

To represent a vaiablellength rule antecalent
(phenotype) we use a fixed-length genome, for the sake of
smplicity. Recall that each GA run dscovers a rule
associated with a given small digunct and that each small
digunct is identified by a dedsion tree leaf node. For a
given run of the GA, the genome of an individual consists
of n genes, where n = m - k, where m is the total number
of predictor attributes in the dataset and k is the number of
ancestor nodes of the dedsion tree leaf node identifying
the small disunct in guestion.

Each gene represents arule mndition (phenotype) of the
form A Op; V;j, where the subscript i identifies the rule
condition, i = 1,...,n; A is the i-th attribute; V; is the j-th
value of the domain of A;; and Op is a logical/relational
operator compatible with attribute A - see below. To
encode this phenotype the interna representation of a
gene mnsists of four elements, as foll ows:

(a) identification of a given predictor attribute, A;, i =
1,...n

(b) identification of alogical/relational operator Op. Two
cases are posshle here. If atribute A is a ategorical
(nominal) attribute, the operator Op; is “in”, which will
producerule mnditions such as “A in {Viy,...,Vii}”, where
{Vi1,...,Vi} is a subset of the values of the domain of A.
By contrast, if A is a @ntinuous (real-valued) attribute,

the operator Op; is ether “<* or “>*, which will produce
rule mnditions such as “A < V;", where V; is a value
bel onging to the domain of A.

(c) identification of a set of attribute values {Vis,...,Vig}, if
the atribute A is categorical, or a single attribute value
Vj;, if the attribute A is continuous, as explained in the
previous item.

(d) aflag, call ed the active bit B;, which takes on the value
1 or O to indicate whether or not, respedively, the i-th
condition is present in the rule atecedent (phenotype).

The overal structure of the genome of an individual is
illugtrated in Figure 1.

A1Opi{Vy.} By ... A Op{Vi.} iBi | AnOp{Vy.} i Bn

Figure 1: Structure of the genome of an individual.

3.3 FITNESSFUNCTION

To clarify the definition of the fitnessfunction used in our
GA, we show in Figure 2 a well-known 2x2 confusion
matrix for domains with two classes - arbitrarily called
“positive’ (+) and “negative’ (-) classs. This matrix
divides the dassfications made by discovered rules
predicting the “+" class on the test set into four
categories, depending on whether or not atest exampleis
covered by arule predicting the “+” class corresponding
to the first and second rows, respedively; and on whether
or not the test example has the “+” class, corresponding to
the firs and second columns, respedively (Hand 1997).
The labels of each of the four quadrants of the matrix
have the following meaning: TP = number of “+”
examples that were @rredly classfied as “+” examples;
FP = number of “-" examples that were wrongly classfied
as“+" examples, FN = number of “+” examples that were
wrongly classfied as “-” examples; TN = number of “-"
examplesthat were @rredly classfied as“-" examples.

True Class
“yr
Predicted | “+” TP (true pogitive) FP (false pogitive)
Class FN (false negative) | TN (true negative)

Figure 2: A 2x2 confusion matrix for a domain with two
classs

To evaluate the quality of an individual (candidate rule),
our GA uses the foll owing fitnessfunction:

Fitness= (TP/ (TP + FN)) * (TN/ (FP + TN)) .

For a ommprehensive discusson abaut this and related
rule-quality measures in general, independent of genetic
algorithms, the reader isreferred to (Hand 1997. Here we
briefly mention that, in the above formula, the term
(TP / (TP + FN)) is often called sensitivity, whereas the
term (TN / (FP + TN)) is often called specificity. These
two terms are multiplied to force the GA to discover rules
that have both high sensitivity and high spedficity, since
it would be relatively simple to maximize one of these
terms by reducing the other.

34 GENETIC OPERATORS

We use the wedl-known tournament method for
reproduction, with tournament size of 2. We aso use
standard one-point crossover with crossover probability of
80%, and mutation probability of 1%. Furthermore, we
use ditism with an ditist factor of 1 - i.e the best
individual of each generation is passed unaltered into the
next generation.

