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Abstract

In previous work we showed, by Walsh anal-

ysis, that summary statistics such as mean,

variance, skew, and higher order statistics

can be computed in polynomial time for em-

bedded landscapes. We then used these

statistics to study the epistatic structure of

MAXSAT problems. These results were de-

pendent on two facts: these functions have a

polynomial number of nonzero Walsh coe�-

cients and the coe�cients can be computed

in polynomial time. It has since been shown

that for any arbitrary function in which the

number of epistatically interacting bits is

bounded above by k the nonzeroWalsh coe�-

cients are also polynomial in number and can

be computed in polynomial time. This ex-

tends the applicability of our earlier results.

In this paper, I extend these results further to

include hyperplane statistics. These statis-

tics can help us understand the hyperplane

structure of sparsely epistatic functions as

well as functions of bounded epistasis.

1 INTRODUCTION

Summary statistics (mean, variance, skew, : : : )

tell us about the location, spread, symmetry, etc of

a distribution of numbers. When applied to �tness

function they give us statistical information on the

expected value of a random sample, as in an initial

population, and how much we can expect elements

in our sample, on average, to deviate in both direc-

tions from the mean. Furthermore, it is widely be-

lieved [Whitley et al., 1995, Holland, 1975] that GAs

work by a form of implicit parallelism. That is, all

hyperplanes in a given population compete in paral-

lel for representation in succeeding populations. The

e�ectiveness of this competition is limited by several

factors including the ability of a sample of elements

from the hyperplane to represent the true �tness of the

entire hyperplane. Summary statistics about a speci�c

hyperplane would be useful in determining how accu-

rately a sampling of elements from a hyperplane may

statistical \stand in" for that hyperplane in a popula-

tion.

Clearly, directly computing the summary statistics

(mean, variance, skew, : : : ) for arbitrary �tness func-

tions would require exponential time relative to the

size of the domain in bits. The same could be said

for low order hyperplanes. In this paper, I show that

for two large and useful subclasses of functions, this

computation can be done in polynomial time by using

Walsh analysis. Speci�cally, I show that three kinds

of statistical moments can be computed in polynomial

time for any function in which there are at most a

polynomially bounded number of nonzero Walsh coef-

�cients. Previous work has shown that these Walsh co-

e�cients can be computed in polynomial time for both

embedded landscapes, which include NK-landscapes

and MAXSAT problems, and for functions of bounded

epistasis.

An embedded landscape over L bits, f : BL!R,

models important broad classes of combinatorial and

constraint satisfaction problems. It can be expressed

as the sum of P subfunctions, gi:

f(x) =

PX
j=1

gj(pack(x;mj)):

The pack function uses a bit mask, mj , to extract the

subset of bits from x indicated by the 1's in the mask.

The extracted bits form the arguments to the sub-

functions gj . If bc(z) is a function that returns the

number of 1's in its argument, z, then the subfunc-



tions are de�ned over a smaller set of bc(mj) bits,

gj : B
bc(mj)!R. There are no restrictions on the num-

ber of subfunctions, P . The gi generally have lower

dimensional domains than f and are hence consid-

ered to be embedded in higher dimensional space.

For example, there often exists a k, k�L, such that

k � maxj=1::P bc(mj). This occurs in MAXSAT prob-

lems where the clause size is limited to k variables,

which is far fewer than the total number of variables

available.

For a �xed value of k, we have shown that all of the

Walsh coe�cients of an embedded landscape can be

computed in polynomial time relative to 2k, provided

the subfunction masks are known in advance. Since

k is �xed independently of L, the Walsh coe�cients

can be computed in polynomial time relative to the

function size in number of bits. We also showed that

only a polynomial number of Walsh coe�cients were

nonzero.

