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Abstract

Traditional Genetic Algorithms (GA) use
crossover and mutation as the main genetic
operators to achieve population diversity.
Previous work using a biologically inspired
genetic operator called transposition, allowed the
GA to reach better solutions by replacing the
traditional crossover operators. In this paper we
extend that work to the case of asexual
reproduction. The GA efficiency was compared
when using asexual transposition and the
classical crossover operators. The results
obtained show that asexual transposition still
allowed the modified GA to achieve higher
performances.

1  INTRODUCTION

Genetic diversity is essential for the evolutionary process.
When using genetic algorithms, a population evolves
through the application of two main genetic operators:
mutation and crossover. These operators allow changes in
the individuals, creating evolutionary advantages in some
of them. The fittest individuals are more likely to be
selected allowing the evolution of the population to the
best solution (Goldberg 1989).

In nature, genetic diversity is caused and maintained by
several mechanisms besides crossover and mutation.
Some of those mechanisms are: inversion, transduction,
transformation, conjugation, transposition and
translocation (Gould et al. 1996).

Some researchers highlighted the importance of these
latest discoveries of molecular biology. Mitchell (1996),
Mitchell  et al. (1994) and Banzhaf et al. (1998) stress

that it would be important to analyze if some of the
mechanisms of rearranging genetic material present in the
biological systems, when implemented and used with a
GA, improve its performance.

Several authors have already used some biologically
inspired mechanisms besides crossover and mutation in
genetic approaches. For instance, inversion (Holland
1992), conjugation (Harvey 1996; Smith 1996a; Smith
1996b), transduction (Furuhashi et al. 1994; Nawa et al.
1997; Nawa et al. 1998; Nawa et al. 1999), translocation
(Oates et al. 1999; Voss et al. 1999)  and transposition
(Simões et al. 1999a; Simões et al. 1999b, Simões et al.
1999c, Simões 1999)  were already used as the main
genetic operators in the GA.

In this paper we will introduce an extension to our
previous work with the transposition mechanism. This
new proposal will be referred to as asexual transposition.
Transposition consists in the presence of genetic mobile
units called transposons, capable of relocating themselves,
or transposing, onto the chromosome and subsequently
jumping into new zones of the same or a different
chromosome. In asexual transposition the movement of
the transposon will occur in the same chromosome.

We will compare the performance of the GA in the
domain of function optimization applying a standard test
suite with either crossover or asexual transposition. In the
studied domain the GA used binary representation.
Nevertheless, transposition mechanism can be used with
other kind of representations, such as  vectors of real
numbers or tree-based data structures and in other
domains as well.

This paper is organized in the following manner. First, in
section 2, we summarize our previous work related to the
transposition mechanism. In section 3,  we describe how
transposition works in nature and how the previous
versions were implemented. In section 4, we present the
computational form of asexual transposition. Section 5
describes the characteristics of the experimental
environment. In section 6, we make an exhaustive
comparison of the results obtained with asexual



transposition, 1-point, 2-point and uniform crossover.
Finally we present the relevant conclusions of the work.

2  PREVIOUS RELATED WORK

Simões et al. presented  a new biologically inspired
genetic mechanism, called transposition, as an alternative
to crossover (Simões et al. 1999a).  In a preliminary work,
using a GA as a function optimizer, with a single test
function,  very promising results were obtained.  Such
work compared the GA performance when using 1-point,
2-point, uniform crossover or a simple form of
transposition. Transposition allowed the GA to reach
better results than crossover, even with smaller
populations. Later, this preliminary work was enlarged to
a test bed containing eighteen test functions and an
extensive comparative study showed that, if the right
parameters were chosen, transposition always performed
better than crossover. Moreover, the authors introduced a
new form of transposition, inspired in Harvey’s work,
called tournament-based transposition, which also proved
to be a good substitute to crossover (Simões et al. 1999b).
For a detailed description of this work see Simões (1999).

Both mechanisms used sexual reproduction, i.e., two
individuals were selected for mating and the transposition
mechanism occurs between these individuals. In simple
transposition the exchange of the genetic mobile unit is
made in a random manner between the two strings. In
tournament-based transposition the best individual will
give the genetic material to the worst one.

