Improving Induction of Linear Classification Trees
with Genetic Programming

Martijn C.J. Bot
Vrije Universiteit
De Boelelaan 1081 1081 HV Amsterdam
+31 20-444790 mbot@cs.vu.nl

Abstract

Decision trees are a well known tech-
nique in machine learning for describing
the underlying structure of a dataset. In
[Bot and Langdon, 2000] a new representa-
tion of decision trees using strong typing in
GP was introduced. In the function nodes, a
linear combination of variables is made.

The effects of techniques such as limited er-
ror fitness, fitness sharing Pareto scoring and
domination Pareto scoring are evaluated on
a set of benchmark classification problems.
Comparisons with current state-of-the-art al-
gorithms in machine learning are presented
and areas of future research are identified.
Results indicate that GP can be applied suc-
cessfully to classification problems. Limited
error fitness reduces runtime while maintaing
equal accuracy. Pareto scoring works well
against bloat. Fitness sharing Pareto works
better than domination Pareto.

1 INTRODUCTION

Classification problems form an important area in ma-
chine learning. For example, an insurance company
may want to determine whether a new client should
be accepted or denied or radiology images should be
interpreted to see whether a patient has cancer or
not. Classifiers may take the form of decision trees
[Murthy, 1998] (see Figure 1). In each node, a test is
made in which one or more variables is used. Depend-
ing on the outcome of the test, the tree is traversed
to the left or the right subtree (see Section 2.1). In
our decision trees, the tests are linear combinations
of some of the variables. This allows classification of
continuous and integer valued datasets with an (un-
known) inherent linear structure. An optimal tree is

one which makes as few misclassifications as possible
on the validation set.

In [Bot and Langdon, 2000], a new representation for
decision trees in GP using Strong Typing was intro-
duced. Three modifications to that system are eval-
uated (see Section 2). Limited Error Fitness (LEF)
[Gathercole, 1998] is a technique for maintaining more
population flux over evolution and reducing runtime.
Pareto scoring with fitness sharing and Pareto scor-
ing with domination based ranking are techniques for
creating and maintaining a diverse population. In our
system, diversity in tree size and accuracy is aimed for.
If a population isn’t very diverse, then most trees are
similar. A disadvantage of this is that really new trees
can only be found my mutation, which is a quite slow
process because most mutations aren’t beneficiary.

The classification accuracy of the GP is compared to
that achieved by several other decision tree classifica-
tion techniques, such as the OC1l-algorithm, C5.0 and
the M5’ algorithm (Section 5.2).

In Section 2 the theoretical background behind the
system is given. A short introduction to decision trees
is given and the representation of decision trees in GP
that was used in [Bot and Langdon, 2000], LEF and
Pareto scoring are described. Section 3 explains the
experimental setup for the experiments in Section 4. In
Section 5 an analysis is made of the performance of the
GP-system and a comparison is made to other decision
tree algorithms. Section 6 contains our conclusions.

2 BACKGROUND

In the first two subsections, a short recapitulation is
given of [Bot and Langdon, 2000], in which decision
trees are described and their representation in the GP.

25xq(-3.0x 4<=2.1

1.1x4-3.5x g+0.3x] <=1.3

Yy
y n

Figure 1: Example decision tree and its representa-
tion in the GP. 1o means the tenth variable from the

dataset. Each function node’s first children are the
weights and variables for the linear combination. The
last two children are other function nodes or classi-
fications. When evaluating the CheckCondition2Vars
node on a certain case, if 2.5x19 + —3.0x4 < 2.1, the
CheckCondition3Vars node is evaluated; otherwise the
final classification is 1 and the evaluation of the deci-
sion tree on this particular case is finished.

2.1 DECISION TREES

Decision trees [Murthy, 1998] are a well known tech-
nique in machine learning for representing the under-
lying structure of a dataset.