Epistatically bounded functions are functions in

which the number of epistatically interacting bits is

bound above by k. Technically, this class of functions

can be modeled by embedded landscapes in which

bc(mj) � k;8j. However, the number of subfunc-

tions necessary to model an arbitrary L bit function

whose epistatic interactions are bound by k bits is
�
L
k

�
where most of the values of the subfunction provide re-

dundant epistatic information. This makes embedded

landscapes impractical for the most general version of

this class of function.

Kargupta et al. [Kargupta and Park, 1999] have

shown that for epistatically bounded functions, all the

Walsh coe�cients can be computed in polynomial time

relative to 2k. Again, this can be considered polyno-

mial time in cases where the epistatic bound k is a

�xed constant independent of L. As in the case of em-

bedded landscapes, there are a polynomial number of

nonzero Walsh coe�cients.

Kargupta's algorithm uses hyperplane averages, that

is, the average value of the function for all values in

the hyperplane (see the notation section), to probe a

function's epistatic structure. Using this technique the

algorithm does not need to know a priori the epistatic

structure of the function. However, in order to perform

in polynomial time, the algorithm makes the statisti-

cally reasonable assumption that if there exists any

nonzero Walsh coe�cient in the hyperplane, the hy-

perplane average will be nonzero. For many functions

with essentially random Walsh coe�cients or for func-

tions whose Walsh coe�cients are all of one sign this

algorithm can be guaranteed to work in polynomial

time.

Soraya Rana suggested that the r th moments

of embedded landscapes might also be computed

in polynomial time. Subsequently, we showed

[Heckendorn et al., 1999a] that this was indeed the

case. We observed that MAXSAT problems (k � 2),

which are members of the set of NP-complete prob-

lems, were also embedded landscapes. This meant

that since we can compute all of the Walsh coe�cients,

as well as the summary statistics for an NP-complete

problem in polynomial time, that either NP is P or

knowing the Walsh coe�cients and summary statistics

is insu�cient to discover the optimum of the problem

in polynomial time [Heckendorn et al., 1999a]. This is

an important result on the limits of the usefulness of

epistatic information.

Our proofs hinged only on the facts that, for the func-

tions of interest, there were at most a polynomial num-

ber of nonzero Walsh coe�cients and that their values

could be discovered in polynomial time. With the in-

troduction of Kargupta's algorithm our results extend

to all epistatically bounded functions.

In the next section, I will briey review the terminol-

ogy of embedded landscapes and the notation of Walsh

analysis. I will then recapitulate the proof the r th

moments of embedded landscapes that we presented

in [Heckendorn et al., 1999a]. Using this theorem as

a model, I provide theorems showing how to compute

two kinds of statistical moments for hyperplanes poly-

nomial time.

2 WALSH ANALYSIS AND

NOTATION

The Walsh transform is the analog to the discrete

Fourier transform but, for functions whose domain is

a bit string. Every real valued function f over an L-

bit string, f : BL!R, can be expressed as a weighted

sum of a set of 2L orthogonal functions called Walsh

functions.

f(x) =

2
L
�1X

j=0

wj j(x) (1)

where the Walsh Functions are denoted  j :

BL!f�1; 1g. The Walsh functions play the role that

sine and cosine play in the Fourier transform. The

weights wj 2 R are called Walsh coe�cients. The

indices of both Walsh functions and coe�cients may

be expressed as either binary or the numerical equiva-

lent.

The j th Walsh function can be de�ned:

 j(x) = (�1)bc(j^x)



where j; x 2 BL. Thus, if bc(j^x) is odd, then  j(x) =
�1 and if bc(j ^ x) is even, then  j(x) = 1. The j th

Walsh function looks at the parity of the bits selected

by j. Hence, there are 2L Walsh functions.