In addition to the above standard genetic operators, we
have also developed a new operator espedally designed
for improving the comprehensibility of rules. The basic
idea of this operator, called rule-pruning operator, is to
remove several conditions from arule to make it shorter.
In ahigh level of abstraction, removing conditions from a
rue is a ommon way of rendering a rule more
comprehensible, in the data mining literature. This
operator is applied to every individua of the population,
right after the individual is formed as aresult of crossover
and mutation operators.

We have devised a rule pruning procedure based on
information theory. In esence this procedure works as
follows. First of all, it computes the information gain of
each of the n rule @nditions (genes) in the genome of the
individual — see below. Then the procedure iteratively
tries to remove one @ndition at atime from therule. The
smaller the information gain of the @ndition, the ealier
its removal is considered and the higher the probability
that it will be actually removed from therule.

More predsely, in the first iteration the mndition with the
smallest information gain is considered. This condition is
kept in the rule (i.e. its active bit is =t to 1) with
probability equal to its normalized information gain (in
the range 0..1), and is removed from the rule (i.e. its
active bit is sat to 0) with the cmmplement of that
probability. Next the condition with the second smallest
information gain is considered. Again, this condition is
kept in the rule with probability equal to its information
gain, and is removed from the rule with the mmplement
of that probability. This iterative process is performed
while the number of conditions occurring in the rule is
greaer than the minimum number of rule nditions - a
present set to 2, as explained ealier - and the iteration
number is smaller than or equa to the number of genes
(maximum number of rule cnditions) n.

The information gain of each rule condition cond; of the
form <A Op V> is computed as foll ows (Quinlan 1993),
(Cover & Thomas1991):

InfoGain(cond;) = Info(G) — Info(G|cond;), where

Info(G) = - = (IGI/T| * log(IG[T))

=1

Info(Glcond) = .
[-AVilTD Z ((VillViD * Toga(IVilIViD)

=1

- (BVIlT) Z (R Villl=ViD) * logz(I= Vil = Vi)]

=1

where G is the goal (clasg attribute, ¢ is the number of
classs (values of G), |G| is the number of training
examples having the j-th value of G, [T] is the tota
number of training examples, |Vi| is the number of
training examples satisfying the condition <A Op; V>,
|V is the number of training examples that both satisfy
the ondition <A; Op V> and have the j-th value of G,
[=Vi| is the number of training examples that do not
satisfy the condition <A Op Vi>, and |=Vj| is the
number of training examples that do not satisfy <A, Op,
V> and have the j-th value of G.

/* n = number of genes = number of attributes avail able to composerule

antecedent */

/* The i-th position of vectors Info_Gain Cond] contains the

information gain of thei-th condition. Thisisused as the probability that

the condition isadive */

/* Thei-th position of vector Sorted_Cond[] containstheid of the
condition with thei-th smallest information gain */

BEGIN
Min_N_Cond=2; /* Minimum number of conditions*/
FORi=1TOn
compute Info_Gain_Cond[i]; /* seetext */
END FOR

sort the n conditionsin increasing order of Info_Gain_Condi];
FORi=1TOn
Sorted_Cond([i] = Id of condition with
thei-th smallest information gain;
END FOR
Iteration_Id=1;
N_Act_Cond = number of active mnditions (with adive bit = 1) in
genome;
WHILE (N_Act_Cond > Min_N_Cond) AND (Iteration_Id < n)
Random_N = randomly-generated number in therange 0..1;
IF Random_N < Info_Gain_Cond[Sorted_Cond]l teration_|d]]
THEN condition whose Id is Sorted_Cond[lteration |d]
isactive(i.e. it ocaursin therule)
EL SE condition whaose Id is Sorted_Cond([l teration_Id]
isnot active (i.e. does not occursin therule)
END WHILE
END

Figure 3: Rule-pruning procedure applied to GA
individuals

The use of the above rule-pruning procedure cmbines the
stochastic nature of GAs, which is partly responsible for
their robustness with an information-theoretic heuristics
for dedding which conditions compose a rule antecelent,
which is one of the strengths of some well-known data
mining algorithms. As a result of the action of this
procedure, our GA tendsto produce rules that have both a
relatively small number of attributes and high-
information-gain attributes, whose values are etimated to
be more relevant for predicting the dassof an example.

