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Abstract

 Previous work by the authors has explored
performance profiles of simple evolutionary
algorithms over a range of problems. These
studies have revealed a consistent bimodal
feature, where the optimal mutation rate occurs
at the trough between two peaks in convergence
time. However, careful examination revealed
anomalies suggesting higher modality features
in the performance profile under certain
conditions. Here we report on a detailed
examination of the performance profile of
Watson et al’s H-IFF problem, aimed at further
exploring and understanding this multimodal
performance profile. We find that the series of
troughs correspond to a series of mutation rates
which each seem tuned towards increasingly
better suboptima. Further, by examining the
curves of mean fitness, convergence time, and
the variance of convergence time, we can
identify a three-phase nature to the profile; i.e.:
search behaviour cycles through three distinct
phases, which repeat in synchronisation with
peaks and troughs. These findings seem
important in relation to the need for robust and
reliable parameter tuning.

1 INTRODUCTION

The needs of real-world applications impel researchers
to deliver robust evolutionary algorithms [4,7] which
perform within challenging constraints of reliability,
time limit, and solution quality. Typically therefore, an
evolutionary algorithm deployed in a real world scenario
must be tuned for optimal performance in a given time
limit. In this context, researchers have tended to focus on
finding optimal parameters (e.g.: mutation rate,
population size) for which solution quality tends to be
reliably best, within the time available, on what are
deemed to be suitably realistic test problems depending

on the application in hand. Such studies almost
invariably find, for example, that a single optimal
mutation rate (or small interval of rates) exists; that is,
the solution quality/mutation rate curve is fundamentally
uni-modal.

In many cases, however, the demands of near real-time
applications make it sensible to delve deeper into the
performance profile. In particular, it is often true that, at
the optimal mutation rate, good solutions are found
significantly faster than the assigned time limit. For
example, although we may empirically find that a
mutation rate of 0.1 leads to best mean fitness at a time
limit of 10 minutes, over 50% of runs at that mutation
rate might converge to good quality or perhaps optimal
solutions in just 1 minute. For primarily this reason, two
other performance indicators are of particular
importance: `evaluations exploited', and its variance.
“Evaluations exploited” is simply the time (measured in
number of evaluations) at which a trial run first finds the
best solution of that run (hence, it continues from then
until the time limit without finding a better solution).
This measure, and its variance, obviously provide
important information about the performance profile,
respectively indicating to what degree it may be useful
and advisable to exploit fast convergence.

In previous work which has looked at a real-world
problem in the telecommunications field (the ADDMP
[12-19]) we have found that the performance profile
yielded by a plot of evaluations exploited against
mutation rate is bimodal. This bi-modality seems robust,
appearing over a wide range of problems and EA designs
[17-19]. As well as in the ADDMP, we have seen this
bimodal performance profile in the Royal Staircase
problem [11], Kauffman NK landscapes [5], and the
simple Max-Ones problem. The optimal mutation rate, in
terms of delivering the best mean fitness, seems to
generally occur at the base of the trough between two
peaks in evaluations exploited. This mutation rate tends
to correspond with the well known 1/L rate [1,2,9], while
the bimodal feature itself has recently been predicted in
theoretical studies by Van Nimwegen et al [10,11, and
personal communications]. These and other findings
concerning features of `evaluations exploited'-oriented
evolutionary search performance profiles, may have



potentially important consequences and applications for
parameter tuning and performance guarantees.

In particular, we have recently found evidence that
complex problems seem to have a tri-modal or higher
modality feature in their evaluations exploited / mutation
rate performance profiles.  The peaks and troughs seem
to loosely correspond to different sub-optima of the
problem landscape, and to different phases of search
behaviour. In this paper we demonstrate and explore
these higher modality features on an interesting recently
developed test problem called H-IFF (Hierarchical If and
Only If) developed by Watson et al [22,23].