An important property of Walsh coe�cients is that

wj measures the contribution to the evaluation func-

tion by the interaction of the bits indicated by the

positions of the 1's in j. Thus, w0001 measures the lin-

ear contribution to the evaluation function associated

with bit position 0, while w0101 measures the nonlin-

ear (multiple bit) interaction between the bits in po-

sitions 0 and 2, and so on. Therefore, Equation 1

says that any function over L bit space can be rep-

resented as a weighted sum of all possible 2L bit in-

teraction functions  j . This nonlinearity is an impor-

tant feature in determining problem di�culty for ge-

netic algorithms [Goldberg, 1989a, Goldberg, 1989b,

Reeves and Wright, 1995].

The 2L Walsh coe�cients can be computed by a Walsh

transform:

wj =
1

2L

2
L
�1X

x=0

f(x) j(x) (2)

A hyperplane is a subset of values (or bit strings)

from the domain that share a common set of �xed

bits. A hyperplane can be represented by one of the

3L strings of 0's, 1's and *'s where the 0's and 1's are

in the �xed bit positions and the *'s represent either

a 0 or a 1 in the variable bit positions. An exam-

ple hyperplane h for strings in B7 might be **1101*

which contains eight strings two of which are 1111011

and 1011010. A hyperplane with C �xed bit positions

represents a hyperplane of order C and de�nes a set of

2(L�C) strings where all possible replacements of the

*'s have been de�ned. For hyperplane h the order of

h is denoted by o(h) and the number of strings in h is

denoted jhj.

Two important functions � and � can be de�ned

on a hyperplane by the bit by bit mappings below

[Goldberg, 1989c]:

�(h)[i] =

�
0 h[i] = *

1 h[i] = 0 or 1

�(h)[i] =

�
0 h[i] = * or 0

1 h[i] = 1

The � returns a mask that identi�es the �xed bit

positions in the hyperplane. � returns a mask that

identi�es the bit positions that are set to 1. For the

hyperplane h = **1101* : �(h) = 0011110 and

�(h) = 0011010.

Finally, there is a notation for bit containment

[Rana et al., 1998]: i � j where i; j 2 BL reads as

i is contained in j. That is, wherever there is a 1

in i there is a 1 in j or, said another way, this bitwise

logical statement is true: i ^ j = 0.

3 SUMMARY STATISTICS

TECHNIQUES

In this section, I show how summary statistics such

as skew and kurtosis can be also be computed from

the Walsh coe�cients by using a general formula for

computing the r th moment for any function where all

the nonzero Walsh coe�cients are known.

Theorem 1 Moment about Function Mean

The r th moment, denoted �r, for a �tness function,

f : BL!R whose Walsh coe�cients are wj is

�r=
X

a1�a2�:::�ar=0

wa1wa2 : : : war ; ai 6= 0 8 i

where � is the exclusive-or operator.

Proof:

Given the mean, �, the formula used to compute the

r th moment, denoted �r, for a discrete random vari-

able X is:

�r = E[(X � �)r] =
X
x2X

(x� �)rp(x)

where p(x) is the probability of x occurring

[Mendenhall, 1967]. We can consider p(x) = 1

2L
since

we are enumerating a function over all L bit binary

strings. The function then becomes:

�r =
X
x2X

(x� �)r

2L

If X represents a real valued function over an L bit

domain then:

�r =
1

2L

2
L
�1X

x=0

(f(x)� �)r



We can substitute for f with the linear Walsh repre-

sentation of f from Equation 1:

�r =
1

2L

2
L
�1X

x=0

0
@2

L
�1X

i=0

wi i(x) � �

1
A
r

Since  0(x) = 1 8x, we see from Equation 2 that Walsh

coe�cient w0 is the mean of all �tnesses. Therefore

�r =
1

2L

2
L
�1X

x=0

0
@2

L
�1X

i=1

wi i(x)

1
A
r

We can now expand the exponential creating a set of

r indices aj where aj 2 B
L:

�r =
1

2L

2
L
�1X

x=0

0
@2

L
�1X

a1=1

wa1 a1(x)

1
A
0
@2

L
�1X

a2=1

wa2 a2(x)

1
A : : :

: : :