In our system, only linear decision trees are created.
When evaluating a decision tree on an individual case
from the database, in each non-leaf node, a linear com-
bination is made of some of the available variables.
Each function node has ({c;, z;}, threshold, ifTrue, if-
False) as its children with ¢; and x; the ith constant
and the ith variable. The node is evaluated as follows:

if 3, ciz; <=threshold evaluate ifTrue branch

else evaluate ifFalse branch
The Iftrue and IfFalse branches are either direct classi-
fications or other function nodes. When finally arrived
at a leaf node, a classification is returned for the case.

2.2 STRONG TYPING

In order to ensure that only wvalid individuals
are constructed in the GP, strong typing is used
[Montana, 1995, Bot and Langdon, 2000]. This is a

technique that allows several datatypes to be used in
one tree. The datatype of each function can be speci-
fied and the datatypes of its children. When generat-
ing a random tree, only nodes of the correct datatype
are inserted at each child node. Our strong typing sys-
tem contains three datatypes: Variable, Constant
and Classification.

Variable

Terminals A terminal of the Variable type is
an integer which ranges between 0 and the
number of variables in the database — 1. It
represents the number of a variable in the
database. When evaluated, it looks up the
value in the database and returns it as a dou-
ble.

Functions There are no functions of this type.

Constant

Terminals A terminal of the type Constant is a
double within a certain range. In the experi-
ments, the range is [-10, 10].

Functions There are no functions of this type.

Classification

Terminals A terminal of this type is an integer
which ranges between 0 and the number of
possible classifications — 1.

Functions All functions have this return type.

2.3 LIMITED ERROR FITNESS

Limited Error Fitness (LEF) [Gathercole, 1998] is a
modification to the standard supervised learning in
GP, where an error limit is introduced. Each indi-
vidual is evaluated on a number of training cases. The
predicted classification of the individual is compared
to the real classification of each training case. If the
number of errors it has made so far is higher than
the error limit, all remaining cases are counted as er-
rors. The fitness score is the total number of errors.
This method achieves that poor individuals will not be
evaluated on the entire training set, saving CPU time.
Good individuals, making fewer errors than the error
limit, will be evaluated on the entire training set.

The error limit is modified over time. If no improve-
ment has been made on the best individual in the
population for some generations, the error limit is
changed. It is raised if the best individual scores more
errors than the error limit and lowered if it scores fewer
errors than the error limit. Also, the easiest training

case (the case that most individuals classify correctly)
is moved to the end of the training set. The most dif-
ficult cases are emphasized at the cost of the easier
ones, because the easier ones move towards the back
of the training set.

Gathercole’s suggested parameter values are used in
our experiments. Since the initial order of the training
cases matters when LEF is used, the training cases are
shuffled before each run.

2.4 BLOAT

In GP, individuals tend to become larger over time
[Koza, 1992, Blickle and Thiele, 1994,
Nordin and Banzhaf, 1995, McPhee and Miller, 1995,
Soule et al., 1996, Soule, 1998, Langdon et al., 1999).
This phenomenon is known as bloat. Disadvantages
include longer execution time for evaluating individu-
als and lower understandibility of the trees for humans.

In [Bot and Langdon, 2000] several measures are com-
pared to avoid this problem. In these experiments, a
nodes penalty of 0.5 and a depth penalty of 2.0 were
found to be best. Here, another way to avoid bloat
is used which is called Pareto scoring (see the next
section).

2.5 PARETO SCORING

Pareto scoring [Goldberg, 1989] is a way of combin-
ing multiple goals in the fitness function. Formally,
a multi-objective optimization problem is defined as
follows:

min f1(2), f2(@), ..

1S

where fi(x), fa(x),. .., far(z) are the objective func-
tions to be minimized simultaneously, = is the deci-
sion variable and F is the feasible region (the ranges
of values allowed for each variable).

7fM($)

One way of doing this is to optimize a linear combi-
nation of the different goals. A common problem with
this is finding good weights for the respective goals
[Michalewicz, 1996].

