
Solving CSPs using self-adaptive constraint weights:
how to prevent EAs from cheating

A.E. Eiben

Free University Amsterdam

and Leiden University

B. Jansen

Leiden University

Z. Michalewicz

UNC-Charlotte, USA, and

Polish Academy of Sciences

Ben Paechter

Napier University

Abstract

This paper examines evolutionary algorithms

(EAs) extended by various penalty-based

approaches to solve constraint satisfaction

problems (CSPs). In some approaches, the

penalties are set in advance and they do not

change during a run. In other approaches,

dynamic or adaptive penalties that change

during a run according to some mechanism

(a heuristic rule or a feedback), are used. In

this work we experimented with self-adaptive

approach, where the penalties change during

the execution of the algorithm, however, no

feedback mechanism is used. The penalties

are incorporated in the individuals and evolve

together with the solutions.

1 Introduction

A constraint satisfaction problem (CSP) is a pair

hS; �i, where S is a Cartesian product of sets S =

D1 � : : : � Dn (called the free search space), and �

is a formula (Boolean function on S). A solution

of a constraint satisfaction problem is an �s 2 S

with �(�s) = true. Usually a CSP is stated as a prob-

lem of �nding an instantiation of variables v1; : : : ; vn
within the �nite domains D1; : : : ; Dn such that con-

straints (relations) c1; : : : ; cm prescribed for (some of)

the variables hold. The feasibility condition (the for-

mula �) is then given by the conjunction of the given

constraints.

Evolutionary algorithms are usually considered to be

ill-suited for solving constraint satisfaction problems.

One of the reasons for this is that the traditional search

operators are \blind" to the constraints, so that par-

ents satisfying a certain constraint could produce o�-

spring which violate it. Furthermore, while EAs have

a \basic instinct" to optimise, a CSP has no objective

function | just a set of constraints to be satis�ed.

There are several approaches that have been de-

vised to attempt to address this problem [12, 13].

These include repair algorithms, decoders, specialized

(constraint-preserving) operators and heuristic opera-

tors. These methods are inter-related and some ap-

proaches use a combination of them.

Repair algorithms work on the principle that a while a

child may have some unsatis�ed constraints, a heuris-

tic method can be used to attempt to alter the chro-

mosome directly so that a larger number of constraints

are satis�ed.

Decoders make use of an indirect representation and

a \growth" engine which converts the genotype into a

phenotype in a way that attempts to maximise the

number of satis�ed constraints. For example, the

\growth" engine might be a greedy algorithm, and

the indirect representation might parameterise that al-

gorithm by de�ning the order in which the variables

should be considered.

The use of specialized operators involves de�ning mu-

tation and recombination operators so that they are

either certain or likely to preserve the satis�ed con-

straints of the parents. Often this method is combined

with a seeding operation which uses a heuristic to en-

sure that at least some members of the initial popula-

tion have a larger number of constraints satis�ed than

would randomly created chromosomes.

Heuristics can help to solve CSPs by adding some

\intelligence" into the operators. The operators can

be designed so that they tend to increase the num-

ber of constraints satis�ed, by use of some knowledge

about the problem. This can be combined with \tar-

geted mutation" | where mutation is targeted to-

wards those variables which are causing constraints to

be broken [7, 16, 15, 14].

Whichever of the above methods is used, some objec-

tive function is required for the EA to operate. This

is normally constructed by having a penalty scheme,

where the breaking of constraints adds to the penalty.

Usually weights are given to the individual constraints

so that:

f(s) =

mX
i=1

wi � �(s; ci); (1)

where s is a candidate solution, ci (i 2 f1; : : : ;mg) are
the given constraints to be satis�ed, and

�(s; ci) =

�
1 if s violates ci
0 otherwise.

Changes in the weights will cause the EA to put more

or less e�ort into the satisfaction of any particular con-

straint. More importantly, weight changes alter the

shape and characteristics of the search space. In order

to solve the problem most e�ectively, we need to have

weights that transform the search space into one that

the EA �nds easy to navigate through. A heuristic

might tell us that the constraints which are hardest to

satisfy should be given the highest weights. But this

has two problems. Firstly, we are left with the problem

of determining which constraints are hardest to solve,

and secondly, the heuristic may not be correct!

