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Abstract 

Many real-world decision problems involve mul-
tiple and conflicting objectives, which need to be 
optimized simultaneously while respecting vari-
ous complex constraints. In this paper, we inves-
tigated how to solve these kinds of problems by 
using genetic algorithms. A new fitness assign-
ment method for multiple objective optimization 
problems - the adaptive hyperplane-based fitness 
assignment method - was proposed in order to 
give a genetic algorithm the search pressure to-
ward the positive ideal point in the objective 
space. An adaptive penalty function was used to-
gether with the adaptive hyperplane method in 
order to let genetic search explore the optima 
through both feasible and infeasible areas in the 
solution space. A Pareto solution reserving 
method was incorporated into normal genetic al-
gorithm loop in order to maintain a set of Pareto 
solutions during the evolutionary process.  

1 INTRODUCTION 

Optimization deals with the problems of seeking solutions 
over a set of possible choices to optimize certain criteria.  
If there is only one criterion to consider, it becomes to a 
single objective optimization problem, a type studied 
extensively for the past 50 years.  If there is more than 
one criterion and they must be treated simultaneously, we 
have multiple objective optimization problems (Steuer, 
1986).  Multiple objective problems arise in the design, 
modeling, and planning of many complex real-world 
problems. Almost every important real-world decision 
problem involves multiple and conflicting objectives that 
need to be tackled while respecting various complex con-
straints, leading to overwhelming problem complexity. 
Multiple objective optimization problems have been re-
ceiving growing interest from researchers with various 

backgrounds since early 1960. During the last two dec-
ades, genetic algorithms have received considerable atten-
tion as a novel approach to multiple objective optimiza-
tion problems, known as genetic multiobjective optimiza-
tions or evolutionary multiobjective optimization 
(Fonseca and Flemming, 1995). The growing researches 
on applying genetic algorithms to multiple objective 
optimization problems present a formidable theoretical 
and practical challenge to the mathematical community. 

In this paper, we investigated how to solve these kinds of 
problems by using genetic algorithms. A new fitness 
assignment method for multiple objective optimization 
problems - the adaptive hyperplane-based fitness assign-
ment method - was proposed in order to give a genetic 
algorithm the search pressure toward the positive ideal 
point in the objective space. An adaptive penalty function 
was used together with the adaptive hyperplane method in 
order to let genetic search explore the optima through 
both feasible and infeasible areas in the solution space. A 
Pareto solution reserving method was incorporated into 
normal genetic algorithm loop in order to maintain a set 
of Pareto solutions during the evolutionary process.  

We have applied the hyperplane approach to several real 
world problems. The experimental results were very en-
couraging and showed that it can be easily applied to most 
real world multiobjective optimization problems. 

2 MULTIOBJECTIVE OPTIMIZATION 
PROBLEM 

Without loss of generality, a multiple objective optimiza-
tion problem can be represented formally as follows: 

mig

fzfzfz qq

,...,2,1    ,0)(    s.t.

)}( ..., ),(),({max 2211

=≤

===

x

xxx
 



where nR∈x is a vector of n decision variables, )(xif the 

ith objective function, and )(xig the ith inequality con-

straint. The m functions form an area of feasible solutions 
denoted by the set S as follows: 

}0,,...,2,1,0)(|{ ≥=≤∈= xxx migRS i
n  

The set of images of all points in S forms the feasible 
region in criterion space, denoted by the set Z as follows: 
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We sometime graph multiple objective optimizations in 
both decision space and criterion space. 

There is a special point in the criterion space called an 
ideal point or a positive ideal solution, denoted by 
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is called an ideal point because usually it is not attainable. 
Note that, individually, *

kz  may be attainable, but to find a 
point that can maximize each objective function 

)(xkf simultaneously is usually very difficult. In contra-
diction to the positive ideal point, a negative ideal solu-
tion is also defined to represent the pessimistic status in 
the criterion space, denoted by ),,...,,( 21

−−−− = qzzzz  where 
}.|)(sup{ Sfz kk ∈=− xx  Similar to the positive ideal point, 

the negative ideal point is also usually not attainable. 
Individually, −

kz may be attainable. 