In section 2 we describe the H-IFF problem and
preliminary results. Section 3 then describes the
experimental set-up and extensive series of experiments
reported on in this paper. The results are explored in
section 4 and discussed in section 5. As detailed, we find
clear evidence of tri-modality in the H-IFF performance
profile, and are also able to discern certain discrete,
repeating ‘phases’ of search behaviour corresponding to
increasingly smaller intervals of mutation rates. Section
6 summarises our conclusions, whilst Sections 7 and 8
respectively express our acknowledgements and detail
references.

2 THE H-IFF PROBLEM

Watson et al’s Hierarchical If and only If problem (H-
IFF) [22,23] was devised to explore the performance of
search strategies employing crossover operators to find
and combine ‘building blocks’ of a decomposable, but
potentially contradictory nature. An earlier problem
designed on similar lines is the bipolar deceptive
function [24]. The fitness of a potential solution to this
problem is the sum of weighted, aligned blocks of either
contiguous 1’s or 0’s and can be described by :

          1, if |B| = 1
f(B) = |B| + f(BL) + f(BR), if (|B| > 1)

and (∀i {bi = 0}
   or ∀i {bi = 1}),

           f(BL) + f(BR), otherwise

where B is a block of bits, {b1, b2, … bn}, |B| is the size of the block=n,
bi is the ith element of B, and BL and BR are the left and right halves of
B (i.e. BL = {b1, … bn/2}, BR = {bn/2+1, …bn}. n must be an integer
power of 2.

This produces a search landscape in which 2 global
optima exist, one as a string of all 1s, the other of all 0’s.
However a single mutation from either of these positions
produces a much lower fitness. Secondary optima exist
at strings of 32 contiguous 0’s followed by 32
contiguous 1’s (for a binary string of length 64) and vice
versa. Again, further sub-optima occur at 16 contiguous
0’s followed by 48 contiguous 1’s etc. Watson et al
showed that hillclimbing performs extremely badly on
this problem [23].

To establish a performance profile for a simple
evolutionary search technique on this problem, a set of

tests were run using a simple EA (described later) over a
range of population sizes (20 through 500) and mutation
rates (1e–7 exponentially through to 0.83), noting the
fitness of the best solution found, and the number of
evaluations taken to first find it out of a limit of 20,000
evaluations. Each trial was repeated 50 times and the
mean number of evaluations used is shown in Figure 1.
This clearly shows a tri-modal performance profile,
particularly at lower population sizes, and was first
reported in [20]. Since this result was first seen, an
extensive set of further experiments has been run with
higher evaluation (time) limits, and variations of
selection strategy and crossover operator.

Figure 1 – H-IFF 64 Performance Profile

Some results and observations from these experiments
are reported on in this paper, together with evidence that
these phenomena are also exhibited in the performance
profile of an example real-world problem.

3 METHOD

Unless otherwise stated, all results in this paper were
generated using a steady state EA [3] with 3-way single
tournament selection (with automatic replacement of the
worst member of the tournament) with a fixed number of
evaluations, one-point crossover with probability 1.0,
and ‘new random allele’ (NRA) mutation. Each
experiment was repeated 50 times, noting the evaluation
number at which the best solution found in the run was
first generated, and the fitness of that  best solution.   All
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Figure 2 – Mean Evaluations and Variation at 50k evals
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Figure 5 – Mutations used and Fitness at 200k evals
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Runs were then repeated over a range of mutation rates
from 0, 1e–7, then doubling at each step to 0.83. In some
cases, a four-fold finer range of mutation rates was used.

For most experiments, a population size of 20 was used,
whilst for others, a series of experiments were carried
out at population sizes ranging from 20 to 500 members
in steps of 20. For the H-IFF problem, a string length of
64 was used, whilst the ADDMP used a natural integer
representation with 10 genes each having an allele range
of 1 to 10.

Two other values are also plotted within the results: the
‘coefficient of variation’ is defined as the standard
deviation of the 50 results, divided by the mean, which
gives an indication of process instability; secondly the
‘total mutations used’, which is estimated as being the
product of the mean number of evaluations used, the
mutation rate per gene and the chromosome length.