The obvious answer to this problem is to let the EA

evolve its own weights. The so-called SAW-ing mech-

anism [8, 9, 10] achieves this in an adaptive1 fashion:

the run is periodically stopped and weights of unsatis-

�ed constraints are raised. While this mechanism has

been successful on many problems it still has a heuris-

tic component, the feedback mechanism, and two new

parameters: the time elapsed between two weight up-

dates and the weight increment. A straightforward

way to get around these drawbacks is a self-adaptive

approach with the weights given to each constraint in-

cluded in the chromosome. But this option can bring

its own problems, since the EA might improve the

value of the objective function by evolving the weights

rather than the variables. In other words a chromo-

some might \cheat" by saying \OK, so I don't sat-

isfy that constraint, but I don't think that constraint

is very important", and decreasing the corresponding

weight. In particular, if the weights are zeros, the

penalty is zero as well!

This observation has led to the belief that the self-

adaptation of constraint weights for CSPs (and for op-

timization problems as well) is not possible. However,

1For a thorough treatment of the notions adaptive, self-
adaptive etc. parameter control in EAs, see [6].

this is based on the assumption that an EA will pro-

ceed by assigning a �tness to each chromosome, and

then using some selection or replacement strategy that

is based on that �tness. In fact this need not be the

case, and the technique introduced here neatly solves

the problem. If we use tournament selection, then a

universal �tness value is not required | just some way

of comparing chromosomes. This allows us to delay

deciding on the weights to use until the tournament

competitors are known. As this point we can use the

maximum of each of the weights, across all competi-

tors, and so eliminate cheating.

In this paper we report on an experimental investiga-

tion of this self-adaptive method for setting constraint

weights on CSP's. It is self-adaptive because the in-

uence of the user on the weights is completely elim-

inated. There is not even a weak impact as in the

heuristic feedback mechanism in an adaptive scheme;

we leave the weight calibration entirely on the EA it-

self. The underlying motivation is formed by the belief

that evolution is powerful enough to calibrate itself.

In the area of evolution strategies self-adaptivity is a

standard feature with many experimental and theoret-

ical support for its usefulness [1, 17]. However, there

are two crucial di�erences between those �ndings in

ES and our investigation here. First, the known re-

sults in ES concern continuous parameter optimiza-

tion problems, while we investigate discrete constraint

satisfaction problems. Second, in ES it is the muta-

tion stepsize | and sometimes the direction | that is

self-adapted. We introduce and study self-adaptation

of the �tness function itself.

The paper is organized as follows. In section 2 we

discuss the self-adaptive algorithm used in all exper-

iments. Section 3 presents the test problems, while

section 4 shows the experimental setups (algorithms

and performance measures). Section 5 discusses the

experimental results and section 6 concludes the pa-

per.

2 The Self-Adaptive Algorithm

The technique described in this paper is self-adaptive

in the sense that certain parameters, namely the con-

straint weights that de�ne the evaluation function, are

included in the chromosomes. Thus they are subject

to evolutionary process, and they undergo recombi-

nation, mutation, and selection, just as the problem

variables in the chromosomes.

2.1 Representation, evaluation, and selection

We represent a candidate solution of a given CSP by an

integer vector ~v, where vi stands for the i-th variable;

its values are taken from the domainDi. An individual

~x consists of two parts, ~x = h~v; ~wi, where ~v (of length

n) holds the instantiations of the problem variables

and ~w (of length m) contains the constraint weights

(positive integers).

Rather than a �tness value to be maximized, we use

the total penalty (to be minimized) as an evaluation

function. For a given individual h~v; ~wi it is de�ned as

follows:

g(~v; ~w) =

mX
i=1

wi � �(~v; ci);

where

�(~v; ci) =

�
1 if ~v violates ci
0 otherwise.

Clearly, an individual h~v; ~wi is a solution for the given

CSP if and only if g(~v; ~w) = 0 and wi > 0 for all i.

For the reasons explained in section 1 above, we use

tournament selection. Given a tournament of 2 in-

dividuals, h~v1; ~w1i and h~v2; ~w2i, we de�ne ~wmaxi
=

max(w1i
; w2i

) for all 1 � i � m and compare

g(~v1; ~wmax) with g(~v2; ~wmax). The winner of the

tournament is the individual with the lowest g(�; ~wmax)

value. This mechanism can be straightforwardly gen-

eralized to k-tournament.