In principle, multiple objective optimization problems are 
very different from single objective optimization prob-
lems. For the single objective case, one attempts to obtain 
the best solution, which is absolutely superior to all other 
alternatives. In the case of multiple objectives, there does 
not necessarily exist such a solution that is the best with 
respect to all objectives because of incommensurability 
and conflict among objectives. A solution may be best in 
one objective but worst in other objectives. Therefore, 
there usually exists a set of solutions for the multiple 
objective cases, which cannot be simply compared with 
each other. For such solutions, called nondominated solu-
tions or Pareto optimal solutions, no improvement in any 
objective function is possible without sacrificing at least 
one of the other objective functions. For a given nondo-
minated point in the criterion space Z, its image point in 
the decision space S is called efficient or noninferior. A 
point in S is efficient if and only if its image in Z is non-
dominated. 

In real decision making cases, we are usually asked to 
select one of those nondominated solutions as a final 
solution to a given problem. It is most likely, however, 
that we will be unable to settle for one of those solutions 
without providing additional preferences regarding vari-
ous objectives. Therefore, how to make a final choice 
from those alternative solutions essentially depends on 
one's subjective preferences. Conceptually, the preference 
intends to give an order to the incomparable solutions 
within the efficient set by using ones' value judgments on 
objectives, The preference reflects either ones' tradeoffs 
among objectives or emphasis for some particular objec-
tives according some prior knowledge to the problem.  
With a given preference, we can order the alternative 

solutions in the nondominated set, and then we can obtain 
a final solution, which is the usual outcome of a decision 
making process. Such a final solution is called best-
compromised solution. 

The general expectation for a decision making process 
can be either to obtain a compromised or preferred solu-
tion or to identify all nondominated solutions. Therefore, 
there are basically two kinds of techniques for constitut-
ing a solution method to multiple objective optimization 
problems: (1) generating approaches and (2) preference-
based approaches. The generating approaches have been 
developed to identify an entire set of Pareto solutions or 
an approximation.  Preference-based approaches attempt 
to obtain a comprised or preferred solution.  If we have no 
prior knowledge for preference structure over objectives, 
we have to adopt the generating approach to examine all 
nondominated alternatives.  If we have some ideas of the 
relative importance of objectives, we can quantify the 
preference. With the preference information, a compro-
mised or preferred solution can be identified. 

From the viewpoint of solution techniques, most tradi-
tional methods reduce multiple objectives into a single 
objective, and then solve the problem with mathematical 
programming tools. To utilize mathematical programming 
tools to solve a multiple objective problem, we first need 
to express our preference in terms of numbers, so that the 
larger the number, the stronger the preference. By using 
scalarization techniques, multiple objective optimization 
problems are usually transformed into a single objective 
or a sequence of single objective optimization problems; 
then traditional techniques can be adapted to solve the 
altered problems (Morris and Oren, 1980, Arbel and Oren, 
1999). Famous methods among them are utility function 
approach, weighted-sums approach, and compromise 
approach. 

3 FEATURES OF GENETIC SEARCH 

The inherent characteristics of genetic algorithms demon-
strate why genetic search may be well suited to multiple 
objective optimization problems. The basic feature of 
genetic algorithms is multiple directional and global 
searches by maintaining a population of potential solu-
tions from generation to generation. The population-to-
population approach is useful when exploring Pareto 
solutions. 

Genetic algorithms do not have much mathematical re-
quirements and can handle all types of objective functions 
and constraints. Because of their evolutionary nature, 
genetic algorithms can be used to search for solutions 
without regard to the specific inner workings of problems. 
Therefore, it is hoped that we can solve many more com-
plex problems by using genetic algorithms. 