4 RESULTS

Figure 1, as described in Section 2, clearly shows a tri-
modal performance profile in terms of mean evaluations
exploited at different mutation rates and population sizes
for the 64 bit H-IFF problem. Clearly, at very low
mutation rates, the algorithm stalls almost immediately,
with premature convergence having depleted the limited
amount of genetic diversity available to it from its initial
randomly generated population. As population size is
increased, the number of evaluations utilisable before
this situation occurs is seen to rise linearly with
population size. This result has already been seen on
other problems and is documented in [13,17,18]. It is
also important to note however that average fitness of
best solution found also increases with population size in
an asymptotic fashion.

However, for a fixed population size, as the mutation
rate is increased, the number of evaluations exploitable
is seen to initially rise. This reaches a peak at a mutation
rate of around 5.1e–5, beyond which the number of
evaluations utilised is seen to fall. This represents the
algorithm finding solutions of a particular quality for
which a specific range of mutation rates are particularly
useful. In other words, the algorithm can use the
increased mutation rate to find particular solutions in
fewer evaluations leading to the trough feature at a rate
of 1.6e–3. However this range of mutation rates is not
optimal for finding higher fitness solutions and thus as
rates are increased further, a second rising and falling of
the number of evaluations used is observed between
mutation rates of 1.3e–2 and 5.2e–2. Eventually,
mutation rates are sufficiently high as to hinder progress,
and the number of evaluations is seen to rise for a third
time, with even higher rates causing the algorithm to
deteriorate into random search. These phenomena are
seen to also exist at higher population sizes, at least as
high as 100 in this case, and at the same rates of
mutation.

The above explanation is explored over the next six
figures, as plots of the mean number of evaluations,
coefficient of variation, mean fitness, and total number
of mutations used are shown against various mutation
rates in experiments limiting trials to 50,000,  200,000
and 1 million evaluations for each of the 50 runs.

Figure 2 shows the performance profile for a population
size of 20 with the EA allowed 50,000 evaluations.
Distinct peaks in the mean number of evaluations can be
seen at mutation rates of 2.56e–5, 5.51e–3 and 2.10e–1
with an apparent anomaly at 6.23e–2. Troughs occur at
rates of 4.87e–4 and 2.62e–2 which at first appear to
correspond to peaks in the co-efficient of variation of the
50 runs. Given that a limit of 50,000 evaluations was
imposed, this was not at first surprising and it was
initially assumed that the troughs in the variance
represented the fact that, over the 50 runs, the algorithm
was simply hitting the limitation of 50,000 evaluations
with increased frequency, thus reducing variation.
However, detailed examination even of Figure 2 shows
this not to be the case as where the mean can be seen to
fall from around 30,000 at a mutation rate of 1.0e –4 to
around 5,000 at a rate of 5.0e –4, no significant rise in
variation occurs, suggesting that this simple explanation
is invalid. Indeed Figures 4 and 6 (at 200,000
evaluations and 1,000,000 evaluations respectively)
show this clearly to be the case.

Figure 3 shows plots of the ‘total mutations used’ and
the mean fitness of ‘best’ solutions found over the 50
runs at each mutation rate. As hypothesised, mean fitness
can be seen to increase in distinct steps as mutation rates
are increased with plateaux occurring between mutation
rates of 6.1e–5 through 2.3e–3, and 9.5e–3 through
3.1e–2. For mutation rates within these ranges, no
significant improvement in mean fitness is seen,
however the number of evaluations taken to find these
solutions is seen to vary dramatically. The product of the
mutation rate, number of evaluations used and
chromosome length is also plotted and also shows a step
like profile. This indicates that for certain ranges of rates
of mutation, it is the number of mutations used that is
important, and not necessarily the rate at which they are
applied. This suggested the possibility that an unusual
feature of the random number generator used in the
program was being exhibited, and so the experiments
were entirely replicated in a different programming
language and using a different random number
generator. This repeated set of experiments produced
similar results with the same characteristics. It is
therefore highly unlikely that ‘random number
generator’ characteristics are the cause of this
phenomenon and a more plausible explanation is
discussed in Section 5.

