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Abstract

This paper presents calculations of the se-
lection intensity of common selection and
replacement methods used in genetic algo-
rithms (GAs) with generation gaps. The se-
lection intensity measures the increase of the
average �tness of the population after selec-
tion, and it can be used to predict the num-
ber of steps until the population converges
to a unique solution. The theory may help
to explain the fast convergence of some al-

gorithms with small generation gaps. The
accuracy of the calculations was veri�ed ex-
perimentally with a simple test function. The
results facilitate comparisons between di�er-
ent algorithms, and provide a tool to adjust
the selection pressure, which is indispensable
to obtain robust algorithms.

1 INTRODUCTION

To maintain a constant number of individuals in their
populations, genetic algorithms have a mechanism
that deletes unwanted individuals to make room for
the newly-created ones. Most frequently, the entire
population is replaced every generation. In this case,
the algorithm is called a \generational GA", and it
represents an extreme case of replacement methods.
In the other extreme, there are \steady-state" GAs
that replace a single individual in every iteration. The
fraction of the population that is replaced is controlled
by a parameter called generation gap (denoted by
G 2 [ 1

n
; 1], where n is the size of the population).

Although the literature has numerous observations of
the e�ect of the generation gap on the selection pres-
sure, it has not been quanti�ed accurately. The pur-
pose of this paper is to present calculations of the selec-

tion intensity in GAs with arbitrary generation gaps.
The selection intensity is the normalized increase of
the average �tness of the population after selection.
It can be used to predict the average �tness of the
population at each iteration and the number of steps
until the population converges to a unique solution. In
addition, the selection intensity is related to the opti-
mal mutation rate and population size (M�uhlenbein
et al., 1994; B�ack, 1996). The calculations presented
here consider the selection algorithm used to choose
the parents and the mechanism used to replace exist-
ing members of the population with the o�spring.

The paper is organized as follows. The next section
brie
y reviews previous work on the analysis of over-
lapping populations. Section 3 de�nes the selection
intensity and summarizes previous work on character-
izing it in serial and parallel generational GAs. Sec-
tion 4 has the calculations for the selection intensity
of GAs with generation gaps. Experiments that verify
the accuracy of the calculations are presented in sec-
tion 5. Finally section 6 presents a summary and the
conclusions of this study.

2 GENERATION GAPS

De Jong (1975) was the �rst to evaluate empirically
the performance of GAs with overlapping populations.
He introduced the generation gap, G, as a parameter
to the GA, and found that at low values of G the al-
gorithm had a severe loss of alleles, which resulted in
poor search performance. In De Jong's algorithm, the
newly created individuals replaced random members
of the population. He hypothesized that the poor per-
formance was caused by the high variance in the indi-
viduals' lifetime and the number of o�spring produced.
Later, De Jong and Sarma (1993) presented additional
empirical evidence, and suggested alternative deletion
methods to reduce the variance.



Whitley (1989) introduced GENITOR, a \steady
state" GA in which the worst individual was determin-
istically replaced every iteration. Goldberg and Deb
(1991) analyzed GENITOR, and they observed that
it has a high selective pressure even when the parents
were selected randomly. This suggests that the dele-
tion of worst individuals induced a higher selection
pressure than the rank-based method used to select
the parents. This will be quanti�ed in section 4.

The following deletion methods are common:

� Insert o�spring at random (uniformly).

� Replace the worst individuals.

� Choose using any selection algorithm nor-
mally used to select the parents (e.g., �tness-
proportional, exponential or linear ranking, tour-
naments, etc.).

� Delete the oldest (FIFO).

� Combinations or elitist variants of the above.

There has been considerable research on the e�ect of
these deletion methods on the speed of convergence of
GAs. For example, Syswerda (1991) compared gener-
ational and steady state GAs with �tness-proportional
selection of parents and several replacement methods.
Assuming an in�nite population (so that e�ects due to
small populations do not appear) and using random
deletion of individuals, Syswerda showed that the gen-
eration gap had no e�ect on the allocation of copies
to strings. However, changing the deletion strategy to
least-�t, exponential ranking, or �tness-proportionate
deletion caused the steady state algorithm to proceed
much faster than the generational GA. Calculations
presented later in this paper will con�rm and quantify
these observations.