Because genetic algorithms provide us a great flexibility 
to hybridize with conventional methods into their main 
framework, we can exploit the advantages of both genetic 
algorithms and conventional methods to establish much 



more efficient implementations to multiple objective 
optimization problems. 

4 FITNESS ASSIGNMENT MECHA-
NISM 

Genetic algorithms are essentially a type of metastrategy 
of solutions. When applying genetic algorithms to solve a 
given problem, it is necessary to refine each of their major 
components, such as encoding methods, recombination 
operators, fitness assignment, selections, constraints han-
dling, and so on, to obtain an effective implementation to 
the given problem. Because multiple objective optimiza-
tion problems are natural extensions of constrained and 
combinatorial optimization problems, many useful meth-
ods developed for constrained and combinatorial optimi-
zation problems during the past two decades are readily 
applicable. Therefore, when considering how to adapt 
genetic algorithms to multiple objective optimization 
problems, we just need to examine some special issues 
concerning the problems. 

4.1 FITNESS ASSIGNMENT METHODS 

One of special issues arising in solving multiple objective 
optimization problems by use of genetic algorithms is 
how to determine the fitness value of individuals accord-
ing to multiple objectives. The fitness assignment mecha-
nism has been studied extensively during the past decade 
and several methods have been suggested and tested. 
Roughly, these methods can be classified as follows: (1) 
vector evaluation method, (2) Pareto-based method, (3) 
weighted-sum method, (4) compromise method, and (5) 
goal programming method. 

Perhaps, the first notable work to extend simple genetic 
algorithms to solve the multiple objective optimization 
problems is the vector evaluation method proposed by 
Schaffer (1985). Instead of using a scalar fitness measure 
to evaluate each chromosome, it uses a vector fitness 
measure to create the next population. 

There are two kinds of Pareto-based methods: Pareto 
ranking and Pareto tournament. The Pareto ranking-
based fitness assignment method was first suggested by 
Goldberg as a means of achieving equal reproductive 
potential for all Pareto individuals (Goldberg, 1989). It 
includes two major steps: (1) Sort the population based on 
Pareto ranking. (2) Assign selection probabilities to indi-
viduals according to the ranking. The Pareto tournament 
method was proposed by Horn, Nafpliotis, and Goldberg 
(1994). Instead of nondominated sorting and ranking 
selection method, a niched Pareto concept was used in 
tournament, where a Pareto solution with least number of 
individuals in its neighbor wins the competition. 

The weighted-sum method takes its basic ideas from con-
ventional multiobjective optimizations. It assigns weights 
to each objective function and combines the weighted 
objectives into a single objective function.  Conceptually, 
it is simple to understand and easy to compute; but to 

make it work requires only a proper weighting vector.  
Therein, however, lies the difficulty.  Once embedded in 
genetic algorithms, its weakness can be compensated for 
by the powers of population-based and evolutionary 
search. Several weight-adjust methods have been pro-
posed in order to fully utilize the power of genetic search: 
(1) fixed weight approach, (2) random weight approach, 
and (3) adaptive weights (Gen and Cheng, 2000). Re-
cently, this approach was combined with a spanning tree-
based genetic algorithm applied to a multi-objective 
transportation problem (Gen and Li, 1999). 

Cheng and Gen proposed the compromise method as a 
means to obtain a compromised solution instead of gener-
ating all Pareto solutions (Cheng and Gen, 1998). Its basic 
idea and techniques are borrowed from conventional 
multiple objective optimizations. The compromise ap-
proach identifies solutions that are closest to the ideal 
solution as determined by some measure of distance.  

Goal programming is one of the powerful techniques for 
solving the multiobjective optimization problems. Gen, 
Liu and Ida investigated the application of genetic algo-
rithms to solve nonlinear goal programming problems 
(Gen, Liu and Ida, 1996). Because lexicographic ordering 
among objectives is preferred in goal programming, indi-
viduals are sorted on the value of objectives in a lexico-
graphic manner in their genetic algorithms. Individual 
fitness values are then assigned by interpolating from the 
best to the worst according to an exponential function. 