3  TRANSPOSITION

In this section we will explain how transposition works in
nature and how it was implemented in the proposals based
in sexual reproduction.

3.1  BIOLOGICAL TRANSPOSITION

As referred before, transposition is characterized by the
presence of mobile genetic units inside the genome,
moving themselves to new locations or duplicating and
inserting themselves elsewhere. These mobile units are
called transposons (Gould et al. 1996; Russell 1998).

Transposons (also known as jumping genes) can be
formed by one or several genes or just a control unit. The
movement can take place in the same chromosome or to a
different one.

Transposition was first discovered by Barbara
McClintock in the 50's (when the DNA structure was not
yet completely understood). She proved that certain
phenomena present in living beings exposed to UV

radiation could not be the result of the normal
recombination and mutation processes. She found that
certain genetic elements in corn occasionally  move
producing kernels with unusual colors that could not have
resulted from crossover or mutation. Transposons were
for a long time considered as some sort of abnormality,
but in 1983, when she was awarded the Nobel Prize,
many such transposons had been discovered and their
possible role in evolution was beginning to be recognized.
For instance, the genetic alterations caused by transposons
are responsible for  the growth of cancer in humans and
for the resistance to antibiotics in bacteria (Gould et al.
1996; Russell 1998). In order to a transposable element to
transpose as a discrete entity it is necessary for its ends to
be recognized. Therefore, transposons within a
chromosome are flanked by identical or inverse repeated
sequences, some of which are actually part of the
transposon.  See Figure 1 bellow.

When the transposon moves to another zone of the
genome one of the flanking sequences goes with it.

The insertion point can be chosen at random, but there are
transposons that show a regional preference when
inserting into the same gene. Other method can be a
correspondence in the new position with  the flanking
sequence.

Figure 1:  Inverse and Equal Flanking Sequences

The point into which the transposon is inserted requires
no homology with the point where the transposon was
excised. This is in evident contrast to classical
recombination, where relatively long sequences of DNA
must share homology to permit a recombination event to
occur (same cut point(s)). Consequently, transposition is
sometimes referred to as illegitimate recombination.

3.2  SIMPLE TRANSPOSITION

The first form of computational transposition proposed by
Simões et al. (1999a) was directly inspired in biology.
After the selection of two parents for mating, the
transposon is formed in one of them. The insertion point
is found in the second parent. According to this point, the
same amount of genetic material is exchanged between
the two chromosomes. The transposon is recognized by
the presence of equal or inverse flanking sequences with a

INVERSE FLANKING SEQUENCES

NNNNNATTGA (Transposon) AGTTA  NNNNNN  

IDENTICAL FLANKING SEQUENCES

NNNNNATTGA (Transposon) ATTGA  NNNNNN  



fixed length. The insertion point is searched in the second
chromosome and is chosen when a sequence of genes
equal or inverse to the flanking sequence is found. The
insertion point will be the first gene after that sequence.
After that, the movement of the transposon occurs. Since
it was used fixed size chromosomes, the same amount of
genetic material is exchanged between the two selected
parents. Figure 2 shows how simple transposition works.
The detailed  functioning of  transposition is described in
(Simões et al. 1999a).

Figure 2:  Simple Transposition

3.3  TOURNAMENT-BASED TRANSPOSITION

In order to come closer to the biological mechanism, the
authors proposed a new form of transposition:
tournament-based transposition.

The two selected parents become competitors in a
tournament of size two. The transposon will be searched
in the winner chromosome and the insertion point will be
located in the loser parent. Only this individual will be
altered by inserting  the transposon, which replaces the
same number of bits after the insertion point.  Figure 3
shows this mechanism.

4  ASEXUAL TRANSPOSITION

As stated before, in nature the transposition mechanism
can occur also in the same chromosome. Previous work,
described above, explored two forms of transposition
always involving two different chromosomes (sexual
reproduction).