Pareto scoring avoids this problem by allowing differ-
ent individuals to “specialize” in different goals.

If an individual does not perform worse than another
individual on every goal, and better in at least one,
this individual is said to dominate the other. Individ-
uals can be scored on the number of other individuals
they dominate: the more, the better. Those individu-
als that aren’t dominated by any other individual are
located on the Pareto optimal front. Solution xp is

on the Pareto optimal front if there exists no x € F
which satisfies

Vm € 17"'7M : fm(x) < fm(-Z'P)

In other words: the closer to the Pareto front, the
better the individual.

2.5.1 Fitness Sharing.

Using Pareto scoring, the population tends to con-
verge to a few (possibly suboptimal) solutions
[Goldberg, 1989]. Fitness sharing (also described in
[Goldberg, 1989]) ensures that more different local
minima are found. It is a so-called “crowding tech-
nique”. To avoid premature convergence, a penalty
is given to individuals that have many “neighbours”:
other individuals that are nearly the same.

Between two individuals, a distance measure d(i, j)
is calculated, based either on genotype or phenotype.
The more similar they are, the lower the distance mea-
sure will be.

For each individual i on the Pareto front of the tour-
nament, a sharing function s(7) is calculated. All indi-
viduals in the population (or, for reasons of efficiency,
a sample of the population) contribute to the sharing
function s(i) = >_; (i, 7) with s(i, j) the contribution
of individual j. s(4,75) is a triangular function with
value 1 for individuals similar in genotype or pheno-
type and value 0 for individuals less similar:

= { 1

if d(i,j) < maz
otherwise

with maz the maximum distance at which individual
j contributes to s(4)

The individual with the lowest s(i) is the best among
them and will be allowed to reproduce. This way, the
population itself is used for controlling the evolution
process, because the fitness of each individual is not
only dependant on the individual itself, but also on
other individuals.

2.5.2 Application of Pareto Scoring and
Fitness Sharing to Minimize Size and
Errors.

Pareto scoring will be applied with two dimensions:
number of errors (the smaller, the better) and num-
ber of nodes in the tree (the smaller, the better).
[Langdon, 1998] By using fitness sharing, a diverse
population with both small trees and good scoring
trees can evolve. In the end of the run, the individual

which scores fewest errors is returned. Hopefully, this
will also be a small tree.

In [Horn and Nafpliotis, 1993], genotype-based Pareto
scoring and phenotype-based Pareto scoring are dis-
tinguished. Genotype-based Pareto scoring compares
individuals on the basis of their “genes”, i.e. the in-
ternal representation. Phenotype-based Pareto scor-
ing compares the solutions produced by the system by
various dimensions of the solutions. Our system is a
combination of the two, as one dimension is genotypic
(the number of nodes) and the other is phenotypic (the
number of errors).

The distance between 2 individuals is based on the
shape of the two trees. This is done to create a pop-
ulation diverse in tree shapes and sizes. The Pareto
front will range from small, poorly scoring individuals
to larger, better scoring individuals. Since a smaller
individual would dominate a larger individual with the
same number of errors, bloat will be reduced.

The distance between 2 individuals ¢ and j is calcu-
lated as follows:

d;; = |#nodes; — #nodes;| + |depth; — depth;|

where #nodes; is the number of nodes of individual 4
and depth; is the depth of individual i. The emphasis
in this distance measure is on tree size (calculated in
number of nodes), since that is what we’re trying to
reduce.

Our value of maz in the s(i,j) formula is 10. This
value seemed reasonable since one extra function node
adds 5, 7 or 9 extra nodes to the tree (and sometimes
increases depth by 1). Note that in the distance mea-
sure the number of errors is not included. This is be-
cause we don’t want to force the system in producing
some bad individuals. If the number of nodes is in-
cluded in the distance measure, the diversivity pres-
sure of the fitness sharing allows both well scoring and
badly scoring individuals to emerge. For a given tree
size, we want the trees to be as accurate as possible.