Chakraborty et al. (1996) used Markov chains to ob-
tain the probability that a speci�c class of individu-
als takes over the population at each iteration. They
considered random, worst-�t, and exponential rank-
ing deletion, and their framework can be extended to
other replacement strategies. Smith and Vavak (1999)
did just that, and observed that replacing the oldest
member or replacing randomly may result in loss of
the optimal value. In the case of random replacement,
Rudolph (1999) determined that the probability of los-
ing the optimal individual is approximately 50%. De
Jong and Sarma (1993) also observed losses of the op-
timal value, even when the initial population had 10%
of the optimal individuals. Smith et al. noted that the
loss can be corrected simply by using an elitist replace-
ment strategy that ensures that the best individual in

the current generation survives to the next. The sim-
ple correction suggests that variability in the number
of o�spring or the individuals' lifetime may not be the
major cause of failure.

Interestingly, De Jong and Sarma (1993) end their pa-
per noting that \...the important behavioral changes
[between generational and steady state GAs] are due to
the changes in the exploration/exploitation balance re-
sulting from the di�erent selection and deletion strate-
gies used. This is where we should continue our anal-
ysis e�orts." That is precisely the purpose of this pa-
per: to quantify accurately the selection intensity (the
exploitation part). De Jong and Sarma also question
whether an algorithm that selects a block of the best
individuals and replaces a block of the worst would re-
duce the variance without changing the selection pres-
sure. Section 4 shows that the answer is negative, and
that indeed the selection pressure changes signi�cantly
as a function of G (the size of the blocks).

3 SELECTION INTENSITY

This section brie
y reviews previous work on quanti-
fying the intensity of selection methods. In addition,
this section reviews recent work that characterizes the
selection intensity caused by migration of individuals
between populations in parallel GAs. The next section
builds on the models presented here.

3.1 SELECTION METHODS

Some common selection methods are proportion-
ate selection (Holland, 1975), linear ranking (Baker,
1985), tournament selection (Brindle, 1981), (�+; �)
selection (Schwefel, 1981), and truncation selec-
tion (M�uhlenbein & Schlierkamp-Voosen, 1993). In
linear ranking selection, individuals are selected with
a probability that is linearly proportional to the rank
of the individuals in the population. The desired ex-
pected number of copies of the best (n+) and worst
(n� = 2� n+) individuals are supplied as parameters
to the algorithm. In tournament selection, s individ-
uals are randomly sampled from the population (with
or without replacement), and the best individual in
the sample is selected. The process is repeated un-
til the mating pool is �lled. In (� + �) selection, �
o�spring are created from � parents, and the � best
individuals out of the union of parents and o�spring
are selected. In (�; �) selection (� � �) the � best
o�spring are selected to survive. Truncation selection
selects the top 1=� of the population and creates �
copies of each individual. It is equivalent to (�; �) se-
lection with � = �=� .
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�

P
�
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Table 1: Selection intensity for common selection
schemes.

M�uhlenbein and Schlierkamp-Voosen (1993) intro-
duced the use of the selection intensity to study the
convergence of selection schemes. The selection inten-
sity is de�ned as

I =
�f t+1 � �f t

�t
; (1)

where �f t = 1

n

P
n

i=1
f t
i
is the mean �tness of the popu-

lation at iteration t, �t is the standard deviation of the
population, and the superscript t denotes the iteration.
The numerator is called the selection di�erential, and
is usually denoted as st.

The challenge to calculate the intensity of a selection
method is to compute the mean �tness of the selected
individuals, �f t+1

s
. This has been accomplished ana-

lytically for some common selection schemes of gener-
ational GAs. In particular, B�ack (1995) and Miller
and Goldberg (1995) independently derived the se-
lection intensity for tournament selection, and B�ack
(1995) also derived I for (�; �) selection. Blickle and
Thiele (1996) calculated the intensity of linear ranking,
and M�uhlenbein and Schlierkamp-Voosen (1993) cal-
culated I for proportional selection. Table 1 contains
the known selection intensities (adapted from (Miller
& Goldberg, 1996)). �i:n denotes the expected value
of the i-th order statistic of n samples with a unit
Gaussian distribution (see equation 11). Note that I
is independent of the distribution of the current pop-
ulation, except for proportional selection.