It can also be seen from Figure 3, that the steps in each
plot are subject to a form of ‘phase shift’ and do not
occur at the same ranges of mutation rate. This will be
explored in more detail later in this paper.



Figures 4 and 5 show similar performance profiles when
trials are allowed up to 200,000 evaluations. However
the mutation rates inducing the first two peaks in mean
evaluations can now be seen to have fallen to 5.38e–6
and 3.28e–3 respectively, and the minor anomaly in
Figure 2 is seen to expand to a distinct ‘peak / trough’
feature at around 5.24e–2.  The mutation rate inducing
the best overall fitness performance remains at 1.48e–1,
however mean fitness can be seen to have improved
significantly from around 310 to 350. Interestingly, the
value of total number of mutations used defining the
plateaux in Figures 3 and 5 can be seen to be similar.

Figures 6 and 7 show results for runs allowed up to 1
million evaluations. Superimposed onto these plots is a
banded classification of repeated performance phases (A,
B and C). In each of these, the performance of the
algorithm can be characterised by differing effects on the
mean number of evaluations used, process variation and
mean fitness.

In the rightmost region denoted ‘A’, mean evaluations
can be seen to rise, variation falls, total mutations used
rises and average fitness rises. Here the algorithm is
using increased mutation to explorer wider regions of the
search space.

In band ‘B’, mean evaluations are seen to fall, process
variation remains low (though slightly rising), and mean
fitness remains constant, as does total mutations used.
Here the algorithm is unable to use mutation to break out
of certain local optima which can be found ever quicker
as mutation rate increases. The left hand edge of band
‘B’ is therefore desirable as it gives solutions in lower
numbers of evaluations with little deterioration in
process variation.

In band ‘C’, mean evaluations starts to rise, process
variation increases dramatically, total number of
evaluations needed rises however there is little or no
increase in mean fitness. This is a far from ideal set of
circumstances, as the number of evaluations used varies
widely for no improvement in mean fitness.

Crucially, as mutation rates are increased further, this
pattern of phase ‘A’, ‘B’ and ‘C’ performance can be
seen to repeated at least 3 times. Beyond this third
iteration, insufficiently fine mutation rates have been
sampled to show if further repetition exists; but this will
be addressed in future work.

As before, features of the performance profile at 1
million evaluations occur at lower mutation rates than at
either 200,000 and 50,000 evaluations. The ‘third peak
anomaly’ previously occurring at mutation rates around
5.24e–2 is seen to be a distinct peak in Figure 6. The
mutation rate inducing highest mean fitness is still
around 1.48e–2 but now produces mean fitness of
around 410 out of a maximum of 448, indicating a
significant increase in the number of runs finding one of
the 2 global optima. Once again, mutation rates beyond
this value cause rapid deterioration into random search
with poor results.

Further experiments are in progress, with different
crossover operators (2 point, and Uniform [21]), and
other selection strategies including higher tournament
sizes, elitist, generational breeder [8] strategies and
deterministic crowding [6]. These are all showing the
features reported here, However it should be noted that
these other algorithms display more marked differences
at higher population sizes, as would be expected.

Finally, the experiment at 1 million evaluations was
repeated on an instance of the real-world ADDMP
problem. Figure 8 shows a multi-modal mean evaluation
performance profile over the same range of mutation
rates and population sizes as those used in Figure 1 on
the H-IFF problem. It can also be seen that these features
are persistent over a range of population sizes (here as
high as 500), although with reducing amplitude.
Particularly with the H-IFF result (Figure 1), this effect
of increased population size should be expected,
allowing crossover to play an increasingly important role
in the search process, thus attenuating the effects of
mutation.

Detailed examination of the coefficient of variation, total
mutations used and mean fitness at each mutation rate
also show strong similarities to those seen on H-IFF, but
with less obvious structure and recurrence. This is
perhaps not surprising since the ADDMP search space
cannot be expected to possess such regularity as H-IFF.
Further experiments are also underway with other
standard test problems and results from these will be
submitted for publication in due course.