According to how much preference information is incor-
porated into the fitness function, these approaches range 
from complete preference information given, as when 
combining objective functions directly or prioritizing 
them, to no preference information given, as with Pareto-
based approaches. In addition, a notable feature is that 
given a rough preference, progressive refinement of the 
preference can be carried out by evolutionary search. The 
progressive refinement of preferences is like an interac-
tive procedure often used in multiple objective optimiza-
tion, where preferences are modified at each iteration by 
decision makers. What makes it unique is the refinement 
mechanism: The preference is refined gradually through 
the evolutionary search by some adaptive refinement 
mechanism, not by the intervention of decision makers at 
each iteration. Of course, an interactive procedure can 
also be embedded in genetic search to guide preference 
refining. 

4.2 TWO BASIC APPROACHES  

From the viewpoint of methodology, there are two basic 
approaches to multiple objective optimizations: generat-
ing approach and preference-based approach. Generating 
approaches are used to identify an entire set of Pareto 
solutions or an approximation, whereas preference-based 
approaches attempt to obtain a comprised or preferred 
solution. Conceptually, the vector evaluation approach, 
the Pareto ranking-based approach, and the random 
weighting approach are designed as the generating meth-
ods; the compromise approach, the adaptive weighting 



approach, and the goal programming approach are de-
signed as the preference-based approaches. 

In multiobjective optimizations, generating and prefer-
ence-based methods both exhibit their strengths and 
weaknesses. Generating techniques require decision mak-
ers to make a judgment by selecting from among entire 
Pareto solutions.  For problems with more than three 
criteria, making a choice becomes very complicated, 
increasing in difficulty approximately exponentially with 
the number of criteria. Computational costs also increase 
rapidly with the number of criteria. In genetic multiobjec-
tive optimizations, the situation essentially does not 
change.  In contrast, preference-based techniques seem 
not to put as great a burden on decision makers as used in 
multiobjective optimization.  Because preferences can be 
refined gradually along with the evolutionary process, a 
rough preference can be made to work by evolutionary 
search. 

A solution method can be designed as either a generating 
method for obtaining an entire set of Pareto solutions or a 
preference-based method for obtaining a preferred or 
compromised solution. In multiobjective optimizations, 
we cannot have a solution method which implements the 
two distinct ideas into one solution procedure, but in 
genetic multiobjective optimization, we can. 

4.3 THE CONCEPT OF PARETO SOLUTION 

In a strict sense, the term of Pareto solution used in ge-
netic algorithms has a different meaning as used in a con-
ventional way. In the original definition, a point is said to 
be a Pareto solution if and only if it is a nondominated 
point with respect to all points in the criterion space for a 
given problem. In genetic algorithms, Pareto solutions are 
identified at each generation.  Because a population at 
each generation contains only partial solutions of the 
original problem, a Pareto solution has its meaning only 
with respect to all solutions currently examined. A non-
dominated solution in one generation may become domi-
nated by a new solution emerged in a later generation. 
Therefore, for a given generation of genetic algorithms, a 
Pareto solution obtained in that generation may be a true 
Pareto solution to the problem, or it may not be. There is 
no guarantee that a genetic algorithm certainly produces 
Pareto solutions to a given problem.  But a genetic algo-
rithm will provide a better approximation of Pareto solu-
tions. 

How to maintain a set of nondominated individuals during 
the evolutionary process is a special issue for multiple 
objective optimization problems. Basically, there are two 
different ways to handling Pareto solutions, which lead to 
two different overall structures of genetic algorithms 
implementations: (1) preserving Pareto solutions sepa-
rately from population pool and (2) without preserving 
mechanisms. 