3.2 MULTI-POPULATION GAs

Regardless of their implementation on uni- or multi-
processor computers, GAs with multiple populations
exhibit a di�erent behavior than GAs with a sin-
gle population. Much has been written about this,
but one of the main causes of the disparity seems to
be the additional selection intensity caused by choos-
ing migrants and replacements according to their �t-
ness (Cant�u-Paz, In press).

The selection intensity caused by migration is

Imig = Ie + Ir; (2)

where Ie is the selection intensity caused by selecting
the emigrants, and Ir is the intensity caused by select-
ing replacements in the receiving deme. Using Æ to de-
note the number of neighbors of a deme (the degree of
the connectivity graph) and � to denote the migration
rate (i.e., the fraction of the population that migrates
every generation), Ie � Æ�(��1(1� �)) if the best in-
dividuals are selected to migrate, and Ie = 0 if the mi-
grants are chosen randomly. �(z) = exp(�z2=2)=

p
2�

and �(z) =
R
z

�1 �(x)dx are the PDF and CDF respec-
tively of a standard Gaussian distribution with mean
0 and standard deviation of 1.

Similarly, Ir � �(��1(1� Æ�)) if the worst individuals
in the receiving deme are replaced by the migrants, and
Ir = 0 if replacements are chosen randomly. We shall
see in the next section that the equations for the se-
lection intensity in GAs with overlapping populations
are very similar to those above.

4 GENERATION GAPS AND

SELECTION INTENSITY

To calculate the average �tness of the population in
the next iteration, we take the weighted average of the
individuals selected to reproduce and the individuals
that were not replaced (which we call survivors):

�f t+1 = G �f t+1
s

+ (1�G) �f t+1
surv

; (3)

where �f t+1
s

is the expected �tness of the selected indi-
viduals, �f t+1

surv
is the expected �tness of the survivors.

To simplify things, we may also write the average �t-
ness of the population as a weighted sum:

�f t = G �f t + (1�G) �f t: (4)

Collecting similar terms, we can write the selection
di�erential as

st = �f t+1 � �f t

= G( �f t+1
s

� �f t) + (1�G)( �f t+1
surv

� �f t)

= Gst
s
+ (1�G)st

surv
;

(5)

and dividing by the standard deviation we obtain the
selection intensity:

I = GIs + (1�G)Isurv : (6)

This equation clearly shows that the selection pressure
has two independent causes, namely the selection of
the parents and the selection of survivors. Is and Isurv
take di�erent values depending on the methods used
to select parents and replacements. In the remainder
of this section we examine three basic options for each.



The �rst option is that parents (or replacements) are
chosen with one of the common selection methods. In
this case, Is (or Isurv) would be simply the intensity
of the selection method given in table 1.

The second option is that parents are chosen randomly.
In this case, the expected �tness of the selected indi-
viduals, �f t+1

s
, is equal to the mean �tness of the pop-

ulation before selection, �f t, so there is no selection
pressure (st

s
= 0) and Is = 0. The same argument ap-

plies when the replacements are chosen randomly, and
Isurv would be 0.

The third option is that the best individuals are se-
lected as parents (or that the worst are deleted). This
option produces the strongest selection pressure, and
the calculation of the selection intensity is more com-
plicated.

We can interpret the �tness values f t
i
; i 2 [1; n] as

samples of random variables F t

i
with a common distri-

bution, say N( �f t; �t), although most of the following

derivation applies to other distributions. We may ar-
range the variables in increasing order to obtain the
order statistics:

F t

1:n � F t

2:n � ::: � F t

n:n:

Without loss of generality, we assume a maximization
problem. The expected �tness of the Gn best individ-
uals that are selected is

�f t+1
s

=
1

Gn
�

nX
i=n�Gn+1

E(F t

i:n): (7)

The random variables can be normalized as

Zi:n =
F t

i:n � �f t

�t
;

and the average �tness of the selected individuals may
be rewritten in terms of the normalized variables

