
Performances' study on crossover operators keeping good schemata
for some scheduling problems

Marie-Claude Portmann

INRIA-LORIA, MACSI Team

Ecole des Mines de Nancy, Parc de Saurupt

54042 Nancy Cedex, FRANCE

Phone: 33-3-83-58-41-85

portmann@mines.u-nancy.fr

Antony Vignier

INRIA-LORIA, MACSI Team

Campus scienti�que, BP 239

54506 Vandoeuvre les Nancy Cedex, FRANCE

Phone: 33-3-83-59-30-40

email: avignier@loria.fr

Abstract

In this paper, we deal with genetic algorithms

(GAs) solving some permutation scheduling

problems. Considering only the permuta-

tion codes and only the crossover-phase of a

GA on a very large population, a compari-

son study of di�erent crossover operators was

done earlier according to some performance

indicators. Here, we develop a tool generat-

ing a large scale of scheduling instances and

of permutation codes (i.e. the initial popula-

tion). We again run only the crossover-phase

of a GA on this very large population with

some crossover operators, and they are con-

sidered independently. This new comparison

is made on permutation scheduling problems.

Statistics are then computed in order to val-

idate or not the results obtained previously

with the performance indicators.

1 INTRODUCTION

The schemata theory of Holland, in 1975, explains why

the simplest genetic algorithm, called SGA in (Gold-

berg, 1989), converges up to a population where every

individual is good. In fact, this theory provides an an-

swer to the question "In which ways a string is a rep-

resentative of other string classes with similarities at

some string position ?". This theory uses some strong

hypotheses: the binary encoding for genes, the use of

the classical one-point crossover operator (the begin-

ning of the string of the �rst mate completed with the

end of the string of the second mate), no strong rela-

tion between 2 genes not closed together in the chro-

mosome. With these assumptions, chromosomes that

represent good schemata (i.e with a good �tness aver-

age) are more and more numerous in the population

during iterations.

When the above assumptions are not veri�ed, other

characteristics associated to the chromosomes are

needed. They can be identi�ed to the schemata so

that, the number of good chromosomes inside the pop-

ulation is increasing when good characteristics are kept

by the crossover operators.

In order to try to extend the schemata theory to more

di�cult problems, we have to tackle with two di�-

culties: to de�ne the good characteristics that must

be kept for a given problem and for the correspond-

ing chosen encoding, and to design crossover operators

that are able to keep good characteristics for a given

problem and for the corresponding chosen encoding.

Since 1994 we have been focusing our researches on

concrete problems for which solutions can be described

with orders or permutations of n elements. These

problems are called permutation problems. The Trav-

elling Salesman Problem (TSP) is the most famous

one of this family. One machine scheduling and 
ow-

shop scheduling problems are also other well-known

scheduling problems. Hence, we consider this problem

family and in order to �nd the good set of characteris-

tics of the chromosomes, we ask the following question:

for a given problem and for a given criterion, how de-

�ne the genes' values or the links between the genes'

values, so that a created individual is good and thus

must be kept. For the TSP, the answer may be "keep
the small edges of both mates". For the one-machine

scheduling problem and considering the weighted tar-

diness criterion, the answer may be "keep the relative
partial orders of each couple of operations as much as
possible". In order to measure how much edges or rela-

tive operation positions crossover operators are able to

keep, (Djerid, Portmann and Villon, 1996) designed a

set of performance indicators. Their role is to compare

the ability of each permutation crossover operator to

keep characteristics contained in the mates.

(Djerid and Portmann, 1999) give some analytical and



experimental results that allowed us to compare a set

of crossover operators. In this previous work, only per-

mutations were considered; more precisely, no concrete

problems have been taken into account. Two conclu-

sions have been obtained: either\a given crossover op-

erator has good performances for a given indicator and

bad performances for the other indicators" or \a given

crossover is a good tradeo� for two indicators". This

latter case is very interesting, for complex problems,

two sets of good characteristics may be kept simulta-

neously.