2.2 Other components and parameters

In our experiments we used 1-point crossover (applied

with probability pc = 1:0), a mutation operator ran-

domly changing a value with pm = 0:1, and a popula-

tion size of 10 in a steady state fashion2. In each cycle

two parents are chosen. These parents create two o�-

spring (crossover plus mutation). The new generation

of 10 is selected from the 12 individuals by a given

replacement mechanism (we experimented with a few

options here; see section 4). The maximum number of

�tness evaluations is 100,000.

3 Test cases

We ran experiments on randomly generated binary

CSPs with n = 15 variables and a uniform domain

size jDij = 15 (1 � i � 15). The values of the weights

(integers) ranged between 1 and 50. The problem

instances were generated by the randomCsp program

2Dozier's microgenetic algorithm as well as our own ear-
lier research support small populations for CSPs.

written by J.I. van Hemert3, based on earlier work of

Gerry Dozier [3, 4]. This program can generate ran-

dom CSPs, for any given combination of constraint

density d (the ratio of constraints w.r.t. all possible

constraints) and constraint tightness t (the ratio of

allowed vs. not allowed value combinations). This

allows a systematic testing and an assessment of an

algorithm's niche, i.e., the identi�cation of the type

of problems for which that algorithm performs well.

It is known that for some combinations of d and t the

problem instances are easy, they are solvable in a short

time. For other values the generated instances are un-

solvable and the two regions are separated by the so-

called mushy region (phase transition). Instances here

have typically only one solution and they are hard to

solve [2].

We tested our algorithms on 25 di�erent combina-

tions of constraint tightness and density. For each d 2
f0:1; 0:3; 0:5; 0:7; 0:9g and t 2 f0:1; 0:3; 0:5; 0:7; 0:9gwe
generated 10 di�erent instances. This amounted to 250

problem instances in total.

4 Experimental setups

All experiments were performed by two categories

of evolutionary algorithms: (1) steady-state and (2)

(�; �) EA. We discuss these in turn.

4.1 Steady-state EA

We implemented four algorithm variants, di�ering in

the selection mechanisms. For both the parent selec-

tion and the replacement mechanism we tested uni-

form random choice and 4-tournament selection. Fur-

thermore, we experimented with an intensi�ed 10-

tournament scheme in the replacement mechanism.

This led to the following four variants:

� Variant A(r 4):

- random parent selection (2 parents will be

uniform randomly selected)

- 4-tournament replacement (select 4 chromo-

somes randomly and delete the worst one,

where \worst" is de�ned by the above func-

tion g and ~wmax).

� Variant B(4 r):

- 4-tournament parent selection (choose 4

chromosomes randomly and the best one,

based on g and ~wmax, will be used to create

children through crossover and mutation)

3See www.wi.leidenuniv.nl/~ jvhemert

- random replacement.

� Variant C(4 4):

- 4-tournament parent selection

- 4-tournament replacement

� Variant D(4 10):

- 4-tournament parent selection

- 10-tournament replacement (very close to

worst-�tness replacement)

With each algorithm variant we executed 10 indepen-

dent runs on each problem instance. The results shown

in table 1 are thus based on the 100 runs for each com-

bination of (d; t). The Success Rate (SR) values give

the percentage of instances where a solution has been

found. The Average Number of Evaluations to

Solution (AES) is the number of �tness evaluations,

i.e. the number of newly generated candidate solu-

tions, in successful runs.

4.2 (�; �) EA

In the evolution strategies community there is much

experience with self-adaptation. Although those expe-

riences concern di�erent problems (continuous param-

eter optimization vs. discrete constraint satisfaction)

and self-adaptation of a di�erent algorithm parameter

(mutation step size vs. evaluation function), it is natu-

ral to ask whether conclusions drawn there would hold

in our problem context too. In particular, it is gener-

ally believed in ES that successful self-adaptation has

two preconditions:

1. a surplus of o�spring, typically 7 times as much

as the size of the parent population;

2. \forgetfulness", i.e. a (�; �) strategy, discarding

the parents immediately and only considering the

o�spring for inclusion in the new generation.