Figure 3: Tournament-based Transposition

4.1 ASEXUAL TRANSPOSITION FUNCTIONING

Our work will focus in a new proposal based in asexual
reproduction. The basic functioning of the mechanism
will be maintained: the way of building the transposon
and finding the insertion point is kept.  The main
difference will be that all the process will operate in the
same individual. After selecting one individual for
reproduction, the asexual transposition will be applied.
Figure 4 synthesizes the complete process of asexual
transposition.

The flanking sequence length (FSL) is previously
determined and maintained in all experiments. After
selecting the first parent, the beginning of the transposon
will be randomly selected (gene T). According to the
flanking sequence length, the FSL bits before the gene T
make the first flanking sequence. The search of the
second flanking sequence begins after gene T and stops
when an equal or inverse sequence is found. The
transposon is constituted by the genes enclosed by gene T
and the last gene of the second flanking sequence.

The insertion point is searched in the same chromosome
and this process starts in the first bit after the  second
flanking sequence. The insertion point is defined when a
equal or inverse sequence of bits is found in the
chromosome. Notice that the chromosome is viewed as
having a circular form. Therefore, after reaching the end
of the chromosome the search continues in its first bit.
When the insertion point is found, the transposon excises
from its original position and will integrate in the
insertion point.

transposon

Parent 1: 11000111110111

Parent 2: 11110100011111

transposon

insertion point

SIMPLE TRANSPOSITION

Offspring

11010001111111
11110001111101

Parent 1: 11000111110111

Parent 2: 11110100011111

transposon

insertion point

Offspring

11000111110111

11110001111101

TOURNAMENT-BASED TRANSPOSITION



Figure 4:  Asexual Transposition

4.2 ASEXUAL TRANSPOSITION IN THE GA

The asexual transposition mechanism will replace the
standard crossover operator. The basic structure of the
classical GA is kept with the integration of this new
genetic operator. Figure 5 illustrates the modified GA in
pseudo-code.

Figure 5: Using the GA with Asexual Transposition

After the selection of the best individuals, all of them will
be, with some probability, subjected  to the transposition
mechanism. The new obtained individuals can be mutated
depending on the mutation rate. After that, the population
is replaced by the new generated individuals.

5 THE EXPERIMENTAL ENVIRONMENT

5.1 CASE STUDY

The performance of asexual transposition was studied in
the function optimization domain. We using a test suite
containing seven functions (see appendix), characterized
as continuous/ discontinuous, unimodal/multimodal,
high/low/scalable, dimensional, stochastic/deterministic,
quadratic/non-quadratic and convex/non-convex. These
functions are a well known benchmark for genetic
approaches (De Jong 1975; Michalewicz 1999; Whitley et
al. 1995) and were selected in order to cover such a large
set of characteristics.

Since the GA was used as a function optimizer, we chose
roulette wheel with elitism as the selection method, in
order to keep track of the best solution found (De Jong
1993).

5.2 THE GENETIC ALGORITHM'S PARAMETERS

The GA was first implemented with crossover (1-point. 2-
point and uniform) and then with asexual transposition.
We executed experiments to study the effect of the
population size in the GA efficiency. Therefore, the
population size varied between 50, 100 and 200
individuals, either for asexual transposition or crossover.
The elite size was 20% of the complete population. The
mutation and crossover/asexual transposition rate used
was 0.01 and 0.7, respectively.

An important parameter to the achieved results, when
applying the asexual transposition mechanism, is the
flanking sequences length. In our experiments we used
flanking sequences size from 1 to 10, 15 or 20, depending
on the chromosome length.  In order to understand the
role of this parameter, in each set of experiments the
flanking sequence size was kept constant. We will refer to
the obtained conclusions about the role of the flanking
sequence length in next section.

All the tests were run over 500 or 1000 generations,
depending on the test function. Ten runs of each
experiment involving 1-point, 2-point and uniform
crossover and asexual transposition  were executed.

Table 1 summarizes all the executed tests for each
function of the test suite.

