
The E�ects of Randomly Sampled Training Data on Program

Evolution

Brian J. Ross

Department of Computer Science

Brock University

St. Catharines, Ontario

Canada L2S 3A1

bross@cosc.brocku.ca

Abstract

The e�ects of randomly sampled training

data on genetic programming performance

is empirically investigated. Often the most

natural, if not only, means of characterizing

the target behaviour for a problem is to ran-

domly sample training cases inherent to that

problem. A natural question to raise about

this strategy is, how deleterious is the ran-

domly sampling of training data to evolution

performance? Will sampling reduce the evo-

lutionary search to hill climbing? Can re-

sampling during the run be advantageous?

We address these questions by undertaking

a suite of di�erent GP experiments. Pa-

rameters include various sampling strategies

(single, re-sampling, ideal samples), genera-

tional and steady{state evolution, and non{

evolutionary strategies such as hill climbing

and random search. The experiments con�rm

that random sampling e�ectively character-

izes stochastic domains during genetic pro-

gramming, provided that a su�ciently rep-

resentative sample is used. An unexpected

result is that genetic programming may per-

form worse than random search when the

sampled training sets are exceptionally poor.

We conjecture that poor training sets cause

evolution to prematurely converge to unde-

sirable optima, which irrevocably handicaps

the population's diversity and viability.

1 INTRODUCTION

The most natural means of characterizing solutions

for some problems is with a statistical sampling of

their data distributions. Such problem characteriza-

tions can be used during the �tness evaluation step

in genetic programming. For example, image pro-

cessing bene�ts with the random sampling of image

data, since using the entire image as training data

can be prohibitively expensive (Ross et al. 2000). An-

other example is formal language induction, in which

a target language is characterized by random sam-

ples of positive and negative instances of the language

(Dupont 1994, Kammeyer and Belew 1997, Longshaw

1997, Ross 2000). In some language induction prob-

lems, sampling may be the only practical means for

characterizing the target language, because the pre-

cise model of its behaviour is either unknown or too

complex to determine.

The question arises whether the use of random sam-

pling for characterizing target languages has deleteri-

ous e�ects on genetic programming performance. A

�tness function can perform random sampling when

building a training set of positive examples of target

behaviour. Resampling the training set during a run

will correspondingly change the corresponding �tness

criteria for the population. At worst, this may make

�tness a \moving target", where the entire population

essentially becomes obsolete when the training crite-

ria are re-sampled. In such circumstances, evolution

is reduced to hill climbing, in which the population

is temporarily driven towards a local minimum as de-

noted by the current sampled �tness criteria, only to

be redirected to another minimum for the next sam-

pled example set. On the other hand, during evolution

over multi-sampled example sets, a more optimistic

situation is that a population may retain useful char-

acteristics of earlier instances of training criteria. In

this case, random sampling might be advantageous,

since the e�ects of various training samples would be

compounded during the entire run.

This research draws some empirical insights into the

above issues. The problem domain is the induc-

tion of stochastic formal languages, and in partic-

ular, stochastic regular expressions. This problem



area bene�ts with the use of random sampled train-

ing sets, since it is often di�cult and time{consuming

to manually derive example sets with ideal distribu-

tions. A suite of di�erent genetic programming exper-

iments are undertaken, the dependent variables includ-

ing stochastic distribution complexity, random sample

size, frequency of random sampling, generational and

steady{state processing, and others. In addition, hill

climbing and random search are also performed, as

well as \perfect" training sets with ideal probability

distributions.

Section 2 reviews the stochastic regular expression lan-

guage. Experimental details are given in section 3.

The results of the research showing the e�ects of ran-

dom sampling of training data on evolution perfor-

mance are presented in section 4. Section 5 concludes

the paper with a discussion.

2 STOCHASTIC REGULAR

EXPRESSIONS

Stochastic regular expressions (SRE) is a probabilis-

tic regular language, denoted by regular expressions

with probability �elds (Ross 2000). SRE is similar to

one in (Garg et al. 1999), where formal proofs of var-

ious properties of the language can be found. SRE is

currently being applied by the author towards prob-

lems in bioinformatics. In (Ross 2000), GP is used in

the induction of SRE expressions. That application is

one in which the sampling of target language strings

by the �tness function is both natural and convenient.