A more detail ed description of our rule-pruning procedure
is shown in Figure 3. As can be seen in this Figure, the
above-described iterative mechanism for removing
conditions from a rule is implemented by sorting the
conditions in increasng ader of information gain. From
the viewpoint of the GA, thisisalogical sort, rather than
a physical one. In other words, the sorted conditions are
stored in a data structure mmpletely separated from the
individual’ s data structure, so that there is no modification
in the actual order of the mnditions in the genome of the
individual.

4 COMPUTATIONAL RESULTS

As a case study for evaluating the proposed GA, we have
used the ault dataset, which is one of the largest public
domain datasets in the well-known data repository of the
UCI (University of California & Irvine), available &
http://mww.ics.uci.edu/~mlean/MLRepository.html.

This dataset contains information about the USA census.
The goal (clasg attribute indicates whether or not the
average annual salary of a person exceals 50K dollars.
This dataset contains 48842 examples and 14 attributes,
out of which 6 are mntinuous and 8 are cdegorical.

In our experiments we have used the predefined division
of the dataset into atraining and atest set, with the former
having 32561 examples and the latter having 16281
examples. The examples that had some missng value
were removed from the data set. As a result, the number
of examples was dightly reduced to 301& and 15060
examplesin thetraining and test set, respedively.

In each run of the GA, the populaion size is 200
individuals, and the GA is run for 50 generations. We
used these parameter values because they are relatively
common in the literature. We made no attempt to
optimize these parameter values.

As described in sedion 3, our hybrid dedsion-tred GA
rule discovery method consists of using a GA to discover
rules for classfying small-disunct examples only - recll
that large-digunct examples are classfied by the dedsion
tree Intuitively, the performance of our method will be
significantly dependent on the definition of small digunct.

In our experiments we have used a commonplace
definition of small digunct, based on a fixed threshold of
the number of examples covered by the digunct. The
genera definition is: “A dedsion-treeleaf is considered a
small digunct if and only if the number of examples

belonging to that leaf is smaler than or equal to a fixed
size S” We have done eperiments with four different
values for the parameter S namely S=3, S=5,S=10
and S=15.

For each of these four S values, we have done five
different experiments, varying the random seed used to
generate the initial population of individuals. The results
reported below, for each value of S, is an arithmetic
average of the results over these five different
experiments. Therefore, the total number of experiments
is20 (4 values of S* 5 different random seels).

This methodology makes the results smewhat more
reliable, sincein GAs, asin other stochastic methods, the
quality of the results may be somewhat influenced by the
random seed.

Note that the actual number of GA runs is much more
than 20. Indeed, in each of these 20 experiments we run
the GA twice for each small digunct, since the target
dataset has two classs. In any case, each run of the GA is
relatively fast, as argued in sedion 3. In redlity, each of
these 20 experiments took a processng time on the order
of one hour on a Pentium Il of 266 MHz with 64vib of
RAM.

We now report results comparing the performance of the
proposed GA againgt C4.5, a well-known dedsion-tree
induction algorithm (Quinlan 1993. We have used the
default parameters of C4.5. To make the comparison fair,
we have made no attempt to qptimize GA parameters
such as population sze, number of generations and
probabilities of crosover and mutation. We used
relatively common parameter values suggested in the
literature, as described above.

Table 1: Results comparing our hybrid C4.5/GA against

C45
acauracy rate of C4.5 only | Accuracy rate of C4.5/GA

digunct large small over- large small over-
sze(S) |diguncts|diguncts| all diguncts | diguncts | all

3 0.80 0.51 0.786 0.80 0.49 0.784

5 0.81 0.52 0.786 0.81 0.49 0.783

10 0.84 0.52 0.786 0.84 0.77 0.826

15 0.84 0.53 0.786 0.84 0.86 0.844

Theresults are shown in Table 1. The first column of this
Table indicates the size threshold S used to define small
diguncts. The next three ©lumns report results produced
by C4.5 adone, without using the GA. More predsely, the
second and third columns of the Table report the accuracy
rate on the test set achieved by CA4.5 separately for
examples classfied by large-digunct rules and small-
digunct rules. The fourth column reports the overall
acauracy rate on the test achieved by C4.5, classfying
both large- and small-digunct examples. Note that the

figuresin this column are of course @mnstant acrossall the
rows, since its results refer to the @se where dl test
examples are dassfied by C4.5 rules, regardless of the
definition of small digunct.