From this perspective our algorithms are ill-suited to

perform self-adaptation, since in the terms of � and

� our steady-state mechanism amounts to a (10 + 2)

strategy. This motivated a second series of experi-

ments where the algorithm setup adheres to the rec-

ommendations from ES. To this end we redesigned

the population model and implemented a (�; �) EA

with the same parameters as before, � being 10 and

varying � = 26; 50; 70. Recall, that parent selection

is always uniform random in ES. As for the survivor

selection (replacement strategy), we tested these al-

gorithms with both 4-tournament and 10-tournament

selection. That is, the 10 members of the new gener-

ation are chosen from the o�spring by independently

executing 10 tournaments with size 4, respectively 10.

This gave us 6 new algorithm variants to test (3 val-

ues of �, 2 tournament sizes). The results, based again

on 10 independent runs on each problem instance, are

presented in table 2 and table 3, for 4-tournament and

10-tournament, respectively.

5 Evaluation of Results

The results on the steady-state EA variants indicate

the soundness of the basic ideas behind this research,

self-adaptation of penalties in combination with tour-

nament selection does work. There are di�erences be-

tween the algorithm variants. Apparently applying the

selective pressure in the parent selection step (and us-

ing uniform selection in the replacement strategy) is

inferior to the other setups. The best option seems to

be the C(4 4) variant, (not too high) selective pressure

for parent selection and survivor selection.

For the (�; �) style EAs it holds that, independently

from the applied selective pressure (i.e., the tourna-

ment size), 26 o�spring are not enough. The best setup

seems to be a medium o�spring size and a strong se-

lective pressure, the (10,50) EA with 10-tournament.

It is very interesting to look at the outcomes from the

perspective of self-adaptation itself. That is, to see

what setup allows the best self-adaptation. The best

algorithm in the (10+2) scheme is C(4 4), while the

best (�,�) algorithm is (10,50). Comparing their per-

formance we see an advantage of the (10+2) method.

This is in contrast with the general recommendations

in evolution strategies, where it is suggested that a

comma-strategy with many o�spring is necessary to

have self-adaptation work (and thus to have the best

algorithm performance). Our results do not support

those recommendations. It seems that they must be

restricted to continuous parameter optimization and

the self-adaptation of the mutation parameters (step-

size and rotation angles). Our results with discrete

constraint satisfaction problems and self-adaptation of

the evaluation function point into another direction.

Although the experimental support for general recom-

menations is not su�cient at this moment, our results

indicate a challenging research subject.

6 Conclusions

Our results show that the initial intuition of the pos-

sibly \cheating" EA (minimizing weights, instead of

solving constraints) is not correct. The easy instances

(upper left corner in the tables) are always solved, and

the EA can maintain a non-zero success rate even in

the mushy region, where the phase transition takes

place [2].

Further research is being performed along di�erent

lines. First we are comparing the self-adaptive ap-

proach (as introduced here) to the adaptive approach

applied in the the SAW-ing EA for constraint sat-

isfaction [10]. An additional idea is combine both

mechanisms and to use an evaluation function based

on a double sum: one being self-adaptive, one being

"SAW"-ed.

As for studying the phenomenon of self-adaptation, we

plan to test (10 + 50) strategies versus (10; 50) strate-

gies. We need to perform more experiments to analyse

why the new mechnism works and why the ES-based

conjectures on the advantages of (�; �) EAs with many

o�spring are invalid in our problem context. To this

end, the exact e�ects of the self adaptive mechanism

on the constraint weights and thus on the �tness land-

scape need to be studied.

References

[1] T. B�ack. Evolutionary Algorithms in Theory and

Practice. Oxford University Press, New York,

1996.

[2] P. Cheeseman, B. Kanefsky, and W.M. Taylor.

Where the really hard problems are. In J. My-

lopoulos and R. Reiter, editors, Proceedings of the

12th IJCAI-91, volume 1, pages 331{337, Morgan

Kaufmann, 1991. Morgan Kaufmann.

[3] G. Dozier, J. Bowen, and D. Bahler. Solving small

and large constraint satisfaction problems using a

heuristic-based microgenetic algorithm. In IEEE

[11], pages 306{311.

[4] G. Dozier, J. Bowen, and A. Homaifar. Solving

constraint satisfaction problems using hybrid evo-

lutionary search. IEEE Transactions on Evolu-

tionary Computation, 2(1):23{33, 1998.