2.5.3 Domination based Fitness Sharing.

An alternative way to provide fitness sharing
[Horn and Nafpliotis, 1993] is by counting the number
of individuals in the population (or a sample of it) that
dominate or are equal in size and errors to each of the
non-dominated individuals in the tournament. The in-
dividual that is dominated by or equal to the smallest
number of individuals wins the tournament and is al-
lowed to reproduce. This is a form of niching, since if
there are many individuals which score the same on all
dimensions, they will get a bad score. This amounts

to a diversivity pressure on the population, spreading
out the population over the Pareto front.

3 EXPERIMENTAL SETUP

We used the GP system by Qureshi (GPSys)!, which is
written in Java. GPSys is a steady state, elitist system
with tournament selection.

In Table 1, the standard settings for the experiments
are given.

Table 1: Standard settings of the GP

Objective Classify training cases correctly

Terminal set Variable, Constant
Classification

Function set CheckCondition1Var,
CheckCondition2Vars,
CheckCondition3Vars

Various databases
(see Section 3.1)

Fitness Cases

Selection Tournament of size 7
Hits not used
Wrapper not used
Parameters Population size = 250

No of runs = 30

No of generations=1000
Steady state, elitist
10-fold crossvalidation
Mutation rate 50%
Pareto sample size 50

Initial population | RAMPED HALF_AND_HALF

Termination

All cases correctly classified

The more generations allowed, the more accurate in-
dividuals are, so the number of generations was set
quite high. Ten-fold crossvalidation [Mitchell, 1997
was used, with 3 runs in each split. After each run,
the best individual is reported.

In [Bot and Langdon, 2000], different settings for the
tournament size, mutation and crossover rates and
bloating-penalties were compared. These settings re-
sult from those experiments. A penalty of 0.5 times
the number of nodes or 2 times the depth proved to be
the best penalties. Those are compared to the fitness
sharing techniques.

1h‘l‘.tp:
//wuw.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html

3.1 MACHINE LEARNING REPOSITORY
DATABASES

Four databases from
the Machine Learning Repository? were used in the
experiments:

e The Glass database contains 214 instances of 9
continuous variables each plus a classification (the
type of glass). There are 7 classes (1...7), one of
which (4) isn’t used.

e The Ionosphere database contains 351 instances
of 34 continuous variables plus a class attribute.

e The Pima database contains 768 instances of 8
continuous variables plus a class attribute. Clas-
sification is binary, either the Pima-Indians are
positive of negative for diabetes.

e The Segmentation database comes in two parts.
The training database consists of 210 and the val-
idation database of 2100 cases. For crossvalida-
tion, these were added together and crossvalida-
tion took place on all 2310 cases. There are 19
attributes plus a class variable. There are 7 dif-
ferent classes.

4 RESULTS

The following tables summarize the results from the
experiments. The mean validation accuracy and tree
size of the best individuals from the 30 runs is re-
ported, plus standard deviation.

4.1 LEF

First the performance of LEF is compared to that
without LEF. In Tables 2 until 5 accuracies and tree
sizes are given for the nodes-penalty of 0.5 and the
depth-penalty of 2, with and without LEF. There are
no significant differences (according to the one-sided
t-test). Since the use of LEF results in a reduction
in run time of approximately 40% and makes no dif-
ference in accuracy or tree size, it will be used in the
subsequent experiments.