The next three @lumns report results produced by our
hybrid C4.5/GA method. More predsdly, the fifth column
reports the accuracy rate on the test set for large-disunct
rules. The figures in this column are, of course, exactly
the same as the figures in the second column, since our
hybrid method also uses the C4.5 rules for classfying
examples belonging to large diguncts. In any case, we
included this redundant column in the Table for the sakes
of comprehensibility and completeness The sixth column
reports the accuracy rate on the test set for the small-
digunct rules discovered by the GA. Finaly, the seventh
column reports the overall accuracy rate on the test
achieved by our hybrid C4.5/GA method, classfying bah
large- and small-digunct examples.

Comparing the third column against the sixth column we
can note two distinct patterns of results. Consider first the
case where adigunct is considered as small if it covers <
3 or < 5 examples. This case @rresponds to the first and
second rows of Table 1. In this case the performance of
the rules produced by the GA is dightly inferior to the
performance of the rules produced by C4.5. In any case,
this small reduction of performance referring to small-
digunct rules has an even smaler, virtually-negligible
impact on the overall acauracy rate, as can be seen by
comparing the fourth and seventh columns of Table 1. For
instance, in the secnd row the overall acauracy rate of
C4.5 is 78.6%, while the overall accuracy of our hybrid
CA.5/GA is 78.3%.

A different picture emerges when we consider the ase
where adisunct is considered as small if it covers< 10 o
< 15 examples. This case rresponds to the third and
fourth rows of Table 1. Now the performance of the
small-digunct rules produced by the GA is much better
than the performance of the smdl-digunct rules produced
by C4.5. For ingance in the fourth row the C4.5 rules
have an accuracy rate of 53% whereas the GA rules have
an acauracgy rate of 86%. This improved acauracy has a
considerable impact on the overall accuracy rate. For
instance, in the fourth row the overall acauracy of C4.5is
78.6%, whil e the overall accuracy of our hybrid C4.5/GA
is 84.4%.

A posshle explanation for these results is as follows. In
the first case, where adigunct is considered as small if it
covers < 3 or < 5 examples, there ae very few training
examples available for each GA run. With so few
examples the etimate of rule quality computed by the
fitnessfunction is far from perfed, and the GA does not
manage to do better than C4.5. On the other hand, in the
second case, where a digunct is considered as small if it
covers £ 10 a < 15 examples, the number of training
examples available for the GA is considerable higher -
although ill relatively low. Now the etimate of rule
quality computed by the fitness function is sgnificantly
better. As aresult, the characteristics of GA which make

them suitable for discovering good small-disunct rules -
such as robustness flexibility, and ability to cope well
with attribute interaction - lead to the discovery of small-
digunct rules much better than the corresponding rules
discovered by C4.5.

Despite the good results reported above, the airrent
verson of our method has a limitation. It implicitly
asaumes that each small digunct contains examples of
both positive and negative dasses. This is necessary in
order to discover rules from smal diguncts. This
condition is stisfied by adult dataset. However, in some
datasets sme small diguncts can contain only positive
examples, with no negative example to support rule
discovery. In these @ses the arrent version of our
method should not be diredly applied to the small
digunctsin question. We ae arrently working on a new
version of our system that solves this problem.

5 CONCLUSIONSAND FUTURE
RESEARCH

The problem of how to discover good small-disunct rules
is very difficult, since these rules are error-prone due to
the very nature of small disuncts. Idedly, a data mining
system should dscover good small-disunct rules without
sacrificing the goodness of discovered large-digunct
rules.

Our proposed solution to this problem was a hybrid
dedsion-tredGA method, where examples belonging to
large disuncts are classfied by rules produced by a
dedsion-tree algorithm and examples belonging to small
diguncts are dassfied by rules produced by a genetic
algorithm. In order to redize this hybrid method we have
used the well-known C4.5 dedsion-tree #&gorithm
algorithm and developed a new genetic algorithm tail ored
for the discovery of small-disunct rules.