[5] A.E. Eiben, Th. B�ack, M. Schoenauer, and H.-

P. Schwefel, editors. Proceedings of the 5th Con-

ference on Parallel Problem Solving from Nature,

number 1498 in LNCS, Berlin, 1998. Springer.

[6] A.E. Eiben, R. Hinterding, and Z. Michalewicz.

Parameter control in evolutionary algorithms.

IEEE Transactions on Evolutionary Computa-

tion, 3(2):124{141, 1999.

[7] A.E. Eiben, P-E. Rau�e, and Zs. Ruttkay. Solv-

ing constraint satisfaction problems using genetic

algorithms. In IEEE [11], pages 542{547.

[8] A.E. Eiben and J.K. van der Hauw. Solving 3-

SAT with adaptive Genetic Algorithms. In Pro-

ceedings of the 4th IEEE Conference on Evolu-

tionary Computation, pages 81{86. IEEE Press,

1997.

[9] A.E. Eiben, J.K. van der Hauw, and J.I. van

Hemert. Graph coloring with adaptive evolution-

ary algorithms. Journal of Heuristics, 4(1):25{46,

1998.

[10] A.E. Eiben, J.I. van Hemert, E. Marchiori, and

A.G. Steenbeek. Solving binary constraint sat-

isfaction problems using evolutionary algorithms

with an adaptive �tness function. In Eiben et al.

[5], pages 196{205.

[11] Proceedings of the 1st IEEE Conference on Evo-

lutionary Computation. IEEE Press, 1994.

[12] Z. Michalewicz. A survey of constraint handling

techniques in evolutionary computation methods.

In J.R. McDonnell, R.G. Reynolds, and D.B. Fo-

gel, editors, Proceedings of the 4th Annual Con-

ference on Evolutionary Programming, pages 135{

155. MIT Press, 1995.

[13] Z. Michalewicz and M. Schoenauer. Evolution-

ary algorithms for constrained parameter opti-

mization problems. Evolutionary Computation,

4(1):1{32, 1996.

[14] B. Paechter, R.C. Rankin, A. Cumming, and T.C.

Fogarty. Timetabling the classes of an entire uni-

versity with an evolutionary algorithm. In Eiben

et al. [5].

[15] P. Ross, D. Corne, and H. Fang. Improving evo-

lutionary timetabling with delata evaluation and

directed mutation. In Y. Davidor, H.-P. Schwefel,

and R. M�anner, editors, Proceedings of the 3rd

Conference on Parallel Problem Solving from Na-

ture, number 866 in Lecture Notes in Computer

Science. Springer-Verlag, 1994.

[16] P. Ross and E. Hart. An adaptive mutation

scheme for a penalty based graph-colouring GA.

In Eiben et al. [5], pages 795{802.

[17] H.-P. Schwefel. Evolution and Optimum Seeking.

Wiley, New York, 1995.

den- alg tightness
sity 0.1 0.3 0.5 0.7 0.9

SR AES SR AES SR AES SR AES SR AES

A(r 4) 1.00 1 1.00 19 1.00 64 1.00 129 1.00 224
0.1 B(4 r) 1.00 1 1.00 14 1.00 64 1.00 158 1.00 293

C(4 4) 1.00 1 1.00 14 1.00 40 1.00 82 1.00 129
D(4 10) 1.00 1 1.00 12 1.00 38 1.00 81 1.00 127
A(r 4) 1.00 26 1.00 298 1.00 2223 1.00 8088 0.49 35472

0.3 B(4 r) 1.00 19 1.00 529 1.00 25387 0.01 59476 0.00 -
C(4 4) 1.00 17 1.00 174 1.00 906 1.00 5940 0.43 37464
D(4 10) 1.00 19 1.00 177 1.00 1063 1.00 4909 0.42 33130
A(r 4) 1.00 121 1.00 3272 0.14 39121 0.00 - - -

0.5 B(4 r) 1.00 118 0.61 41872 0.00 - 0.00 - 0.00 -
C(4 4) 1.00 80 1.00 2445 0.27 42044 0.00 - 0.00 -
D(4 10) 1.00 71 1.00 3006 0.17 46861 0.00 - 0.00 -
A(r 4) 1.00 532 0.08 36456 0.00 - 0.00 - 0.00 -