0
@2

L
�1X

ar=1

war ar (x)

1
A

Since the Walsh coe�cients do not depend on x, the

formula can be rewritten as:

�r =
1

2L

2
L
�1X

a1=1

2
L
�1X

a2=1

� � �

2
L
�1X

ar=1

wa1wa2 : : :

: : : war

2
L
�1X

x=0

 a1(x) a2(x) : : :  ar(x)

Using the fact that for arbitrary p and q:  p(x) q(x) =

 p�q(x):

�r =
1

2L

2
L
�1X

a1=1

2
L
�1X

a2=1

� � �

2
L
�1X

ar=1

wa1wa2 : : :

: : : war

2
L
�1X

x=0

 a1�a2�::�ar(x)

Now using the fact that:

2
L
�1X

x=0

 i(x) =

�
0 if i 6= 0

2L if i = 0

we see that only when a1 � a2 � : : : � ar = 0 is the

inner sum nonzero. Therefore,

�r=
1

2L

X
a1�a2�:::�ar=0

wa1wa2 : : : war2
L; ai 6= 0 8 i

=
X

a1�a2�:::�ar=0

wa1wa2 : : : war ; ai 6= 0 8 i (3)

2

To summarize, given the set of nonzero Walsh coe�-

cients, we can compute the r th moment for the �tness

distribution using products of the Walsh coe�cients

such that the exclusive-or of the indices is zero.

This formula allows us to compute the variance, skew

and kurtosis for any �tness distribution provided we

are given the Walsh coe�cients.

variance=�2 = �2 skew=
�3

�3
kurtosis=

�4

�4

For example, since a1 � a2 = 0 if and only if a1 = a2
then the variance for any function can be computed

2
L
�1X

i=1

wiwi

Of course, the computation of the moment around the

mean, if done directly, would take O(2Lr) time. How-

ever, in the case of functions with only a polynomial

number of nonzero Walsh coe�cients, the nonzero co-

e�cients are easily enumerated. Only the nonzero co-

e�cients need be considered in the moment calcula-

tions.

In the case of embedded landscapes, the Walsh coef-

�cients are computed for each subfunction in O(k2k)
using a fast Walsh transform [Goldberg, 1989a]. So

for P functions the Walsh coe�cients can be com-

puted in O(Pk2k) where P is bounded by
�
L

k

�
for L

bit functions [Heckendorn et al., 1999b]. Even though

the computation time is bounded above by O(
�
L
k

�
k2k),

this is quite practical when compared to the alterna-

tive provided by a straight Fast Walsh transform of

O(L2L). For example, if k = 3 then the execution

time for the embedded landscape approach is O(L3).

In the case of the more general Kargupta's algorithm

for a function that is epistatically bounded by k, the



number of nonzero Walsh coe�cients is O
�
L

k

�
. All

of the k-order Walsh coe�cients can be computed by

averaging 2k function evaluations and walsh function

evaluations (assuming random Walsh coe�cients) for

each of the
�
L
k

�
coe�cients. The (k � 1)-order Walsh

coe�cients can now be computed using 2k�1 function

evaluations and subtracting away the e�ects of the k

order k Walsh coe�cients. This process can certainly

be done in O(kL
�
L

k

�
2k) operations, if k is known in

advance.

Given that the nonzero Walsh coe�cients are now

identi�ed in both classes of functions, Theorem 1 can

clearly be used to compute the r th moment in O(nr)
time, where n is the number of nonzero Walsh coe�-

cients. Since n is polynomial in size relative to L so is

nr for �xed r independent of L. Since both the Walsh

coe�cient calculation and the moment computation

can be carried out in polynomial time for �xed r, any

summary statistics can be computed from Theorem 1

in polynomial time.