4.2 FITNESS SHARING PARETO AND
DOMINATION PARETO

Next, experiments were performed to compare the per-
formance of fitness sharing Pareto and domination
Pareto. In Tables 6 and 7 mean accuracy and tree
thtp:
//www.ics.uci.edu/\simmlearn/MLRepository.html

Table 2: GP without LEF, nodes penalty = 0.5. Mean
validation accuracy and tree size of the best individual
of the runs plus standard deviation

Problem without LEF
accuracy in % | tree size
Glass 64.1 + 9.1| 176 £ 4.5
Tonosphere 90.2 + 5.5 19.7+ 4.1
Pima, 71.1 + 5.0 14.7+ 7.3
Segmentation || 72.0 + 6.4 | 53.8 +£14.3

Table 3: GP with LEF, nodes penalty = 0.5. Mean
validation accuracy and tree size of the best individual
of the runs plus standard deviation

Problem with LEF
accuracy in % | tree size
Glass 579+ 152|194+ 4.0
Tonosphere 91.9 + 4.7 1209+ 3.9
Pima 75.1 £ 6.8 | 11.6 + 4.8
Segmentation || 75.6 £ 6.5 | 56.6 £19.4

Table 4: GP without LEF, depth penalty = 2. Mean
validation accuracy and tree size of the best individual
of the runs plus standard deviation

Problem without LEF
accuracy in % | tree size
Glass 63.0 + 10.8 | 43.2+22.5
Tonosphere 92.0 + 5.9 | 40.5£21.2
Pima 69.8 + 5.8 | 43.8+£23.6
Segmentation || 78.2 £ 5.3 | 191.9 £90.9

Table 5: GP with LEF, depth penalty = 2. Mean
validation accuracy and tree size of the best individual
of the runs plus standard deviation

Problem with LEF

accuracy in % | tree size
Glass 61.2 + 11.1| 43.3£19.0
Tonosphere 90.8 &+ 3.5 44.9417.9
Pima 72.5 £ 6.5| 64.1 £53.9
Segmentation || 75.5 £ 7.2 | 175.8 +88.1

size of the best individuals from each of the 30 runs
is given with fitness sharing Pareto and with domi-
nation Pareto. One-sided t-tests were performed to
determine if one method produces significantly better
or worse validation accuracies.

Fitness sharing Pareto generally creates both larger

trees and more or equally accurate trees than when
a size-penalty is applied. Domination Pareto creates
smaller but less or equally accurate trees than fitness
sharing Pareto.

Table 6: Fitness sharing Pareto. Mean validation ac-
curacy of the best individual of the runs plus stan-
dard deviation. The asterisks mark the significantly
higher validation accuracies (by a t-test) and signifi-
cantly larger trees, compared to domination Pareto.

Problem fitness sharing Pareto
Accuracy Tree size
Glass 58.9 £11.4 30.6 £15.6
Tonosphere 924+ 5.1 259+ 6.8*
Pima 73.6 £ 6.6 24.2 +£16.7
Segmentation || 83.3 + 4.6 * | 115.1 £32.9 *

Table 7: Domination Pareto scoring. Mean validation
accuracy of the best individual of the runs plus stan-
dard deviation.

Problem domination Pareto
Accuracy | Tree size
Glass 62.7 £12.3| 228 £ 7.1
Tonosphere 90.2+ 54| 209+ 5.4
Pima 72.8+ 5.6 | 19.2 £12.3
Segmentation || 74.3 £ 5.0 | 62.9 £25.1

5 ANALYSIS

5.1 PARETO FRONTS

In Figures 2 and 3 the evolution over time of the Pareto
fronts in the population is drawn, with fitness shar-
ing and domination Pareto scoring. With fitness shar-
ing Pareto, improvement can be seen over time over
the whole Pareto front. With domination Pareto, the
fronts stay more or less the same over time. The only
improvements in later generations are made at the very
end of the graph (at the highest accuracies).

It would seem that in later generations improvement
comes from fortunate mutations, looking at the long
periods of time in which nothing changes.

Because LEF is used in these runs, it can be seen that
for example the performance of the smallest individual
(which is bad of course) decreases over time. This can
be attributed to the error limit, which lowers over time
(as better individuals are found), causing the smallest
individual to perform worse than before the error limit
was lowered.