Questions arose in that work, however, regarding the

e�ectiveness of sampling during GP, and in particu-

lar, whether sampling was detrimental to evolution.

The fact that SRE language has an underlying prob-

abilistic semantics can lend insight into the nature of

the samples themselves, for example, how well they

characterize the intended target language. For these

reasons, SRE is used as the problem domain in this

paper.

Let � range over alphabet
P
, E range over SRE ex-

pressions, n range over positive integers (0 � n �

1000), and f range over decimal values with a pre-

cision of 2 decimal places (0 � f < 1:00). The syntax

of SRE is recursively de�ned as:

E ::= � j
X
i

Ei(ni) j E1 : E2 j E�f j E+f

Without loss of generality, the empty string � is not

included in the alphabet (although it is included in

the semantics below).

Let Pr(E; s) denote the probability of expression E

recognizing string s. Membership in SRE is re
ected

by SRE expressions returning non{zero probabilities

for particular strings:

s 2 L(E) iff Pr(E; s) > 0

s 62 L(E) iff Pr(E; s) = 0

The SRE operators have the following semantics:

1. Atomic action � : The action � is generated, and

Pr(�; s) = 1 i� � = s.

2. Guarded Choice
P

iEi(ni), where E = (�i : E
0
i)

or E = �i, and 8�i; �j : �i 6= �j : Here, each term

in the choice expression is either pre�xed with a

unique atomic action that is found nowhere else

in the expression, or consists of a unique action

by itself. The probability of term i being chosen

is ni=(
P

j nj), and:

Pr(
X
i

Ei(ni); s) =
X
k

 
nkP
j nj

� Pr(Ek ; s)

!

3. Concatenation \E1 :E2" : Term E1 is interpreted,

followed by that of E2.

Pr(E1 :E2; s) =Pn

i=1(Pr(E1; �1:::�i) � Pr(E2; �i+1:::�n)

+ Pr(E1; s) � Pr(E2; �)

+ Pr(E1; �) � Pr(E2; s)

4. Kleene Closure E
�f : Term E can be repeatedly

executed 0 or more times, and each iteration oc-

curs with a probability of f . The probability of

E terminating execution is 1� f .

Pr(E�f
; �) = 1� f

Pr(E�f
; s) =Pn

i=1(f � Pr(E;�1:::�i�1) � Pr(E
�f
; �i:::�n)

+ f � Pr(E; s) � Pr(E�f
; �) : s 6= �

5. +Closure E
+f : Term E executes once, after

which it behaves like Kleene closure. It is an ab-

breviation for:

E
+f � E : E�f

(Ross 2000) evolves SRE expressions using genetic pro-

gramming. There, SRE is implemented in the DCTG-

GP system, which is a genetic programming system

using a logic{based attribute grammar (Ross 1999).

The operational semantics of SRE operators are en-

coded in terms of semantic attributes in the context

free grammar of the language. The determination of



membership properties (ie. computed probabilities)

of SRE expressions can be determined in polynomial

time, since regular expression membership is tractable

(Sipser 1996).

An example SRE expression is:

E = (a : b�0:7)(2) + c
�0:1(3):

Let L(E) denote the language for E. The string c is a

member of L(E), and has a probability of 0:054 (the

term with c can be chosen with a probability of 3
2+3

=

0:6; then that term iterates once with a probability of

0:1; �nally the iteration terminates with a probability

of 1� 0:1 = 0:9, giving an overall probability of 0:6�

0:1�0:9 = 0:054). The string abbb is also a member of

L(E), and has a probability of 0:4� 0:7� 0:7� 0:7�

0:3 = 0:04116. The string bb is not a member of L(E),

and its probability is 0.

3 EXPERIMENT DETAILS

The goal is to determine the positive and negative ef-

fects of random sampling of training data on genetic

program evolution. A variety of possible variables may

contribute to such a determination. For example, the

frequency of re-sampling may impact the e�ectiveness

of evolution. A run in which a new training set is re-

sampled between every generation may behave quite

di�erently from one with a static training set. The

size of the training set is also pertinent, since a larger

sample more likely will be faithful to the target distri-

bution. Whether the genetic search uses steady{state

or generational processing is also worthy of investiga-

tion. The experiments undertaken will address these

and other variables.