Selected Chromosome
0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0

a) Building the Transposon
0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0

b) Finding the Insertion Point
0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0

c) Transposon Excision
0 0 0 0 1                      1 1 1 1 1 1 1 1 1 0 1 0 1 0
              1 1 1 1 1 1 0

d) Transposon Integration
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 01 0 1 0

Obtained Chromosome, after asexual transp.
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0

gene T (random)

Insertion Point

GA_WITH_ASEXUAL_TRANSPOSITION

BEGIN
1. Generate Initial Population
2.    DO

   2.1. Evaluate Population
   2.2. Select Individuals to Reproduce
   2.3. FOR Each Selected Individual
       2.3.1. Reproduce with Asexual
Transposition

        2.3.2. Mutate the Obtained Individual
    2.4. Replace Old Population

WHILE (NUM_GENER. < FIXED NUMBER)
3. Return Best Result
END



Table 1: Summary of all the Experiments

Mechanism Population Flanking
Sequence

50 -
100 -1-Point Crossover
200 -
50 -
100 -2-Point Crossover
200 -
50 -
100 -Uniform Crossover
200 -
50 1 to Maximum

(10, 15 or 20)
100 1 to Maximum

(10, 15 or 20)
Asexual

Transposition
200 1 to Maximum

(10, 15 or 20)

5.3 EVALUATION MEASURE

We used the De Jong's off-line measure to compare GA
efficiency when applied crossover or transposition (De
Jong 1975). This measure is defined by:

Were f e
 * = best {fe(1), fe(2), ..., fe(n)} and T is the number

of runs. This means that off-line measure is the average of
the best individuals in each generation. Due to the total of
ten trials, the average of  the tens runs was evaluated.

6  THE RESULTS

The results obtained with the seven studied functions
were very similar. In all the cases asexual transposition
allowed the GA to achieve better solutions than the
standard crossover operators. To illustrate in detail the
GA performance, we will present the results obtained in
the maximization of Schwefel's test function, which is
representative of all the test suite. First, we will show the
comparative analysis of the results obtained with asexual
transposition and  one point crossover, two point and
uniform crossover, for the Schwefel's function. The
solutions obtained when using asexual transposition refer
to populations size of 50 individuals, since that, with 100
and 200 strings, the results were always much better.

After these detailed analysis, in section 6.5, we will report
the best solutions found in all the test functions, using
populations of 200 individuals.

6.1  THE ROLE OF THE FLANKING SEQUENCE
LENGTH

The GA performance  using the asexual transposition is
dependent on the flanking sequence size. Only certain
sequence lengths allow good results. For instance, the
obtained results for the Schwefel's test function with
flanking sequence length equal to 4 (worst result) and 10
(best result) were quite different. Figure 6 shows the
different results.

Figure 6: The Importance of the Flanking Sequence
Length

Therefore, in order to obtain higher performances is
important to determine the "best" sequence length before
execute the GA. Since we made an exhaustive study of
this parameter (from 1 to a maximum value) we could
reach a set of  heuristics that can be used too compute the
best value for the flanking sequence length for each
function. These heuristics, obtained with our experiments,
can obviously be generalized to other situations.

Table 2 shows the sequence length which allowed the GA
to find the best solutions. The heuristics, given in the last
column, show that the flanking sequence size is directly
dependent on the chromosome length used to codify each
test function.

Table 2: Relation Between the Best Flanking Sequence
Length and the Chromosome Size

Test
Function.

Chrom.
Length (CL)

Best Sequence
Length

Heuristic

F1 24 2, 3 10 % CL + 1
F4 33 3, 4 10 % CL + 1
F2 50 5, 6 10 % CL + 1
F7 200 10, 11 5% CL + 1
F5 210 11, 12 5% CL + 1
F3 240 12, 13 5% CL + 1
F6 280 14, 15 5% CL + 1

∑
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When larger strings are used to codify the problem
(functions F3, F5, F6 and F7) the sequence lengths that
allowed the GA to reach the best solutions are 5% of the
chromosome length plus one. In the remainder cases,
when smaller binary strings are employed, the best
flanking sequence lengths are 10% of the chromosome
length plus one.