The zeroth generation contains only few individuals
on the Pareto front with the most accurate individual
being very large (see the spikes at generation 0). Af-
ter only a few generations, a much smaller and more
accurate individual is found.

Glass database

100

50

Nodes

1000

Training accuracy 0o

Generation

Pima database

100

A

Training accuracy

Nodes

1000

Generation

Figure 2: Evolution of Pareto fronts in a run with
fitness sharing Pareto on two of the machine learning
databases (Glass and Pima).

5.2 COMPARISON TO MACHINE
LEARNING ALGORITHMS

In Tables 8 and 9 the performance of the GP is com-
pared to that of three other decision tree classification
algorithms, namely OC1 [Murthy et al., 1993], C5.0
[Quinlan, 1993] and M5’ [Frank et al., 1998]. Ten-fold
crossvalidation and standard parameter settings are
used in the other algorithms.

The GP performs as well as or better than reported
decision tree algorithms (OC1, C5.0 and M5’) on
two datasets (Tonosphere and Pima), but worse on
Glass and Segmentation. Determining characteristics

Glass database

100

Nodes

1000
Training accuracy 0 Generation
Pima database
100
% 50
\
0
° o & \ 1000
0.7 0.65 500
Training accuracy 0 Generation

Figure 3: Evolution of Pareto fronts in a run with
domination Pareto of two of the machine learning
databases (Glass and Pima)

Table 8: GP and OC1 algorithm. The GP is with fit-
ness sharing Pareto and LEF. Mean training and vali-
dation accuracy of the best individual of the runs plus
standard deviation. Asterisks mark significantly bet-

ter accuracy compared to the GP or better accuracy
of the GP.

| Problem || GP | 0C1 |
Glass 589+ 114 62.3 + 134
Tonosphere 9244+ 5.1 * | 900+ 5.8
Pima 73.6 + 6.6 74.1+ 6.1
Segmentation || 83.3 + 4.6 954+ 1.5 *

of databases on which the GP does well or poorly is
one of the subjects for future research.

The GP is slower than the other techniques. One
run on a dataset of 700 cases on an Pentium III 450
takes approximately 5-8 minutes. A run of the other

Table 9: C5.0 and M5’ algorithm. Mean training and
validation accuracy of the best individual of the runs
plus standard deviation. Asterisks mark significantly
better accuracy compared to the GP or better accu-
racy of the GP.

| Problem I C5.0 | M5’ |
Glass 67.5 + 2.6 70.5 £ 2.8 *
Tonosphere 88.9+ 1.2 89.7 + 1.2
Pima 74.5 + 1.2 76.2 + 0.8
Segmentation || 96.8 +£0.2 * | 97.0 + 0.2 *

techniques (which are written in C or C++) typically
takes about one or two minutes. Future research will
aim at improving execution speed and accuracy (for
example by dynamic sampling of training cases (DSS
[Gathercole, 1998]) or by seeding the population with
trees constructed by standard decision tree algorithms
such as C5.0).

6 CONCLUSIONS

Limited error fitness reduces runtime while maintaing
equal accuracy (see Tables 2-5). As shown in Table 6,
Pareto scoring is a promising approach for controlling
bloat. No artificial size-penalty is needed. A popu-
lation is created that is diverse in size and accuracy
(see Figures 2 and 3). Fitness sharing Pareto scoring
is shown to perform better than or equally good as
domination Pareto scoring (Tables 6 and 7).

References

[Blickle and Thiele, 1994] Tobias Blickle and Lothar
Thiele. Genetic programming and redundancy.
In J. Hopf, editor, Genetic Algorithms within the
Framework of Ewvolutionary Computation (Work-
shop at KI-94, Saarbriicken), pages 33-38, Im
Stadtwald, Building 44, D-66123 Saarbriicken, Ger-
many, 1994. Max-Planck-Institut fiir Informatik
(MPI-1-94-241).