Nevertheless, it has not been proved that if a crossover

operator is e�cient to keep the good characteristics

of the permutation encoding, it is also good for the

associated concrete problem that has to be solved.

Thus this paper completes the previous works, veri-

fying whether what is interesting to keep for permu-

tations is also interesting to be kept for a concrete

problem in which two sets of characteristics must be

kept. The paper is organised as follows. Section 2

presents the context and previous works that is to say

performances indicators, crossover operators and re-

sults. Section 3 is dedicated to a new development on

a particular permutation scheduling problem we con-

sidered here. The tool, the set of experimentation and

the results obtained are then presented. Finally we

conclude.

2 CONTEXT AND PREVIOUS

WORKS

2.1 PERFORMANCE INDICATORS

Each indicator is a distance between the created o�-

spring and their parents. We normalize every indica-

tor so that their values belong to the interval [0, 100].

In order to keep the interesting characteristics of the

mates, the �rst indicators have to be maximized, while

the latter must be minimized.

2.1.1 Edge Based Indicators

They are appropriate for TSPs or some one-machine

problems with sequence dependent set-up times. The

interesting characteristic of the mates is either the

symmetric or asymmetric distance between two con-

secutive values of the permutation (including the dis-

tance between the points situated in the extreme posi-

tions for the TSP). If the corresponding distances are

small in the mates, then the mates are good. By keep-

ing as many edges (or arcs) as possible from the good

mates, the o�spring might also be good. The two indi-

cators proposed count the edges or the arcs kept from

the mates and are designed as follows.

We say that (v1; v2) are consecutive values inside a

given chromosome if, in this permutation, v1 immedi-

ately precedes v2, or v2 immediately precedes v1, or

v1 is in the last position n and v2 in the �rst position

(i.e. 1), or v2 in the last position n and v1 in the �rst

position.

To count the edges kept, we denote by NES(v1; v2)

an integer function whose value is equal to 2 if (v1; v2)

are consecutive values in parent 1, in parent 2 and in

the o�spring created by the crossover operator applied

to parent 1 and parent 2. NES(v1; v2) is equal to

1 if (v1; v2) are consecutive values in parent 1 or in

parent 2, and in the o�spring created by the crossover

operator applied to parent 1 and parent 2. In the other

case, NES(v1; v2) is equal to 0.

We denote by NEST the sum of NES(v1; v2) for all

couples (v1; v2) with v1 < v2. The �rst indicator

(Symmetric Edge Based Indicator) SEBI is equal to

NEST � 100=(2n).

To count the arcs kept, we denote by NE(v1; v2) an

integer function whose value is equal to 2 if (v1; v2)

are consecutive values with v1 preceding v2 in parent

1, in parent 2 and in the created o�spring. NE(v1; v2)

is equal to 1 if (v1; v2) are consecutive values with v1

preceding v2 in parent 1 or in parent 2, and in the

created o�spring. In the other cases, NE(v1; v2) is

equal to 0.

We denote by NET the sum of the NE(v1; v2) for

all couples (v1; v2) with v1 6= v2. The second indi-

cator (Edge Based Indicator) EBI is equal to NET �

100=(2n).

SEBI (resp. EBI) is equal to 0 when the created o�-

spring contains no edges (resp. arcs) existing in both

parents. SEBI and EBI are equal to 100 when par-

ent 1, parent 2 and the considered created o�spring

are identical. These indicators must be maximized.

We are here interested in the mean value of these in-

dicators when a given crossover operator is applied to

a large random set of mates.

2.1.2 Precedence Constraint Based

Indicators

We denote by NPC(v1; v2) an integer function whose

value is equal to 4 if v1 precedes v2 in parent 1 and in

parent 2 and in the created o�spring. NPC(v1; v2) is

equal to 1 if v1 precedes v2 in parent 1 or in parent

2 and in the created o�spring. In the other cases,

NPC(v1; v2) is equal to 0.