4 HYPERPLANE STATISTICS

A similar approach to that which was used in the last

section can be used to calculate summary statistics for

a given hyperplane. Hyperplane statistics can be used

to study the distribution of hyperplane �tnesses and

make statistical inferences about the e�ectiveness of

hyperplane sampling. There are two types of moments

for a hyperplane: the moment about the mean of the

entire function and the moment about the mean of just

the hyperplane itself. We will treat these two cases in

that order.

Theorem 2 Moment of Hyperplane about the Func-

tion Mean

The r th moment of the elements of hyperplane h about

the mean � for function f given the Walsh coe�cients

of f is:

�r(h)=
X

a1�:::�ar ��(h)

wa1 : : : war a1�:::�ar(�(h)); ai 6= 0 8 i

Proof:

From the de�nition of r th moment and assuming an

equal probability of selecting any domain value in the

hyperplane:

�r(h) =
1

jhj

X
x2h

(f(x) � �)r

where � is the mean for the entire function. We now

proceed as with the earlier derivation:

�r(h) =
1

jhj

2
L
�1X

a1=1

2
L
�1X

a2=1

� � �

2
L
�1X

ar=1

wa1wa2 : : :

: : : war

X
x2h

 a1�a2�::�ar(x)

Using the fact that [Heckendorn and Whitley, 1999]

X
x2h

 j(x) =

�
0 if j 6� �(h)

 j(�(h))jhj if j � �(h)

we get:

jhj�r(h) =
X

a1�a2�:::�ar ��(h)

wa1 : : : war ( a1�:::�ar (�(h))jhj);

where ai 6= 0 8 i

Therefore, the r th moment about the mean for the

entire function over hyperplane h is:

�r(h)=
X

a1�a2�:::�ar ��(h)

wa1wa2 : : : war a1�a2�:::�ar (�(h));

where ai 6= 0 8 i

2

Now consider the case where the mean used in the

moment calculations is the mean of the hyperplane.

We denote this moment for hyperplane h about the

mean of h as b�r(h).
Theorem 3Moment of Hyperplane about Hyperplane

Mean

The moment of the elements of hyperplane h about

the mean, b�, for hyperplane h in terms of the Walsh

coe�cients of f is:

b�r(h)= X
a1�a2�:::�ar��(h)

wa1wa2 : : : war a1�a2�:::�ar (�(h));

where ai 6� �(h) 8 i



Proof:

Returning to the original equation for moment we get:

b�r(h) = 1

jhj

X
x2h

(f(x) � b�)r

The Hyperplane Averaging theorem

[Heckendorn and Whitley, 1999] states:

1

jhj

X
x2h

f(x) =
X

j��(h)

wj j(�(h))

Substituting the Walsh transform for the function f

and using the Hyperplane Averaging theorem for b� we

get:

b�r(h) = 1

jhj

X
x2h

� 2
L
�1X

i=0

wi i(x)�
X

k��(h)

wk k(�(h))

�r

The left sum in parentheses can now be broken into

two parts

b�r(h) = 1

jhj

X
x2h

� X
i��(h)

wi i(x) +
X

j 6��(h)

wj j(x)�

X
k��(h)

wk k(�(h))

�r

Regrouping under the sums gives

b�r(h) = 1

jhj

X
x2h

� X
i��(h)

�
wi i(x)� wi i(�(h))

�
+

X
j 6��(h)

wj j(x)

�r

Note that x 2 h and i � �(h) therefore,  i(x) =

 i(�(h))! This means wi i(x) � wi i(�(h)) is zero

and we get

b�r(h) = 1

jhj

X
x2h

� X
j 6��(h)

wj j(x)

�r

Proceeding with the expansion of the r th power as we

did in the earlier proofs:

b�r(h) = 1

jhj

X
x2h

X
a1 6��(h)

X
a2 6��(h)

: : :

� � �
X

ar 6��(h)

wa1wa2 : : : war a1�a2�:::�ar (x)

=
1

jhj

X
a1 6��(h)

X
a2 6��(h)

: : :

� � �
X

ar 6��(h)

wa1wa2 : : : war

X
x2h

 a1�a2�:::�ar (x)