In most existing methods, Pareto solutions are identified 
at each generation and used only to calculate fitness val-
ues or ranks for each chromosome. No mechanism is 

provided to guarantee that Pareto solutions generated 
during the evolutionary process enter the next generation. 
In other words, some Pareto solutions may get lost during 
the evolutionary process. To avoid such sampling errors, a 
preserving mechanism for Pareto solutions has been sug-
gested by many researchers (Gen and Cheng, 2000). A 
special pool for preserving Pareto solutions is added onto 
the basic structure of genetic algorithms. At each genera-
tion, the set of Pareto solutions is updated by deleting all 
dominated solutions and adding all newly generated 
Pareto solutions.  The overall structure with Pareto pre-
serving is given as follows: 

Procedure: Pareto genetic algorithms 
begin 

t = 0 
Initialize P(t); 
Objectives P(t); 
Pareto E(t); 
Fitness P(t); 
while (not termination condition) do 
begin 

Crossover P(t); 
Mutation P(t); 
Objective P(t); 
Update Pareto E(t); 
Fitness P(t); 
Selection P(t+1) from P(t); 
t = t+1; 

end 
end  
 

Without a preserving mechanism, Pareto solutions can be 
gathered only from the last generation.  If the method 
used has a tendency of speciation as mentioned by 
Schaffer (1985), the entire population will converge to-
ward the individual optimum regions after a large number 
of generations. The preserving mechanism is, to a certain 
extent, helpful to minimize speciation through a Pareto 
preserving procedure at each generation. 

5 ADAPTIVE HYPERPLANE AP-
PROACH 

Adaptive hyperplane approach belongs to the type of 
adaptive weight method. It constructs a hyperplane by 
some special points in objective space in each generation 
and fitness values of individuals are then calculated based 
on the hyperplane. The hyperplane is adjusted adaptively 
based on the current generation to obtain a search pres-
sure toward the positive ideal point in the objective space. 

5.1 ADAPTIVE WEIGHT 

The basic idea of assigning weights to each objective 
function and combining them into a single-objective func-
tion was firstly proposed by Zadeh (Zadeh, 1963). The 
weighted-sums method can be represented as follows: 
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The weight kw can be interpreted as the relative empha-
sis or worth of that objective when compared to the other 



objectives. In the other words, the weight can be inter-
preted as representing our preference over objectives. 
Therefore, an optimal solution to a given problem relates 
to a particular preference structure.  Moreover, the opti-
mal solution to the problem is a nondominated solution 
provided that all the weights are positive. Because of the 
numerical ordering by the weighted-sum function, there is 
no ambiguity in preference comparison. For any two 
points, either one is better, worse or equivalent to another. 
Exactly one of the three cases must happen. There are no 
such things as indefinite sets in the preference structure. 

The adaptive weights approach proposed in this paper 
adjusts weights adaptively according to the current gen-
eration in order to obtain a search pressure toward to the 
positive ideal point. This approach is designed for genetic 
algorithms in order to fully utilize the power of genetic 
search. It works only due to the nature of population-
based evolutionary search of genetic algorithms. 

Consider the maximization problem with q objectives 
described in Section 2. 

For the solutions examined in each generation, we define 
two extreme points: the maximum extreme point +z and 
the minimum extreme point −z  in criteria space as fol-
lows: 

},......,,{

},......,,{

minmin
2

min
1

maxmax
2

max
1

q

q

zzzz

zzzz

=

=
−

+

 

where max
kz and min

kz are the maximal value and minimal 
value for objective k in current population. Let P denote 
the set of current population. For a given individual x, the 
maximal value and minimal value for each objective are 
defined as the follows: 
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The hyper-parallelogram defined by the two extreme 
points is a minimal hyper-parallelogram containing all 
current solutions. The two extreme points are renewed at 
each generation. The maximum extreme point will gradu-
ally approximate to the positive ideal point. The adaptive 
weight for objective k is calculated by the following equa-
tion: 
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For a given individual x, the weighted-sum objective 
function is given by the following equation: 
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For the cases that all objective functions takes only posi-
tive value, the equation can be simplified as follows: 
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As the extreme points are renewed at each generation, the 
weights are renewed accordingly. Equation above is a 
hyperplane defined by the following extreme point in 
current solutions: 
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The hyperplane divides the criteria space Z into two half-
spaces: one half space contains the positive ideal point, 
denoted as Z+, and the other half space contains the nega-
tive ideal point, denoted as Z-.  All Pareto solutions exam-
ined lie in the space Z+, and all points lying in the Z+ have 
larger fitness values than those in the space Z-. As the 
maximum extreme point approximates to its possible 
largest value along with the evolutionary progress, the 
hyperplane will gradually approach to the positive ideal 
point. Therefore, the adaptive weight method can readjust 
its weights according to the current population in order to 
obtain a search pressure toward to the positive ideal point. 