We denote by NPCT the sum of the NPC(v1; v2) for



all couples (v1; v2) with v1 < v2. The third indica-

tor (Precedence Constraint Based Indicator) PCBI is

equal to [NPCT � 100]=[2n(n� 1)].

This indicator must be maximized in order to keep as

many precedence constraints existing in the parents

as possible. In addition to the precedence constraint

based indicators, a particular property may be veri�ed

by some crossover operators.

Property 1 If job i precedes job j in both parent 1
and parent 2, then job i precedes job j in the created
o�spring.

This property is very useful for scheduling problems:

either because precedence constraints may exist (and

must be veri�ed) between some operations of the se-

quence in the de�nition of the scheduling problems,

or because in some scheduling problems, it may be

proved that there exists at least one optimal solution

in which job i precedes job j and this for many couples

of jobs (for example, these precedence constraints may

be added to the one-machine scheduling problem with

mean tardiness criterion by applying Emmons domi-

nance properties (Emmons, 1969), (Djerid, Portmann

and Villon 1996). In this latter case, the solution space

to be explored for �nding an optimal solution may be

considerably reduced. If property 1 is always veri�ed

for a given crossover operator, then PCBI is maxi-

mized or at least very good.

2.1.3 Position Based Indicators

Here, we consider the simplest distance between two

permutations. We assume that the rank of the ele-

ments inside a permutation was good and that the

rank in the created o�spring must not be too far from

the rank in the mates. We denote by PPi(k) (resp.

POi(k)), i 2 (1; 2), the position of the element k

in parent i (resp. o�spring i). We denote by PBij,

i 2 (1; 2), j 2 (1; 2), the euclidean distance computed

on two vectors which gives the position of each gene

in o�spring j and parent i. The fourth indicator (Po-

sition Based Indicator) PBI is given by equation 1.

This last indicator must be minimized.

PBI =

P
2

i=1

P
2

j=1PBij

4
�

6

n(n+ 1)(2n+ 1)
(1)

2.2 CROSSOVER OPERATORS

In this section, we use letters to name jobs to be sched-

uled.

2.2.1 OX Operator

(Davis, 1985) proposed the OX operator for Order

Cross operator. It was designed for the traveling sales-

man problems and then (Oliver, Smith and Holland,

1987) modi�ed it. OX crosses orders encoded directly

as permutations, named "permutation encoding". The

algorithm is given below and an example is given in

Table 1.

1. The cross part of mate 2 (resp. 1) is copied into

the cross part of o�spring 1 (resp. 2).

2. The remaining elements of mate 1 (resp. 2) are

copied in the empty genes of o�spring 1 (resp. 2)

in the order of mate 1 (resp. 2) beginning by the

right part and �nishing by the left part.

Table 1: Designing of o�spring 1 and 2 for OX

mate 1 a b c d e f g h i j

mate 2 c b a g h i j f d e

o�spring1 e f j g h i a b c d

o�spring2 h i j d e f c b a g

2.2.2 LOX Operator

(Falkenauer and Bou�ouix,1991) proposed the LOX

operator, for Linear Order Cross-over. It is a modi�ed

version of OX proposed to solve job-shop scheduling

problems. They are "two-point" cross-over operators.

As OX, LOX works on permutation encoding. LOX

is similar to OX, but left and right are exchanged in

phase 2. An example is given in Table 2.

Table 2: Designing of o�spring 1 and 2 for LOX

mate 1 a b c d e f g h i j

mate 2 c b a g h i j f d e

o�spring1 a b c g h i d e f j

o�spring2 c b a d e f g h i j

2.2.3 1X Operator

(Davis, 1985) proposed the 1X operator. It is the sim-

pli�cation of OX or LOX if a one-point cross-over is

used instead of a two-point cross-over. It is interesting

to consider it because it veri�es property 1. In one

part of the o�spring the gene values of one parent is

copied, in the other part the remaining gene values are

copied in the order of the other parent. An example is

given in Table 3.