�f t+1
s

=
1

Gn

nX
i=n�Gn+1

(E(Zi:n)�
t + �f t)

= �t � 1

Gn

nX
i=n�Gn+1

E(Zi:n) + �f t:

(8)

Now, we can calculate the selection di�erential caused
by selecting the best as

st
s
= G( �f t+1

s
� �f t)

=
1

n
� �t �

nX
i=n�Gn+1

E(Zi:n):
(9)

Since the selection di�erential is st = I � �t, the selec-
tion intensity in this case is

Is =
1

n
�

nX
i=n�Gn+1

E(Zi:n): (10)

The expected value of the i-th order statistic of a sam-

ple of size n is de�ned as

�i:n = E(Zi:n)

= n

�
n� 1

i� 1

�Z 1
�1

z�(z)�i�1(z)[1��(z)]n�idz;

(11)

where �(z) and �(z) are the PDF and CDF respec-
tively of the �tness distribution (in our case a stan-
dard Gaussian distribution with mean 0 and standard
deviation of 1). The values of �i:n are computationally
expensive to calculate, but for a Gaussian distribution
they are tabulated for n � 400 (Harter, 1970). Nev-
ertheless, computing the sum in equation 10 can be
tedious, so we use the following approximation1 (Bur-
rows, 1972):

nX
i=n�Gn+1

�i:n �
n

G
�(��1(1�G)); (12)

and therefore equation 10 can be approximated as

Is �
�(��1(1�G))

G
: (13)

A similar derivation shows that replacing the worst
individuals results in

Isurv �
�(��1(G)

1�G
: (14)

It is important to realize that the selection intensity is
an adimensional quantity that does not depend on the
�tness function or on the generation t. The only as-
sumption made was that the �tness values had a nor-
mal distribution, but any other distribution may be
used as long as E(Fi:n) may be computed (by substi-
tuting the appropriate PDF and CDF in equation 11).

Note that the highest value of Isurv (or Is) is at
G = 1=n, and it can be of considerable magnitude. For
example, for n = 256, Isurv = 2:96, and for n = 1000,
Isurv = 3:36. So, even if the parents are selected ran-
domly, replacing the worst individuals causes a consid-
erable selection pressure. This is consistent with Gold-
berg and Deb's (1991) calculations of GENITOR, and
Chakraborty et al.'s (1996) Markov chains analysis.

1In his study of (�; �) selection, B�ack (1995) shows that
for n > 50 the approximation is indistinguishable from the
real values.
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Figure 1: Selection intensity of di�erent selection and replacement strategies varying the generation gap.

Figure 1 has plots of the selection intensity of algo-
rithms with di�erent methods to select the parents
and the replacements. To make the graphs, ��1(x)
was calculated numerically using Mathematica 3.0 asp
2 InverseErf[0,2x-1].

The plots show that the combination of selecting the
best individuals as parents and deleting the worst in-
dividuals has the highest selection intensity. In the
two cases when the best individuals are selected, there
is no selection pressure at G = 1, because the algo-
rithm simply copies the entire population. In addition,
the selection intensity when the best are selected and
replacement is random is identical to (�; �) selection
with G = �=�. In the case of tournaments and lin-
ear ranking with random deletion, the graphs would

be horizontal lines at 0.5642 and 0.2820, respectively.
This is consistent with Syswerda's (1991) observations
that with random deletion the generation gap does not
a�ect the selection pressure.

We must be cautious when comparing algorithms with
the same selection intensity, because they are not
equivalent in all aspects. The selection intensity only
considers the change of the population's mean �t-

ness over time, and ignores the higher moments of
the distribution. Blickle and Thiele (1996) made an
analysis of the variance of several (generational) selec-
tion methods, and Rogers and Pr�ugel-Bennett (1999)
have a detailed analysis of the �rst four moments of a
roulette-wheel algorithm that uses Boltzmann weights.
Di�erent selection algorithms impact the higher mo-
ments in their own particular ways and may a�ect the
quality of the solutions found. A reasonable heuris-
tic is that given a choice between algorithms with the
same selection intensity, we should prefer the one that
produces the highest variance of �tness (B�ack, 1995).