3.1 Stochastic language complexity

The �rst factor to be considered is the complexity of

the stochastic problem. A simple stochastic problem

may have relative immunity to the e�ects of training

set sampling during evolution, while a problem with a

rich language and corresponding distribution may be

more di�cult to characterize by random sampling.

Two stochastic regular languages, L1 and L2, are stud-

ied. They are written in SRE as follows:

L1 : (a : c�:5 : a)(1) + (b : c�:5 : b)(1)

L2 : a
�:5 : b�:5 : a�:5 : b�:5

These language de�nitions can be considered to be

optimal target expressions which the GP system can

evolve, although that might not necessarily occur in

practice. Both SRE expressions have roughly the same

Table 1: Random sampled training set sizes (avg. 25

samples)

k=50 k=1000

L1 10 18

L2 9 (cuto� 2) 63 (cuto� 3)

structural complexity. Thus any di�erences in evolu-

tion performance are due to the complexity of the un-

derlying stochastic languages denoted by each, rather

than the relative syntactic complexities of the target

expressions. The intention is not to compare the rel-

ative empirical behaviours of L1's and L2's evolution

with each other. Rather, each should be considered to

be a separate experiment in which we investigate the

e�ects of random sampling.

Although language L1 has an alphabet of size 3, its

membership set is relatively simple, since only the

strings ac�a and bc
�
b are possible, each with an equal

distribution of 0:5. Furthermore, the probability of 0:5

on the Kleene closure means that long strings have in-

creasingly low probabilities, and therefore are uncom-

mon during training set sampling. Language L2 has

a more robust membership set than L1: if k random

samples are taken of each language, there will likely

be more instances of unique strings from L2 than from

L1, giving L2 a more complex distribution. This is

discussed in the next section.

3.2 Random sampling parameters

Sampling is done via generative probabilistic regular

grammars for L1 and L2, where productions proba-

bilities are equivalent to those speci�ed in the SRE

expressions above. The maximum length for sampled

strings is 20. The distribution complexities of L1 and

L2 samples are outlined in Table 1. Here, k is the to-

tal number of random samples performed on each lan-

guage. L1 has 18 unique strings from amongst 1000

samples, while L2 has 63 unique members. The cut-

o� values for L2 are the minimum total frequencies

of sampled strings that must arise for their inclusion

in the training set. This keeps the L2 runs within

manageable time limits, since without a cuto� there

are roughly respectively 35 and 200 members in the

k = 50 and k = 1000 L2 samples.

Di�erent frequencies of re-sampling (\gaps") are con-

sidered: re-sample every generation, re-sample every

10 generations, and a single sample for the entire run.

The �2 values between di�erent training samples can

vary signi�cantly. Table 2 shows the average �2 values



Table 2: �2 between randomly sampled sets (avg. 50

pairs)

k=50 k=1000

L1 19.0 33.6

L2 15.3 (cuto� 2) 142.2 (cuto� 3)

obtained between 50 pairs of randomly sampled train-

ing sets for L1 and L2. (A low �
2 indicates a high

statistical �t; higher values indicate lower correspon-

dences.)

Two training (solution) sets with \ideal" distributions

are also used, which accurately re
ect the real distri-

bution of strings in L1 and L2. There are 18 unique

strings in the solution set for L1, and 98 strings in that

for L2.

3.3 GP parameters

Table 3: GP Parameters

Parameter Value

Functions SRE

Terminals L1 fa,b,cg, L2 fa,bg

Fitness function �
2 analysis

Initial population size 750

Population size (after culling) 500

Unique population members yes

Maximum generations 50

Maximum runs 25

Probability of crossover 0.90

Probability of mutation 0.10

Retries for reproduction 3

Max. depth initial population L1: 12, L2: 10

Max. depth o�spring L1: 24, L2: 17

Tournament size, selection 5

Tournament size, replacement 5

Min. grammar probability L1: 10
�6, L2: 10

�5

Table 3 lists parameters used for GP runs. Although

most parameters are self{explanatory, some require ex-

planation. The initial population is culled at the be-

ginning of a run. Reproduction may fail, for example,

due to tree size limitations, and so a maximum of 3

reproduction attempts are undertaken before new in-

dividuals are selected. The minimum grammar prob-

ability values specify the minimal probability used by

the SRE evaluator before an expression interpretation

is preempted. This device improves the e�ciency of

expression evaluation by pruning interpretation paths

with negligible probabilities.