Table 3: Designing of o�spring for 1X

Mate 1 a b c d e f g h i j

Mate 2 c b a g h i j f d e

O�spring1 a b c d g h i j f e

O�spring2 c b a g d e f h i j

O�spring3 c b a d e f g h i j

O�spring4 a b c g h i j f d e

2.2.4 kX Operator

(Caux, Pierreval and Portmann, 1995), (Djerid, Port-

mann and Villon, 1996) proposed a generalization of

the 1X operator with several cross-over points, named

kX operator. Its interest is that it veri�es also prop-

erty 1. Nevertheless, for great values of k, the created

o�spring are too much similar to one of the parent. So,

it is the reason why we only use here the 2X cross-over

operator that is to say with k equal to 2. k cross-points

are generated. Four o�spring are generated. O�spring

1 (resp. 2) consists in copying the odd numbered sub

strings of mate 1 (resp. 2) and reordering in the order

of mate 2 (resp. 1) each even numbered sub string of

mate 1 (resp. 2). O�spring 3 (resp. 4) is obtained in

the same manner by reversing even and odd sub string

roles. An example is given in Table 4.

Table 4: Designing of o�spring for 2X

mate 1 a b c d e f g h i j

mate 2 c b a g h i j f d e

o�spring1 a b c f d e g h i j

o�spring2 c b a g h i j f d e

o�spring3 c b a d e f g h i j

o�spring4 a b c g h i d e f j

2.2.5 ERX Operator

(Whitley, Starkweather and Fuquay, 1989) proposed

the ERX operator (for edge recombination cross-over).

It was designed for the symmetric traveling salesman

problems and have been used by many other authors.

It tries to use the edges which are contained in both

mates as much as possible. The algorithm to generate

one o�spring is given below and an example lies in

Table 5.

1. Designing of the Edge table: we assign a list of its

neighbors in mate 1 or mate 2 to each job (the sign

- means that the corresponding job is a neighbor

in both mates). The �rst and the last operation

are considered as neighbors for the TSP.

2. An arbitrary �rst operation is chosen in the op-

eration with the smallest list of neighbors and is

called the current operation.

3. The following iterative algorithm is used:

(a) Select an operation which is a neighbor of

the current one and which has the fewest re-

maining neighbors (breaking ties randomly),

arbitrary remaining operation if the current

operation has no remaining neighbor.

(b) The operation is added to the sequence and

becomes the new current one.

(c) If the n operations are not selected go to (a).

Table 5: Designing of the only o�spring for ERX

mate 1 a b c d e f g h i j

mate 2 c b a g h i j f d e

Designing of the Edge table

a -b g j

b -a -c

c -b d e

d c -e f

e c -d f

f d e g j

g a f -h

h -g -i

i -h -j

j a f -i

Designing of the Edge table

o�spring b a j i h g f d e c

where x = random breaks ties

2.2.6 ARX and ARXM Operators

ARX operator for Arc Recombination Cross-over, has

been proposed in (Djerid, 1997), as far as we know. It

is similar to ERX by replacing the concept of edge by

the concept of arc (i.e. for a given job only its succes-

sors in both mates are inserted in the corresponding

line of the "Arc table"). Here, we slightly modify this

operator by limiting to the three �rst jobs of one mate

the random job which is put at the beginning of the

o�spring sequence. We will call this modi�ed operator

ARX for Arc Recombination for scheduling problem

Cross-over. As a matter of fact, as far as tardiness

is concerned, it was surely very bad to begin the se-

quence with a completely random job (we assume here

that mates have good performances for the weighted

tardiness criterion).



2.2.7 Random Crossover Operator

A permutation is selected with the equiprobability 1

n!

without considering the parent permutations, as for

adopted children who have not inherited any genes

from their adoptive parents. It is similar to the Monte

Carlo generation very often used in scheduling area. It

is a reference for the performance indicators: a good

operator designed for particular problems linked to

a given performance measure must have considerably

better results than RD crossover operators relatively

to this performance measure.