=
1

jhj

X
a1 6��(h)

X
a2 6��(h)

: : :

� � �
X

ar 6��(h)

wa1wa2 : : : war jhj a1�a2�:::�ar (�(h));

with a1 � a2 � : : :� ar � �(h)

=
X

a1 6��(h)

X
a2 6��(h)

: : :

� � �
X

ar 6��(h)

wa1wa2 : : : war a1�a2�:::�ar (�(h));

with a1 � a2 � : : :� ar � �(h)

Which is the same as saying:

b�r(h)= X
a1�a2�:::�ar��(h)

wa1wa2 : : : war a1�a2�:::�ar (�(h));

where ai 6� �(h) 8 i

2

Note that when h is �xed as all *'s, that is, h is the

whole domain then, �(h) = 0 and the Moment of Hy-

perplane about Hyperplane Mean Theorem becomes

the same as the �rst theorem in this paper.

The execution time for the statistics from the last two

theorems is again polynomial in the number of nonzero

Walsh coe�cients. Therefore, the total execution time

to compute the statistic for an embedded landscape

is polynomial in the number of bits in the domain.

The actual selection of the ai's makes the computa-

tion O(nr) where n is the number of nonzero Walsh

coe�cients.

Several observations can be made about e�ciently

computing the sets of ai's for the last two theorems.



An observation can be made about the e�ciently com-

puting the ai's for the last two theorems. The theo-

rems require that we select ar such that a1�a2� : : :�
ar � �(h). If A is the exclusive-or of the �rst r� 1

values then our goal is (A � ar) � �(h). Therefore,

(A � ar) ^ �(h) = 0 so (A ^ �(h)) � (ar ^ �(h)) = 0

or (A ^ �(h)) = (ar ^ �(h)). This says the bits in the

positions selected by the 1's in �(h) in ar must be the

same as in A. This o�ers some opportunities for e�-

ciently searching through the indices of nonzero Walsh

coe�cients by sorting the coe�cients by bits of each

index that are in �(h).

5 STATISTICS BY PARTITION

The domain of a function, f : BL!R, can be parti-

tioned onto a set of nonintersecting hyperplanes that

completely covers the domain. A partition is speci-

�ed by a string with a b in the positions called �xed

bit positions and *'s in the remaining positions.

For example, *b** represents a partition that con-

tains the two hyperplanes *1** and *0**. A partition

with M b's de�nes a set of 2M nonintersecting hyper-

planes, each composed of 2L�M strings whose union

is all of the strings in the domain. It is hyperplane

competition within each partition and the ranking of

the supporting hyperplanes in a partition that signi�-

cantly inuences the direction of convergence of a GA

[Heckendorn et al., 1997].

For a given partition, all of the hyperplanes in the

partition will have the same � but they will all have

unique a �. This means for any hyperplane in a �xed

partition the hyperplane statistics for that hyperplane

are computed by summing over the same set of ai.

Only the values �(h) change. Or said another way,

the di�erence in the hyperplane statistics for two hy-

perplanes h1 and h2, both from the same partition is

the sign of the products of the Walsh coe�cients that

are summed. The sign being determined by:

 a1�a2�:::�ar (�(hi))

This means that the hyperplane statistics for all hyper-

planes in a partition can be quickly computed without

any extra multiplication of Walsh coe�cients or decid-

ing which indices, ai, to sum over. This allows us to

quickly compute comparative statistics between com-

peting hyperplanes in a given partition.

6 CONCLUSIONS

We have shown that the summary statistics can be

computed in polynomial time for not only embedded

landscapes but for epistatically bounded functions by

using Kargupta's algorithm. This work was further

extended to show that two new summary statistics for

hyperplanes can be similarly computed in polynomial

time. Finally, it was observed that these statistics can

be e�ciently computed simultaneously for all hyper-

planes in a given partition.
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