3.4 Fitness evaluation

Fitness evaluation uses the modi�ed �
2 test from

(Ross 2000). The known distribution is taken to be

the set S of test examples, and the experimental set

will be the results of the SRE recognition algorithm on

each member si 2 S. Each test set example string is

given to the SRE processor, and an overall probability

Pr(E; si) is computed. The �tness formula is:

Fitness =
X
si2S

8><
>:

(di�(Pr(si)�N))2

di
(y)

�
1 +

jsij�jmaxprefij

jsij

�
� di (z)

where (y) is used when Pr(si) � 0, (z) when Pr(si) =

0, di is the frequency of example si in test set S,

N = jSj, and maxprefi is the maximum pre�x of si
recognized. The �rst term is the �2 formula, and it is

used when the example string si is completely recog-

nized. The second formula is used when only a pre�x

of si is recognized, and its value is inversely propor-

tional to the size of this pre�x. Should none of si
be recognized, then this value becomes 2 � di (a nor-

mal �2 formula would use just di). This pre�x scor-

ing gives credit for recognizing a portion of the exam-

ples, which contributes additional evolutionary pres-

sure towards the recognition of complete strings. Note

that it would be more useful to determine the longest

substring recognized within the entire string, rather

than the longest pre�x. The SRE interpreter consumes

strings from left{to{right, however, which permits ef-

�cient determination of the consumed pre�x.

3.5 Other search paradigms

Random search and hill climbing are included in the

experiments. Random search is implemented by set-

ting the tournament sizes to 1 during a GP run. Hill

climbing search uses conventional GP tree mutation.

If the mutated expression is �tter than then original,

then it replaces the original. This is done for each indi-

vidual in the population once per generation, resulting

in a total of 50 mutations per expression during a run.

4 RESULTS

There are two aspects of performance to consider when

evaluating the e�ects of random sampling on evolution.

First, the �tness curves will indicate whether the pop-

ulation as a whole is converging with respect to the

sampled �tness criteria. Second, the absolute quality



0

10

20

30

40

50

60

70

80

90

100

1 11 21 31 41 51

Generation

F
it

n
es

s

SS, gap=1

SS, gap=10

SS, no gap

Gen, gap=1

Gen, gap=10

Gen, no gap

Figure 1: L1 �tness curves (k=50, avg 25 runs)

of solutions measured against the \real" target lan-

guage distribution must be considered. By de�nition,

sampling approximates the target language distribu-

tion. Even though an expression might closely match

a given sampled training set, and hence have a good

�tness score, both may be stochastically distant from

the real target distribution. This is especially acute if

a single unrepresentative �tness sample is used for an

entire run. Hence there can be disparities between the

�tness scores used in a run and the absolute quality

of solutions. Therefore, the quality of solutions must

also be investigated.

The average population �tness curves are given in Fig-

ures 1, 2, 3 and 4. Note that the modi�ed �
2 test

used for �tness evaluation generate values that are

proportionally to the size of the training set. Hence

the graphs for the k = 50 and k = 1000 experiments

use di�erent scales of �tness. One feature common

in all the graphs is the natural performance di�er-

ence between steady{state and generational runs, as

steady{state runs converge faster and have �tter pop-

ulations on the whole. In addition, all the graphs indi-

cate that population �tness generally improves during

the course of runs. This means that search is pro-

gressing, at least with respect to the sampled �tness

criteria.