Another aspect that we must take into consideration
when comparing GAs is that the convergence time of
a GA is inversely proportional to the selection inten-
sity. For example, Rogers and Pr�ugel-Bennett (1999)
observed that they could replicate the dynamics of a
generational GA with a steady state GA using half
of the function evaluations. Their results can be ex-
plained quite easily when we take into consideration
that in their steady state GA both the parents and the
replacements were selected according to their �tness,
e�ectively doubling the selection intensity. Although
it may be tempting to use higher selection intensities,



in some cases the algorithm may converge too fast to
reach satisfactory solutions (this is sometimes called
`premature convergence'). Using small populations ex-
acerbates this problem, and may have contributed to
the poor performance of the GAs in De Jong's empir-
ical studies with small generation gaps.

5 EXPERIMENTS

This section presents experimental results that verify
the accuracy of the calculations of the previous section.
The experiments use a l = 500 bit OneMax function,
F =

P
l

i=1
xi, where xi 2 f0; 1g are the individual

bits in the chromosome. For this problem, M�uhlenbein
and Schlierkamp-Voosen (1993) showed that with an
initial random population the number of generations

until convergence is given by Gen � �

2

p
l

I
. This result

assumed an in�nite binomially distributed population
and that the algorithm converges to the global opti-
mum. Although this equation is an approximation,
other studies have used it successfully to predict the
number of generations until convergence (e.g., Blickle
and Thiele (1996), Miller and Goldberg (1996)). We
use it here to test the accuracy of our calculations of
the selection intensity (equation 6). The number of it-
erations until convergence is converted to generations
(that process n individuals) by multiplying by G.

In the experiments, the population size is n = 500 indi-
viduals, which is suÆcient to ensure convergence to the
optimum in all cases. The GA uses uniform crossover
with probability 1.0 and no mutation. Crossover was
applied �ve times to obtain a population that ap-
proximates a binomial distribution (M�uhlenbein &
Schlierkamp-Voosen, 1993). The results are the aver-
age of 30 independent runs for each parameter setting.

Figure 2 compares the theoretical predictions with
experimental results. The graphs show the number

of generations until convergence using best-�t selec-
tion, pairwise tournaments, and linear ranking with
n+ = 1:5. Both random and worst-�t deletion were
used. Additional experiments with n+ = 2 yielded the
same results as pairwise tournaments, as was expected
because the two algorithms have the exact same ef-
fect on the �tness distribution of the population (same
selection intensity and selection variance) (Blickle &
Thiele, 1996).

6 CONCLUSIONS

This paper presented calculations of the selection in-
tensity of genetic algorithms with arbitrary generation
gaps. We found that the selection intensity can be of

considerable magnitude with small generation gaps,
and that it decreases monotonically as the gap be-
comes larger. The accuracy of the theory was veri�ed
experimentally, and it was used as a possible expla-
nation for previous observations reported by others.
The resulting equations are similar to those that model
the selection intensity of migration in multi-population
GAs. This suggests the possibility of exchanging ideas
and analysis techniques to further advance our under-
standing of the two types of algorithms.

Future work should consider the e�ect of selection on
the higher moments of the distribution of �tness. This
is important because algorithms with the same selec-
tion intensity may reduce the variance (diversity) of
the population in di�erent ways and may also change
the shape of the distribution. Studying these e�ects
may help to design recombination or mutation opera-
tors that balance the e�ects of selection.

It is well known that algorithms with higher se-
lection pressure need larger populations to suc-
ceed (M�uhlenbein & Schlierkamp-Voosen, 1993; Harik
et al., 1999). This introduces a tradeo� because higher
selection pressures result in faster convergence, but
larger populations require more computations. The
tradeo� suggests that there is an optimal population
size and selection pressure that minimize the total
computational work. Future work along these lines
may produce a framework that relates selection inten-
sity, population size, and solution quality.

Such a framework would be very useful for the design
of faster and more reliable evolutionary algorithms.
Besides facilitating comparisons between di�erent al-
gorithms, and providing a convenient tool to adjust
the selection pressure, the results of this paper would
be a critical component of the framework.
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Note the di�erent scales of the graphs.
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