Let us see an example of bicriteria maximization problem 
given below: 
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For a given generation, two extreme points are identified 
as: 
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and the adaptive weights are calculated as follows: 
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The weighted-sum objective function is then given by the 
following equation: 
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It is an adaptive moving line defined by the extreme 
points ),( min

2
max
1 zz  and ),( max

2
min
1 zz as shown in Figure 1.  

The rectangle defined by the extreme points ),( max
2

max
1 zz  

and ),( min
2

min
1 zz  is the minimal rectangle containing all 

current solutions. 



 
 

Figure 1: Adaptive weights and adaptive hyperplane for a 
bicriteria case. 

 

Conceptually, the weighted-sum approach can be viewed 
as an extension of methods used in multiobjective optimi-
zaiton to genetic algorithms. It assigns weights to each 
objective function and combines the weighted objectives 
into a single objective function. In fact, the weighted-sum 
approaches used in genetic algorithms are very different 
in nature from that in conventional multiobjective optimi-
zations. In multiobjective optimization, the weighted-sum 
approach is used to obtain a compromise solution. To 
make the method work, all that is needed is a good 
weighting vector. It is usually very difficult to determine a 
set of appropriate weights for a given problem. In genetic 
algorithms, the weighted-sum approach is primarily used 
to adjust genetic search toward to the Pareto frontier. 
Weights are readjusted adaptively along with the evolu-
tionary process. Therefore, a good weighting vector is not 
a mandatory precondition to making genetic algorithms 
work. In addition, the drawbacks exhibited in the multiob-
jective optimization can be compensated by the powers of 
population-based search and evolutionary search. 

5.2 ADAPTIVE PENALTY FUNCTION 

Penalty technique is perhaps the most common technique 
used to handle infeasible solutions in genetic algorithms 
for constrained optimization problems. In essence, this 
technique transforms the constrained problem into an 
unconstrained problem by penalizing infeasible solutions, 
in which a penalty term is added to the objective function 
for any violation of the constraints (Gen and Cheng, 
1997). 

The basic idea of the penalty technique is borrowed from 
conventional optimization. In conventional optimization, 
the penalty technique is used to generate a sequence of 
infeasible points whose limit is the optimal solution to the 
original problem. The major concern is how to choose a 
proper value of penalty so as to hasten convergence and 
avoid premature termination. In genetic algorithms, the 
penalty technique is used to keep a certain amount of 
infeasible solutions in each generation so as to enforce 

genetic search toward an optimal solution from both sides 
of feasible and infeasible regions. The major concern is 
how to determine the penalty term so as to strike a bal-
ance between the information preservation (keeping some 
infeasible solutions) and the selective pressure (rejecting 
some infeasible solutions), and both under-penalty and 
over-penalty (Gen and Cheng, 1996a). 