2.3 PREVIOUS RESULTS

In a previous paper, (Djerid, Portmann and Villon,

1996) compared some permutation crossover operators

by using indicator performances. They also applied

the cross-over operators on a big set of generated per-

mutation parents. They assumed then that each indi-

cator allows them to measure how many characteristics

of the parents (edges, arcs, relative orders or positions)

are kept in the generated children. The obtained re-

sults can be summarized as follows. According to their

suppositions, ERX was the best cross-over operator for

keeping edges, ARX followed it immediately, and 1X,

OX or even LOX (given by decreasing order of per-

formances) were not too bad for indicator SEBI. ARX

was the best operator for keeping arcs, and again 1X,

OX and immediately after LOX were not so bad for in-

dicator EBI, while ERX was very bad. 1X and kX were

the best operators for keeping relative orders between

each couple of operations (indicator PCBI), LOX is

also correct, but OX, ERX and ARX are very bad.

1X and kX are good for keeping the positions (indica-

tor PBI), LOX is also good, OX, ERX and ARX are

very bad. For every indicator the cross-over random

is particularly bad. In the previous work, only permu-

tations, cross-over operators and indicators were con-

sidered. It was assumed that good parents have good

characteristics: edges of small values, arcs of small val-

ues, operation orders, in which jobs with small due

dates and great tardiness penalties stand before jobs

with greater due dates or smaller penalties, etc. It was

also assumed that keeping the corresponding charac-

teristics of the good parents must give good children.

Nevertheless, these assumptions are not always held

when particular instances of some speci�c problems

are considered.

3 NEW DEVELOPMENTS AND

RESULTS

3.1 PERMUTATION SCHEDULING

PROBLEM

We consider a one-machine scheduling problem in

which we have di�erent families of products to se-

quence. For each product, we have ready dates (ri)

and due date (di). There exist setup times depend-

ing on the sequence between 2 products belonging to

2 di�erent families. So between 2 products of the same

family, no setup time is considered. The criterion to

minimize is the sum of weighted tardiness. Accord-

ing to (Blazewicz, Ecker, Schmidt and Weglarz 1994),

the problem is noted 1 j ri; di; Ssd j
P

wiTi. A Gantt

chart is given in Figure 1 to illustrate an example of

the kind of sequence we can obtain.

Figure 1: Gantt chart

4 2 1 3
r4 r3 r1 r2

d4 d2 d1 d3

If we analyze the problem, it can be said that a so-

lution should be good when setup times are not too

important and/or the products with a small due date

and/or with a big penalty are sequenced very early.

For these reasons, if we want the e�ciency of the ge-

netic algorithmnot to be due to random, some adapted

operators must be designed for this kind of problem.

So, it is necessary to �nd a good trade-o� between

keeping arcs (corresponding to small setup times or

no setup times) and keeping partial order (represent-

ing the more urgent product and especially when the

penalty of the product is high).

3.2 DESCRIPTION OF THE TOOL

We have implemented a tool able to establish some

simple statistics. First of all, we have to give di�er-

ent parameters used by a generator of instances. Each

set of parameters are: number of products, number

of product types, average of processing time, standard

deviation of processing times, bounds for the ready

dates, for the slacks, for the tardiness penalties and

for the called \rough" set-up times. In fact, setup

times are corrected in order to give them more or less

importance relatively to average processing times. Af-

ter generating a set of one-machine scheduling prob-



lems, it is possible to generate di�erent permutations

and to compute the value of the problem criterion for

each permutation. Then according to these values, we

a�ect a mark from 1 to 5 to each individual. These in-

dividuals represent parents and are going to be crossed

according to di�erent cross-over operators. Then o�-

spring can also be evaluated and then we assign again

a mark to each o�spring from 0 to 6: 0 (resp. 6) when

the o�spring is strictly better (resp. worse) than the

best of the parents. The marks from 1 to 5 are com-

puted with the same bounds on the criterion as for the

parents marks. Now, it is possible to see, for a given

cross-over operator, the percentage of times when good

o�spring are obtained from good parents or to see, for

a given cross-over the percentage of time a good or a

bad o�spring is obtained from bad parents.