0.7 B(4 r) 1.00 806 0.00 - 0.00 - 0.00 - 0.00 -
C(4 4) 1.00 407 0.07 61677 0.00 - 0.00 - 0.00 -
D(4 10) 1.00 463 0.07 19623 0.00 - 0.00 - 0.00 -
A(r 4) 0.54 14326 0.00 - 0.00 - 0.00 - 0.00 -

0.9 B(4 r) 0.49 32640 0.00 - 0.00 - 0.00 - 0.00- -
C(4 4) 0.55 10867 0.00 - 0.00 - 0.00 - 0.00 -
D(4 10) 0.51 13531 0.00 - 0.00 - 0.00 - 0.00 -

Table 1: Success rates and the corresponding AES values for the steady-state style self-adaptive EAs

den- alg tightness
sity 0.1 0.3 0.5 0.7 0.9

SR AES SR AES SR AES SR AES SR AES

(10, 26) 1.00 1 1.00 38 1.00 120 1.00 243 1.00 403
0.1 (10, 50) 1.00 1 1.00 57 1.00 138 1.00 274 1.00 398

(10, 70) 1.00 1 1.00 69 1.00 170 1.00 286 1.00 453
(10, 26) 1.00 42 1.00 592 1.00 10467 0.10 61211 0.00 -

0.3 (10, 50) 1.00 67 1.00 502 1.00 1928 1.00 10021 0.49 41950
(10, 70) 1.00 85 1.00 578 1.00 1863 1.00 10013 0.45 35949
(10, 26) 1.00 199 1.00 23397 0.00 - 0.00 - 0.00 -

0.5 (10, 50) 1.00 235 1.00 4919 0.24 48430 0.00 - 0.00 -
(10, 70) 1.00 265 1.00 5764 0.15 48968 0.00 - 0.00 -
(10, 26) 1.00 889 0.00 - 0.00 - 0.00 - 0.00 -

0.7 (10, 50) 1.00 791 0.08 40870 0.00 - 0.00 - 0.00 -
(10, 70) 1.00 1060 0.04 26297 0.00 - 0.00 - 0.00 -
(10, 26) 0.61 23176 0.00 - 0.00 - 0.00 - 0.00 -

0.9 (10, 50) 0.43 19080 0.00 - 0.00 - 0.00 - 0.00 -
(10, 70) 0.46 17188 0.00 - 0.00 - 0.00 - 0.00 -

Table 2: Success rates and AES values for the (�; �) self-adaptive EAs with 4-tournament selction

den- alg tightness
sity 0.1 0.3 0.5 0.7 0.9

SR AES SR AES SR AES SR AES SR AES

(10, 26) 1.00 1 1.00 38 1.00 116 1.00 215 1.00 441
0.1 (10, 50) 1.00 1 1.00 53 1.00 137 1.00 256 1.00 374

(10, 70) 1.00 1 1.00 70 1.00 173 1.00 287 1.00 403
(10, 26) 1.00 37 1.00 512 1.00 7589 0.13 32238 0.00 -

0.3 (10, 50) 1.00 60 1.00 467 1.00 1718 1.00 10117 0.56 45350
(10, 70) 1.00 81 1.00 505 1.00 1483 1.00 6551 0.29 48050
(10, 26) 1.00 178 1.00 22083 0.00 - 0.00 - 0.00 -

0.5 (10, 50) 1.00 210 1.00 4937 0.28 43913 0.00 - 0.00 -
(10, 70) 1.00 256 1.00 4000 0.09 37170 0.00 - 0.00 -
(10, 26) 1.00 856 0.00 - 0.00 - 0.00 - 0.00 -

0.7 (10, 50) 1.00 908 0.04 65283 0.00 - 0.00 - 0.00 -
(10, 70) 1.00 664 0.07 38329 0.00 - 0.00 - 0.00 -
(10, 26) 0.61 23991 0.00 - 0.00 - 0.00 - 0.00 -

0.9 (10, 50) 0.43 12801 0.00 - 0.00 - 0.00 - 0.00 -
(10, 70) 0.43 21236 0.00 - 0.00 - 0.00 - 0.00 -

Table 3: Success rates and AES values for the (�; �) self-adaptive EAs with 10-tournament selction