The proposed hybrid method was evaluated in a case
study using the adult dataset. The performance of our new
GA and corresponding hybrid C4.5/GA method depends
significantly on the definition of small digunct. In a
nutshell, the results diows that: (a) there is no significant
difference in the quality of the rules discovered by C4.5
alone and the rules discovered by our C4.5/GA method
when adigunct is considered as snall if it covers< 3 or <
5 examples; (b) the quality of the rules discovered by our
C4.5/GA method is considerably better than the quality of
the rules discovered by C4.5 alone when a digunct is
considered as snall if it covers< 10 or < 15 examples.

A disadvantage of our hybrid C4.5/GA method isthat it is
much more mmputationaly expensive than the use of
C4.5 done. More predsely, in a training set with about
30000examples our hybrid method takes on the order of
one hour, while C4.5 alone takes on the order of a few
seconds. However the etra processng is not too
excessve, and it seems a small price to pay for the
considerable increase in the predictive accuracy of the
discovered rules.

In addition, scalability to larger datasets does not seem a
problem so serious as one might think at first glance
Most of the processng time of our hybrid method is taken
by the GA. However, the length of time taken by each GA
run depends esentially on the definition of digunct size,
rather than on the size of the entire dataset. It is true that
larger datasets tend to have a larger number of small
diguncts, which in turn would increase the processng
time of our C4.5/GA method - due to an increase in the
number of GA runs. However, this is a problem for any
algorithm spedfically designed for coping with small
diguncts. The point is that the processing time taken per
small digunct is relatively short even when using a
genetic algorithm, since there ae just a few examples in
the training set of a small digunct.

There ae several possble diredions for future reseach.
An important one is to evaluate the performance of the
proposed hybrid C4.5/GA method for different kinds of
definition of small digunct, eg. rdative size of the
digunct (rather than absolute size, as considered in this
paper). It would aso be useful to evaluate the
performance of the proposed method in other datasets, to
further validate the results presented in this paper.
Another interesting research dredion would be to
compare the results of the proposed C4.5/GA method
againg rules discovered by the GA only, athough in this
case the design of the GA would have to be somewhat
modified - eg. the heurigtics of attribute seledion
described in sedion 32 could not be used.

BIBLIOGRAPHY

K. Ali (1995. Learning Probahilistic Relational Concept
Descriptions, PhD thesis, chapter 5. University of
Cdlifornia, Irvine. USA.

T.M. Cover and J A. Thomas (1991), Elements of
Information Theory, John Wiley & Sons.

A. Danyluk and F. Provost (1993. Small Diguncts in
Action: Learning to Diagnose Errorsin the Local Loop of
the Telephone Network, Proc. 10" International
Conference Machine Learning, 81-88.

A.A. Freitas (2000) Evolutionary Algorithms. Chapter of
forthcoming Handlook of Data Mining and Knomedge
Discovery. Oxford University Press 2000.

D. Hand (1997%. Condruction and Assssrent of
Classfication Rules, John Wiley & Sons.

R. Holte; L. Acker and B. Porter (1989). Concept
Learning and the Problem of Small Diguncts, Proc.
[JCAI — 89, 813-818.

E. Noda;, H.S Lopes and AA FREITAS (1999)
Discovering interesting prediction rules with a genetic
algorithm. Proc. CEC-99, 1322-132.

F. Provost and JM. ARONIS (1996). Scding up
inductive leaning with massve paralelism. Machine
Learning 23(1), Apr. 1996, 33-46.

J R Quinlan (1993. CA4.5: Programs for Machine
Learning, Morgan Kaufmann Publi sher.

K.M. Ting (1994. The Problem of Small Diguncts: its
remedy in Dedsion Trees Proc. 10" Canadan
Conferenceon Al, 91-97.

G.M. Weiss(1995. Learning with Rare Cases and Small
Disuncts, Proc. 12" International Conference on
Machine Learning, 558-565.

G.M. Weiss (1998. The Problem with Noise axd Small
Diguncts, Proc. Int. Conf. Machine Learning (ICML —
98), 1998, 574-578.