3.3 SET OF EXPERIMENTATION

The set of our experiments is de�ned as follows. We

consider 20 or 100 products to schedule. We consider a

population of 500 solutions (i.e. permutations) and we

make 500 crossing over. Then we obtain 1000 children.

For set A, we have twenty products, ten di�erent fam-

ilies of products and the ready dates are equal to 0 for

every product. The average of processing time is equal

to 50 and the standard deviation is equal to 25. The

average value of slacks (di � pi � ri) is equal to 250

with a deviation of 250. The tardiness penalties are

randomly chosen between one and ten. There are ten

di�erent families.

For set B, we have hundred products and �fteen dif-

ferent families of products. The others parameters are

identical to set A.

For set C, we have twenty products, release dates vary-

ing from 0 to 500. The others parameters are identical

to set A.

For set D, we have hundred products, release dates

varying from 0 to 1500, the penalty is equal to 1 and

there are ten di�erent families of products.

The others parameters are identical to set A. The min-

imum value of setup times is ten and the maximum

is sixty. We generate matrices whose dimensions are

15x15 so that we can extract easily a matrix 10x10

when the number of di�erent families is ten. Then

we give more or less importance to setup times with

a parameter Imp that is either equal to ten or fourty.

When Imp is equal to fourty, it means that the average

of setup times is four times greater than the average of

processing time. When Imp is equal to ten, the aver-

age of setup times and of processing times are almost

identical. Then for each set, we obtain two subsets

of results according to the value of Imp. As cross-over

operators, we choose Random LOX, 1X, kX, ERX and

ARXM.

Di�erent statistics are then done. To identify the type

of statistics, we use a string composed of six parame-

ters abcdef. "ab" represents the interval of mark for

the �rst parent, "cd" the interval of marks for the sec-

ond parent and "ef" the interval of marks for the o�-

spring. Then if we want to see the percentage of time

two very good parents (i.e. with mark equal to 1) give

a very good o�spring (i.e a mark equal to 0 or 1) then

the string we use is 111101.

3.4 NEW RESULTS

Here, we try to validate the previous results on a par-

ticular scheduling problem. The problem was chosen

because considering both setup times which depend

on the sequence and the weighted tardiness penalties.

It seems very interesting to keep arcs, relative orders

and even positions. The role of the parameter Imp is

to give more or less importance to the setup times and

consequently to the arc conservation. For each set of

experiments (sets A, B, C and D) and for Imp = 40 or

10, we �rst analyze the structure of the populations.

The average structure of the initial population corre-

sponding to the instances of set A (Imp = 40 and Imp

= 10) is given in the �gure 2.

Figure 2: Structure of the initial population

0

10

20

30

40

50

1 2 3 4 5

imp = 10

imp = 40

In fact, both initial and created populations corre-

sponding to any set of instances and any value of Imp

have always the same quality repartition. Very few in-

dividuals have got marks equal to 0, 1, 5 or 6, between

20% and 25% of the population have marks equal to

2 and the same for 4 and between 40% and 45% of

the population have marks equal to 3. We obtain the

same structure for each generated population because

we cross the whole set of parent couples without con-

sidering their marks. Since crossover random creates

always random subset of the whole set of solutions (n!

permutations), it is probable that the whole set of so-



lutions has the same structure. It means that, for the

generated instances of this particular scheduling prob-

lem, there are few good solutions, few bad solutions

and a lot of solutions with medium values for the cri-

terion. In order to compare the crossover operators, we

distinguish the set of children depending on the marks

of their parents. This approach provides us with a lot

of children subsets. Here, we propose only a selection

of values, they are presented in table 6 for the instance

set D and Imp equal to 10.