Hill climbing behaviour can be seen in a few experi-

ments in the k = 50 graphs in Figures 1 and 2. Most

notable are the curves for the generational experiment

0

10

20

30

40

50

60

1 11 21 31 41 51

Generation

F
it

n
es

s

SS, gap=1

SS, gap=10

SS, no gap

Gen, gap=1

Gen, gap=10

Gen, no gap

Figure 2: L2 �tness curves (k=50, avg 25 runs)

using a re-sampling gap of 10 (white box). Since the re-

sampling is done every 10 generations, there are clear

increases in average �tness at generations 31, 41, and

51 in Figure 1, and generations 11, 21, 31, 41 and 51

in Figure 2. Between each jump, the population �t-

ness improves. This indicates that the population is

converging to local optima between jumps, only to be

redirected towards new optima when the training set is

re-sampled. On the other hand, the steady{state runs

are not as prone to this behavior. With the steady{

state algorithm, it is easier for programs to remain

in the population long after the training set has been

re-sampled. Fitness scores calculated in earlier genera-

tions are used in later generations, and a strong �tness

score might prevent a program from being selected for

replacement long after re-sampling has occurred. This

is not the case with a generational algorithm, as the

entire population is regenerated each generation, and

earlier �tness scores are made obsolete when new gen-

erations are created. Nevertheless, in Figure 2, there is

still a slight curve 
uctuation between the re-sampling

points (11, 21, 31, 41) with the steady{state curve for

the gap of 10 (black box).

The curves for the k = 1000 experiments in Figures 3

and 4 are far less vacillating than the k = 50 ones. In

both curves, the generational runs yield very consis-

tent population �tnesses. In Figure 3, the L1 steady{

state runs with no re-sampling (sampled without gap

(black triangle), and solution set (black circle)) tend



0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 11 21 31 41 51

Generation

F
it

n
es

s

SS, gap=1

SS, gap=10

SS, no gap

SS, solnl

Gen, gap=1

Gen, gap=10

Gen, no gap

Gen, soln

SS (no gap, soln)

SS (gap 1, 10)

Figure 3: L1 �tness curves (k=1000, avg 25 runs)

to converge better than runs using re-sampling. This

does not imply, however, that they are converging to

better quality solutions.

The quality of solutions obtained for the runs are tab-

ulated in Table 4. Lower �
2 values indicate better

statistical �ts to the target languages. These statis-

tics are calculated for 25 runs per experiment. To get

these statistics, the �
2 value for the solution of each

run is computed relative to the solution distribution

for the appropriate target language. Naturally, this ta-

ble should not be interpreted literally, but rather, the

values should be used to gain intuition about the rel-

ative successes of the various experiments. Note that

the table tabulates the best individuals obtained from

the runs plotted in the previous graphs. The �
2 for-

mula used for this table is measured with respect to

the solution training sets, while the �tness values from

the graphs are relative to the sampled training sets.

Therefore, the table values do not coincide with those

plotted in the graphs. Table 2 in Section 3 should

also be referenced, as it shows the statistical variabil-

ity arising between sampled training sets themselves.

First, it is clear from the table that higher quality

results are obtained with the large sampled training

sets (k = 1000) than the smaller samples (k = 50).

The best runs are produced with the idealized solution

sets. This con�rms that higher quality training evolves

better quality solutions.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 11 21 31 41 51

Generation

F
it

n
es

s

SS, gap=1

SS, gap=10

SS, no gap

SS, soln

Gen, gap=1

Gen, gap=10

Gen, no gap

Gen, soln

Gen

SS

Figure 4: L2 �tness curves (k=1000, avg 25 runs)

There is a slight advantage in the runs using a re-

sampling gap of 10 generations, at least for all the GP

runs except the L1 steady state runs with k = 50. This

indicates that cumulative re-sampling more accurately

characterizes target behavior, than simply sampling

once for the entire run. It also appears that giving a

periodic gap between re-samples is advantageous for

GP, as it permits the population to converge to the

current sample. When re-sampling is done every gen-

eration, the opportunity to converge is lessened.

For the L1 experiments, all the GP runs obtained

better solutions than the hill climbing and random

searches. This is because the samples for all the GP

runs accurately characterize L1. Surprisingly, this was

not the case for L2, as both hill climbing and ran-

dom search produced generally better results than the

GP runs that used k = 50 samples (although the best

min results from the GP runs were still marginally su-

perior). One hypothesis for this phenomenon is that

these GP runs are being led astray by evolution. L2 is

considerably more complex than L1, and the k = 50

samples cannot adequately L2. However, evolution

still \believes" it is converging towards optima (Figure

2). During convergence to a poor optima, the pop-

ulation diversity is being signi�cantly reduced. The

net e�ect is that the GP populations quickly converge

to points that are far removed from acceptable solu-

tions. Moreover, they are incapable of recovering from

early convergence during the rest of the run, even when



Table 4: Solution quality (�2). 25 runs per experiment.