Given an individual x in current population P(t), the adap-
tive penalty function is constructed as follows: 
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where )(xib∆ is the value of violation for constraint i for 
the ith chromosome, max

ib∆ is the maximum violation for 
constraint i among current population, and ε is a small 
positive number used to avoid zero-division. For highly 
constrained optimization problems, infeasible solutions 
take a relatively big portion among the population at each 
generation. The penalty approach adjusts the ratio of 
penalties adaptively at each generation in order to make a 
balance between the preservation of information and the 
pressure for infeasibility to avoid over-penalty. With the 
penalty function, the fitness function then takes the fol-
lowing form; 

)()()(eval xxx pz=  

6 APPLICATION TO SOME PROB-
LEMS 

6.1 INTERVAL PROGRAMMING PROBLEM 

Let us consider the following example with an interval 
objective function: 

integer  .3,2,1,0          
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The problem can be transformed into the following bicri-
teria programming problem: 

integer  .3,2,1,0          
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The integer vector was used as the chromosome represen-
tation. Uniform crossover and random perturbation muta-
tion were used as genetic operators. The fitness value of 
each individual was calculated by the hyperplane method. 
The Pareto solutions found by the proposed method are 
shown in Figure 2 (Gen and Cheng, 1996b). 

 
Figure 2: Pareto Solutions to the Interval Programming 
Problem 

6.2 BICRITERIA LINEAR TRANSPORTATION 
PROBLEM 

Consider following bicriteria linear transportation prob-
lem given by Aneja and Nair (1978): 
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The allocation matrix was used as the chromosome repre-
sentation. The special crossover operation and mutation 
operation proposed by Vignaux and Michalewicz (1991) 
were adopted. The fitness value for each individual was 
determined by the adaptive hyperplane method. The 
Pareto solutions found by the proposed method are de-
picted in Figure 3 (Yang and Gen, 1994). From it we can 
know that the proposed method is much more effective 
than the method of Aneja and Nair. 

 
Figure 3:  Pareto solutions obtained by our method and 
Aneja’s method 

6.3 BICRITERIA MINIMUM SPANNING TREE 
PROBLEM 

Consider the minimum spanning tree problem, where 
each edge has two associated positive real numbers. Then 
it can be formulated as the following bicriteria optimiza-
tion problem (Zhou and Gen, 1999). 
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where x is a binary decision variable defined as: 
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and T denotes the set of all spanning trees corresponding 
to  a given problem. 

The Prüfer number was adopted as the tree encoding. It is 
capable for representing all possible spanning trees. Uni-
form crossover and perturbation mutation were used as 
genetic operations, and the adaptive hyperplane method 
was used to determine fitness values for each tree. The 
Pareto solutions found by the proposed method are de-
picted in Figure 4 (Zhou and Gen, 1999). 

 

Figure 4: Pareto solutions found by the proposed method 
for a 50-vertex instance. 



7 CONCLUSIONS 

In general, multiple objective optimization problems are 
too complex to be solved easily. There are two kinds of 
difficulties associated with the problem solving that need 
to be distinguished: (1) difficulties inherent in problems 
and (2) difficulties related to solution techniques. The 
most profound drawback of many conventional methods 
is that they are very sensitive toward to the value of 
weights, or the prescribed order of objectives, or the 
shape of utility functions. In essence, such kinds of diffi-
culties are caused by solution techniques but not the prob-
lem itself. However, in genetic multiobjective optimiza-
tions, the drawbacks exhibited in conventional methods 
can be compensated by the powers of population-based 
search and evolutionary search. 

In this paper, we proposed a new fitness assignment 
method for multiple objective optimization problems: the 
adaptive hyperplane method. It is designed for genetic 
algorithms to fully utilize the power of genetic search.  In 
this method, weights are adjusted adaptively from genera-
tion to generation. It provides a search pressure toward to 
the Pareto frontier. An adaptive penalty function was used 
together with the adaptive hyperplane method in order to 
let genetic search explore the optima through both feasi-
ble and infeasible areas in the solution space. A Pareto 
solution reserving method was incorporated into a normal 
genetic algorithm loop in order to maintain a set of Pareto 
solutions during the evolutionary process. The proposed 
approach has been applied to several real world decision-
making problems with multiple conflict objectives and 
complex constraints. The experimental results are very 
encouraging and show that the method can be easily ap-
plied to multiple objective optimization problems. 
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