Table 6: Quality of the children depending on the qual-

ity of the parents

Family D Imp = 40

Children 0 2 3 4 5 6

parents 1 2 LOX 71,18 28,82 0

1X 76,39 23,61 0

kX 59,03 40,62 0,35

ERX 60,07 38,89 1,04

ARXM 60,07 38,89 1,04

random 28,47 67,36 4,17

parents 3 4 LOX 16,99 79,51 3,5

1X 14,91 81,89 3,2

kX 21,37 74,56 4,07

ERX 26,16 69,46 4,38

ARXM 20,26 73,68 6,06

random 31,66 63,88 4,46

parents 4 5 LOX 4 77,5 18,5

1X 5,5 76 18,5

kX 5,5 83 11,5

ERX 16 71 13

ARXM 9 78 13

random 31 65,5 3,5

The six �rst lines consider only the subset of children

whose both parents have got marks equal to 1 or 2.

Each line corresponds to a given cross-over operator.

Each column gives the percentage of children of this

subset who have got marks equal to 0, 1 or 2 for the

�rst column, 3 or 4 for the second column, 5 or 6 for

the last column. It may be seen, that, even if the

whole population is probably poor of good (mark 2)

or very good (mark 1) solutions, when parents have got

marks 1 or 2, then, for the best operator, 76.39% of

the created children are good or very good. The other

cross-over operators are not bad with a performance

greater than 60%, except random which gives 28.47%

(i.e. approximately the percentage of good and very

good solutions in the whole solution set).

The six following lines in table 6 consider only the

subset of children whose both parents have got marks

equal to 3 or 4. The other explanations for lines or

columns are identical. Parents of medium or bad qual-

ity are crossed. The orders are probably bad and the

cross-over operators keeping the orders are then the

worst considering the percentage of good, very good

or excellent children generated. ERX and ARX are

very slightly better. In fact, when we cross parents

which are neither very good nor good, then random is

the best cross-over in order to obtain children of good

quality. When crossing parents of mediumor bad qual-

ity, most of the children are of medium or bad quality

more than 64% for any cross-over operator including

random (i.e. probably more than the percentage of

medium or bad solutions in the whole solution set).

The six last lines only consider the subset of children

whose both parents have got marks equal to 4 or 5.

In this case, only random is able to give good or very

good children and again, the majority of the created

children are medium or bad (because it is the major

part of the whole solution set and so the probability is

greater for obtaining children having these marks).

Table 7: Percentage of children getting the same qual-

ity as both parents

Imp=10 1 2) 0 1 2 3 4) 3 4 4 5)5 6

LOX 73,9 82,3 17,7

1X 78,9 85,5 18,2

kX 73,2 83,1 14,5

ERX 43,1 69,9 6,2

ARXM 49,9 72,7 11,9

random 32,1 67,8 5,2

Table 8: Percentage of children getting the same qual-

ity as both parents

Imp=40 1 2 ) 0 1 2 3 4 ) 3 4 4 5 ) 5 6

LOX 71,5 81,8 15,8

1X 76,7 85,2 19,3

kX 70,7 81 15,6

ERX 51,5 73,2 9,5

ARXM 55,5 75,4 13,8

random 31,6 68,6 4,7

Table 6 is only concerned by one set of instances (set

D and Imp=40). In order to try to compare the

cross-over operators on all the generated instances, we

present average results in table 7 (Imp=10) and in ta-

ble 8 (Imp=40). To obtain these tables, we consider

the contents of table 6. We add elements in correspon-

dence of the similar tables for the chosen Imp value

and for set A, set B, set C and set D and we divide



the obtained results by 4. This provides us with av-

erage values. Then we keep only the diagonal blocs

of the tables (i.e. for a given quality of parents, the

percentage of children who have got similar quality).

x y ) z v means: among the children generated by

parents of quality x or y (for both mates), what is the

percentage of children who have got marks z or v. In

this table, we may try to compare the quality of the

crossover for the given scheduling problem. It may be

noted that 1X is always the best for giving the greatest

percentage of children who have got quality similar to

quality of both parents. LOX and kX gives always the

following values of the percentages. They are followed

by ARX and ERX with ARX always better than ERX

and random always the worst, while it gives always a

percentage similar to the percentage of children of this

quality in the whole solution set.