Experiment L1 L2

k gap median min max std.dev median min max std.dev

50 1 280.8 35.7 750.6 157.9 584.8 177.4 1457.7 241.8

50 10 258.6 36.1 479.3 122.1 470.4 95.6 1169.6 292.7

GP 50 { 238.1 49.2 366.3 85.9 377.2 164.6 2396.7 486.8

(steady 1000 1 251.0 3.8 442.3 144.0 84.7 21.1 136.0 32.6

state) 1000 10 251.5 1.4 563.6 148.7 84.7 22.2 151.8 32.5

1000 { 43.9 1.6 331.9 123.2 77.5 23.2 156.6 22.1

soln { 12.9 0.03 254.4 112.0 66.3 20.5 155.0 63.2

50 1 203.0 22.6 325.6 107.8 423.6 185.8 1799.2 318.0

50 10 201.4 17.3 609.2 144.1 426.1 145.4 972.8 225.5

GP 50 { 220.9 37.9 292.2 90.0 488.6 163.4 1540.2 354.4

(genera- 1000 1 59.4 2.5 259.2 111.6 85.4 44.6 151.1 21.2

tional) 1000 10 55.9 1.0 255.3 110.6 84.2 27.9 114.2 16.7

1000 { 76.6 1.7 259.5 112.9 86.0 40.2 114.0 14.7

soln { 28.7 0.05 259.6 120.6 71.6 20.7 168.1 28.1

50 1 860.2 513.2 1017.4 126.6 377.8 210.8 816.0 142.4

Hill 50 10 643.9 503.1 967.4 153.7 328.6 193.1 992.6 143.2

climbing 50 { 837.7 501.4 1090.8 178.4 318.3 227.9 670.9 86.1

soln { 839.2 380.1 922.6 151.7 310.3 186.5 341.2 41.7

Random 50 1 714.4 515.2 2216.3 330.5 335.3 243.0 645.8 97.4

the training sets are re-sampled. This is supported by

the high standard deviations found in the solutions

for these runs, which indicates signi�cant variability

in their quality. Hill climbing and random search are

not prone to this e�ect, simply because their popula-

tions do not converge at all. Individuals in their pop-

ulations remain autonomous from one another, and so

the population remains diverse. This results in search

that is not in
uenced by poor training distributions,

which is advantageous when the training set quality

varies dramatically between samples.

5 CONCLUSION

The main result of this empirical case study is that

stochastic sampling of training data is not necessarily

detrimental to genetic programming, provided that the

samples adequately characterize the target behaviour.

With our simpler L1 stochastic language, the small

sample of size 50 adequately described L1's distribu-

tion, and hence runs discovered acceptable solutions.

On the other hand, with L2's more complex language

distribution, the samples of size 50 did not model the

target language very well. Exceptionally poor train-

ing sets are distinctly destructive for evolution, and

in fact, GP was shown to perform worse than ran-

dom search. When the population converges to a poor

sub-optima, genetic diversity is lost. The population

becomes permanently handicapped throughout the re-

mainder of the run, even if re-sampling is undertaken.

When the random samples are adequately large, how-

ever, few negative e�ects on evolution can be seen.

Of course, this can negatively impact processing time,

since larger training sets require more computation to

process.

As expected, the best results are obtained with bet-

ter characterizations of the target behaviour. We ex-

perienced this when using our manually derived solu-

tion sets. In many circumstances, however, such ideal

training sets are di�cult or impossible to obtain. In

these situations, randomly sampling the behaviour of

interest is an acceptable and recommended strategy.

The sizes of such samples must balance e�ciency of �t-

ness calculation with the quality of solutions obtained.

Multiple runs is recommended in any case.

The e�ects of re-sampling are not as clear, and further

work is required to study the relationship between re-

sampling rates and GP performance. There appears to

be a qualitative advantage to runs that re-sampled ev-

ery 10 generations, compared to those that re-sampled

every generation or those that used one sample for the

run. Periodic re-sampling may permit the cumulative

e�ect of multiply sampled training sets, while giving

the population time to converge between re-sampling

points. When the samples are inadequate, however, re-



sampling in GP cannot compensate for the poor per-

formance we observed in comparison to hill climbing

or random search.