5 DISCUSSION

Consideration of these results leads us to the following
explanation, based on the fact that as mutation rate
increases, emphasis shifts from a majority of single bit
mutations per chromosome towards significant numbers
of  2 bit mutations, and then 3 bit mutations, and so
forth. At very low mutation rates, single bit mutation per
chromosome occurs with increasing frequency, leading
to increasing mean number of valuations but with
decreasing variance (Phase A). As this problem has
many local optima, it does not lend itself to single bit
mutation hill climbers and thus the length of any useful
random walk is severely limited. This walk will be
achieved independently of the total number of mutations
allowed and hence the plateaux in total mutations used
being at the same level (around 170 mutations) in
Figures 3, 5 and 7 (Phase B).

Once the usefulness of single bit mutations seems to
have been exhausted, no further progress can be made
until the expected number of 2 bit mutations becomes
significant enough to make an impact on the search. This
is of course dependent on the total number of evaluations
allowed in the run, and will occur at lower mutation rates
for higher evaluation limits. Indeed in all 3 cases, this
transition is seen to commence at mutation rates which



give an estimated number of around four 2 bit mutations
by the end of the run.

As mutation is further increased, the introduction of 2 bit
mutation can initially be expected to occur (if at all)
significantly later on in the run than the number of
evaluations needed to fully exploit single bit mutations.
Hence this causes an increase first in the variance (Phase
C), and then a significant increase in the mean number of
evaluations used (Phase A) as variance falls again and
the associated rise in mean fitness occurs. As mutation
rates approach optimal for useful 2 bit mutation, the
mean number of evaluations used drops (Phase B).

Figure 8 – ADDMP Performance Profile

As the usefulness of 2 bit mutation is exhausted, the
cycle is again repeated as 3 bit mutations start to become
significantly available. Again, at higher evaluation
limits, this will occur at lower mutation rates. As the
mutation rates favouring increased levels of bit mutation
get closer together, it is likely that significant numbers of
4 bit mutations will arise before useful 3 bit mutations
have been exhausted, hence these phases can be
expected to merge as mutation rates increase.

6 CONCLUSIONS

The H-IFF problem has yielded a complex performance
profile for simple evolutionary search strategies,
particularly at low population sizes. The rate of mutation
applied can be seen to dramatically affect several aspects

of algorithm performance including mean evaluations
until convergence, process variation; and mean fitness
found.

Response to different mutation rates has been seen to fall
into 3 distinct, repeating phases on this problem. There
are ranges of mutation rates over which the algorithm
can be seen to be predominantly exploring the search
space, able to break free from particular local optima.
There are ranges in which the algorithm is able to find
solutions with particular qualities in fewer evaluations,
without deterioration in process variation; and there are
ranges in which performance shows sudden deterioration
in process repeatability without significant increase in
mean fitness.

These phases are seen to be repeated at different ranges
of mutation rates, likely to be related to the ability of
certain rates of mutation to be optimal for finding and
breaking free of specific local optima in the problem
search space.

Similar results have also been seen in other multimodal
problems, and in particular in an example of a real-world
industrial optimisation problem.  As such, it can be seen
that the investigation of performance profiles yields a
complex collection of factors which should be taken into
account in the context of parameter tuning. For example,
in an industrial application, initial studies may reveal a
locally optimal mutation rate which delivers an adequate
level of fitness quickly, with exploration beyond that rate
showing that, although better fitnesses are occasionally
found, convergence time and variance grow towards
unacceptable levels. As we can see, however, further
exploration of the performance profile may then reveal a
phase beyond this at which the better fitness is more
reliably and quickly found. Also, the apparent suggestion
of a three-phase nature to the search behaviour as
mutation rate is increased could lead to ways of inferring
the phase from online sampling of search behaviour,
which could then be of use in adaptive strategies which
attempt, for example, to maintain search within a phase
B band.
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