[Bot and Langdon, 2000] M.C.J. Bot and W.B. Lang-
don. Application of genetic programming to induc-
tion of linear classification trees. In Proceedings
of the Third European Conference on Genetic Pro-
gramming, 2000.

[Frank et al., 1998] E. Frank, Y. Wang, S. Inglis,
G. Holmes, and I.LH. Witten. Using model trees for
classification. Machine Learning, 32:63-76, 1998.

[Gathercole, 1998] Chris Gathercole. An Investiga-
tion of Supervised Learning in Genetic Program-
ming. PhD thesis, University of Edinburgh, 1998.

[Goldberg, 1989] D.E. Goldberg. Genetic Algorithms
in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, Inc., January
1989.

[Horn and Nafpliotis, 1993] J. Horn and N. Nafpliotis.
Multiobjective optimization using the niched pareto
genetic algorithm. Technical Report 93005, Univer-
sity of Illinois, July 1993.

[Koza, 1992] J.R. Koza. Genetic Programming: On
the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[Langdon et al., 1999] W.B. Langdon,
T. Soule, R. Poli, and J.A. Foster. The evolution
of size and shape. In L. Spector, W.B. Langdon,
U. O’Reilly, and P.J. Angeline, editors, Advances
in Genetic Programming 3, chapter 8, pages 163—
190. MIT Press, Cambridge, MA, USA, May 1999.
Forthcoming.

[Langdon, 1998] William B. Langdon. Data Struc-
tures and Genetic Programming: Genetic Program-
ming + Data Structures = Automatic Programming!
Kluwer, Boston, 24 April 1998.

[McPhee and Miller, 1995] Nicholas Freitag McPhee
and Justin Darwin Miller. Accurate replication in
genetic programming. In L. Eshelman, editor, Ge-
netic Algorithms: Proceedings of the Sizth Interna-
tional Conference (ICGA95), pages 303-309, Pitts-
burgh, PA, USA, 15-19 July 1995. Morgan Kauf-
mann.

[Michalewicz, 1996] Z. Michalewicz. Genetic Algo-
rithms + Data Structures = FEvolution Programs.
Springer, 1996.

[Mitchell, 1997] T. Mitchell.
WCB/McGraw-Hill, 1997.

Machine Learning.

[Montana, 1995] D.J. Montana.
netic programming.
3(2):199-230, 1995.

Strongly typed ge-
Evolutionary Computation,

[Murthy et al., 1993] S. Murthy, S. Kasif, S. Salzberg,
and R. Beigel. Ocl: Randomized induction of
oblique decision trees. In Proceedings of the Eleventh

National Conference on Artificial Intelligence, pages
322-327. AAAI, MIT Press, 1993.

[Murthy, 1998] S. K. Murthy. Automatic construc-
tion of decision trees from data: a multi-disciplinary

survey. In Data Mining and Knowledge Discovery,
number 2, pages 345-389, 1998.

[Nordin and Banzhaf, 1995] Peter Nordin and Wolf-
gang Banzhaf. Complexity compression and evolu-
tion. In L. Eshelman, editor, Genetic Algorithms:
Proceedings of the Sixth International Conference
(ICGA95), pages 310-317, Pittsburgh, PA, USA,
15-19 July 1995. Morgan Kaufmann.

[Quinlan, 1993] J.R. Quinlan. C4.5 Programs for Ma-
chine Learning. Morgan Kaufmann, 1993.

[Soule et al., 1996] Terence Soule, James A. Foster,
and John Dickinson. Code growth in genetic pro-
gramming. In John R. Koza, David E. Goldberg,
David B. Fogel, and Rick L. Riolo, editors, Ge-
netic Programming 1996: Proceedings of the First
Annual Conference, pages 215-223, Stanford Uni-
versity, CA, USA, 28-31 July 1996. MIT Press.

[Soule, 1998] Terence Soule. Code Growth in Genetic
Programming. PhD thesis, University of Idaho,
Moscow, Idaho, USA, 15 May 1998.