6.2  COMPARING ASEXUAL TRANSPOSITION
WITH ONE-POINT CROSSOVER

In this section we will show the results obtained with the
GA using asexual transposition (using the appropriate
flanking sequence length) and 1-point crossover.

Figure 7 shows that asexual transposition with only 50
individuals allowed the GA to reach higher solutions than
one point crossover with 50, 100 or 200 individuals.
Using larger populations (100 and 200 individuals), the
obtained results were even better.

Figure 7:  Comparing Asexual Transposition (50
Individuals) with 1-point Crossover (50, 100, 200

Individuals)

6.3  COMPARING ASEXUAL TRANSPOSITION
WITH TWO-POINT CROSSOVER

The results concerning to the GA using two point
crossover are very similar to the previous case. In fact,
asexual transposition with only 50 individual
outperformed the solutions reached by the GA using 2-
point crossover with 50, 100 and 200 individuals. Asexual
transposition used with larger populations lead the GA to
better solutions and faster convergence. Figure 8 shows
the obtained results.

Figure 8:  Comparing Asexual Transposition (50
Individuals) with 2-point Crossover (50, 100, 200

Individuals)

6.4  COMPARING ASEXUAL TRANSPOSITION
WITH UNIFORM CROSSOVER

Just like before, asexual transposition lead the GA to
better solutions than uniform crossover. With only 50
individual the results obtained by the proposed
mechanism  outperformed the results achieved by uniform
crossover with 50, 100 and 200  binary strings in the
population.

Figure 9 illustrates the achieved results.

Figure 9:  Comparing Asexual Transposition (50
Individuals) with Uniform Crossover (50, 100, 200

Individuals)
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6.5  GLOBAL VIEW OF THE OBTAINED
RESULTS

The last three sections showed the obtained results using
one function, representative of the test suite. In the
remaining functions, asexual transposition, also allowed
the GA to obtain better results than the traditional
crossover operators. The results reported in Table 3 are
the mean values of 10 runs of the best solution found for
each  test function.

Table 3: Best Solution Found (average of 10 runs)  in all
the Test Functions

Function Cross 1 Cross 2 Cross U Asexual T
F1 3902,65 3903,47 3903,11 3903,60
F2 24 24 25 25
F3 1133,00 1124,73 1134,32 1266,50
F4 37,23 37,81 37,66 39,00
F5 5278,04 5385,49 5400,31 6313,10
F6 780,53 757,01 749,58 796,00
F7 8153,43 8116,80 8178,39 8275,40

As mentioned before, the modified GA implemented with
the asexual transposition mechanism, always achieved
best solutions than when using the standard crossover
operators.

7  CONCLUSIONS

In this paper we proposed a new way for using the
transposition mechanism involving asexual reproduction.
The GA was executed as function optimizer and its
efficiency was compared when using the classical
crossover operators and when applying  the asexual
transposition as the main recombination mechanism. For
both cases we compared the GA performance with a test
suite containing seven test functions.

The process employed to evaluate the GA performance
was off-line measure. Some parameters, such as the
population size and the flanking sequences length were
changed.

Comparing the results with crossover we realized that,
just like in the sexual forms of  transposition studied
before, asexual transposition is always better than
crossover.

Furthermore, even with smaller populations the GA using
asexual transposition can obtain much better results than
crossover with larger populations.

Analyzing the populations obtained with asexual
transposition we can see that even  in smaller populations

the diversity is maintained in higher levels  when
comparing with similar populations obtained with the
crossover operator. No conclusive study was already
made concerning this issue, but it seems that this
diversity, created and kept by the asexual transposition
mechanism, is responsible for the best solutions we
obtained.
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Appendix

F1: De Jong's Test Function F2 (Rosenbrock’s Saddle)

F2: De Jong's Test Function F3 (Step Function)

F3: De Jong's Test Function F4 (Gaussian Quartic)

F4: Michalewicz's Function

F5: Griewangk’s Function

F6: Rastrigin’s Function

F7: Schwefel’s (Sine Root) Function
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