3.5 PERSPECTIVES

A di�culty in our experiments was the particular

structure of the whole solution set, which increases

the probability of obtaining solutions of medium qual-

ity. It might be seen that if using other permutation

scheduling problems (such as, for example, permuta-

tion 
ow-shop problems) another structure of the pop-

ulation could be obtained (it is probably true for the

makespan criterion for which many optimal solutions

generally exist). Many further experiments might be

done on the problem considered here. In particular, we

might increase the importance of the setup times by in-

creasing Imp and decrease the importance of the order

by taking, for example, a common due date. Then we

might see when ARXM is becoming much better than

the order cross-over operators (LOX, OX, 1X, kX).

Other permutation crossover operators may be inte-

grated in our tool and tested. We may also verify on

a complete GA that the �nal results are increased by

using good crossover operators selected by our statis-

tics.

4 CONCLUSIONS

We tried here to verify the following assumption: when

a cross-over operator keeps good characteristics of the

chromosome 'parents' and when we select the best

chromosomes with a greater probability, then we must

increase the number of good generated children. For

permutation problems, it seems that the aptitude to

keep characteristics may be measured by performance

indicators, because the results with the chosen par-

ticular scheduling problem are in correspondence with

the results obtained previously with performance indi-

cators.

References

J. Blazewicz, K. Ecker, G. Schmidt, J. Weglarz (1994).

Scheduling in Computer and Manufacturing Systems.

Springer-Verlag edition.

C. Caux, H. Pierreval, M-C. Portmann (1995). Les

algorithmes gntiques et leur application aux problmes

d'ordonnancement. Rairo-APII (Automatique Produc-
tique Informatique Industrielle), 29, 4-5, 409-443.

L. Davis (1985), Job-Shop Scheduling With Genetic

Algorithms. Proc. 1st Int. Conf. on Genetic Al-
gorithms and Their Applications, 136-140, Lawrence
Erlbaum, Hillsdale.

L. Djerid, M-C. Portmann (1999), How to Keep Good

Schemata Using Cross-over Operators for Permutation

Problems, international conference, IFORS'99, Pkin,
August 16-20, submitted to International Transactions

in Operational Research.

L. Djerid (1997), Hybridation d'algorithmes gntiques

et de mthodes classiques de recherche oprationnelle

pour rsoudre des problmes d'ordonnancement, Nancy

/ Institut National Polytechnique de Lorraine, PhD
thesis.

L. Djerid, M-C. Portmann, P. Villon (1996), Perfor-

mance analysis of permutation cross-over genetic op-

erators, Journal of Decision Systems,4(1/2), 157-177.

H. Emmons (1969), One-Machine Sequencing to Min-

imize Certain Functions of Job Tardiness. Operations
Research, 17(4), 701-715.

E. Falkenauer, S. Bou�ouix (1991), A Genetic Algo-

rithm for Job Shop. Proceedings of The IEEE Inter-
national Conference on Robotics and Automation, 1,
824-829, Sacramento.

D. E. Goldberg (1989), Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-Wesley
Publishing Company, Inc.

J.H. Holland (1975), Adaptation in Natural and Arti-

�cial Systems, Mit Press, Cambridge, Mass.

I. Oliver, D. Smith, J. Holland (1987), A Study of Per-

mutation Crossover Operators on The Traveling Sales-

man Problem. Proc. 2nd Int. Conf. on Genetic Algo-
rithms and Theirs Applications, 224-230.

Y. Whitley, T. Starkweather, D. Fuquay (1989),

Scheduling Problems and Traveling Salesman: The

Genetic Edge Recombination Operators. Proc. Third
Int. Conf. on Genetic Algorithms and Their Appli-
cations, Ed. Morgan Kaufmann, San Mateo, Calif,

133-140.