Work in (Miller and Goldberg 1996, Giguere and

Goldberg 1998) analyzes the e�ects of population and

sample sizes on genetic algorithm performance. In

particular, the Onemax problem is studied, which is

a contrived problem amenable to precise mathemati-

cal modeling. (Miller and Goldberg 1996) establishes

a predictive model of GA performance, based upon

known factors such as the computational GA overhead

in time per individual per generation, the cost of per-

forming �tness sampling, the �tness variance of the

initial population, and the variance of the (sampled)

�tness function itself. With their model, a lower bound

on the sample size is obtained which ensures particu-

lar performance criteria. (Giguere and Goldberg 1998)

extends this work by determining a minimum popula-

tion size given particular sample sizes and other per-

formance parameters. A similar analysis of the e�ects

of sample and population sizes on the performance of

GP is needed. Unfortunately, the results presented in

the above are not directly applicable to GP, because

many of the assumptions and models used for the One-

max problem currently do not have known analogs in

GP.

Future analytical and empirical studies of the e�ects of

sampling on GP should study the e�ects of sampling

and the structural complexity of the search space for

particular problems. In addition, there is not a linear

relationship between sample sizes, re-sampling rates

and the quality of training samples during a GP run,

and further studies on these relationships are required.

One advantage of using a stochastic problem domain

in such analyses, such as SRE induction done in this

paper, is that stochastic measurements between the

sampled training set distribution, the target problem's

distribution, and program �tness, are all readily avail-

able (eg. �2). Further study of SRE itself should lend

insight into issues such as how sample sizes correspond

to overall training set quality for particular stochastic

languages.

Acknowledgement: Helpful comments from anonymous

referees are gratefully acknowledged. This work is sup-

ported though NSERC Operating Grant 138467-1998.

References

Dupont, P. (1994). Regular Grammatical Inference

from Positive and Negative Samples by Ge-

netic Search: the GIG method. In: 2nd Intl.

Coll. on Grammatical Inference and Applications.

Springer-Verlag. pp. 236{245.

Garg, V.K., R. Kumar and S.I Marcus (1999). Proba-

bilistic Language Formalism for Stochastic Dis-

crete Event Systems. IEEE Trans. Automatic

Control 44, 280{293.

Giguere, P. and D.E. Goldberg (1998). Population Siz-

ing for Optimum Sampling with Genetic Algo-

rithms: A Case Study of the Onemax Problem.

In: Proc. Genetic Programming 1998 (J.R. Koza

et al, Ed.). Morgan Kaufmann. pp. 496{503.

Kammeyer, T.E. and R.K. Belew (1997). Stochastic

Context-free Grammar Induction with a Genetic

Algorithm Using Local Search. In: Foundations of

Genetic Algorithms IV (R.K. Belew and M. Vode,

Eds.). Morgan-Kaufmann.

Longshaw, T. (1997). Evolutionary learning of large

grammars. In: Proc. Genetic Programming 1997

(J.R. Koza et al, Ed.). Morgan Kaufmann. Stan-

ford University, CA, USA. pp. 406{409.

Miller, B.L. and D.E. Goldberg (1996). Optimum Sam-

pling for Genetic Algorithms. In: Arti�cial Neu-

ral Networks in Engineering (ANNIE '96). ASME

Press. pp. 291{298.

Ross, B.J. (1999). Logic-based Genetic Program-

ming with De�nite Clause Translation Gram-

mars. Technical Report CS-99-02. Brock Univer-

sity, Dept. of Computer Science.

Ross, B.J. (2000). Probabilistic Pattern Matching and

the Evolution of Stochastic Regular Expressions.

Applied Intelligence. Accepted for publication.

Ross, B.J., F. Fueten and D.Y. Yashkir (2000). Edge

Detection of Petrographic Images Using Genetic

Programming. In: Proc. GECCO 2000 (D. Whit-

ley et al., Ed.). Morgan Kaufmann.

Sipser, M. (1996). Introduction to the Theory of Com-

putation. PWS Pub. Co.


