
Evolution Strategies for a Parallel

Multi-Objective Genetic Algorithm

Ricardo Szmit

Institute of Computer Science

Hebrew University of Jerusalem

Jerusalem 91904, Israel

rszmit@cs.huji.ac.il

Amnon Barak

Institute of Computer Science

Hebrew University of Jerusalem

Jerusalem 91904, Israel

amnon@cs.huji.ac.il

Abstract

This paper compares evolution strategies for

a parallel multi-objective genetic algorithm

adopting the concept of Pareto optimality.

This algorithm was applied to the solution

of a set of process scheduling problems that

are part of a standard scheduling benchmark.

Our main goal was to compare the eÆcien-

cy and the eÆcacy of the evolution strate-

gies, and how they relate to attributes of the

problem. In order to quantify the quality of

populations produced by the algorithm, we

measured the coverage of the solution space

and the proximity to the Pareto-optimal fron-

t. Our results show that an evolution strate-

gy using heterogeneous subpopulations with

restart is consistently superior to tradition-

al strategies, without being more expensive.

We also observe that the performance of the

algorithm is directly related to the problem's

communication to computation ratio (CCR).

Our approach is based on the division of the

scheduling problem to two parts that can be

solved independently. This division allows a

simpler encoding of individuals, so that the

crossover and mutation operations can be im-

plemented more eÆciently. Thanks to the

combination of genetic search with proven

heuristics, this gain in eÆciency does not im-

ply a loss of eÆcacy.

Paper Category: Genetic Algorithms

1 Introduction

Most optimization problems are in reality multi-

objective problems, in the sense that there is more

than one way to measure the quality of a given solu-

tion. Early works on the �eld of multi-objective op-

timization tried to combine di�erent quality measures

using arbitrary functions. This approach, popularly

referred to as \comparing apples to oranges", never

generated satisfactory results. More recent research

recognized the advantages of the Pareto-optimal ap-

proach [15].

Given an optimization problem with objective func-

tions f1:::fn, in which the value of each function must

be minimized, the quality of a solution S is represented

by a vector V = (f1(S); :::; fn(S)). A solution S1 dom-
inates another solution S2 if, for each objective func-

tion fi, we have fi(S1) <= fi(S2), and there is at least
one objective function fj such that fj(S1) < fj(S2). A
solution is non-dominated if there is no solution that

dominates it. The Pareto-optimal (P-optimal) front

is the set of all non-dominated solutions. Clearly, the

P-optimal front dominates all other possible solutions.

1.1 The Solution Space

In most real multi-objective problems, the di�erent ob-

jective functions are not completely independent. In

this case, each pair of objective functions may be ei-

ther directly related or inversely related. The kind

of relation between the diverse objective functions de-

termines important attributes of the solution space.

This can be clearly observed when considering a pair

of functions.

In the case of functions that are directly related, the

solution space looks like the one in Figure 1. This

example shows Scha�er's classic function F2 [14], de-

�ned as x = t2 and y = (t� 2)2. In this example, the

P-optimal front is the curve between the points (0; 4)
and (4; 0).

In the case of functions that are inversely related, the

solution space looks like the one in Figure 2. This

example shows the function y = 1=x, for x > 0. In

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25

t**2, (t-2)**2

Figure 1: Directly related functions

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4

t, 1/t

Figure 2: Inversely related functions

this example, all points in the curve belong to the P-

optimal front.

In more interesting examples, the solution space would

consist of a large set of points contained inside a curve.

The format of this curve will be similar to one of the

above examples, according to the relation between the

objective functions.

Besides the shape of the solution space, another im-

portant attribute is the density of points inside the

curve. This density may vary greatly, if there is a

large number of solutions concentrated on a few small

regions.

1.2 A Pareto-oriented Genetic Algorithm

A genetic algorithm (GA) based on the concept of

Pareto-optimality uses a non-dominated sorting pro-

cedure [7]. Given a population which is a subset of

the solution space, this procedure identi�es all non-

dominated individuals and assigns to them the highest

rank. This process is repeated for the remaining indi-

viduals until the complete population is sorted. Then,

a new population is generated using crossover, through

a selection process in which individuals with higher

ranks have also a higher probability to generate de-

scendents.

Using this simple GA, the number of generations re-

quired to �nd the Pareto front depends on the popu-

lation size. In general, the bigger the population, the

smaller the number of required generations. We would

like to develop evolution strategies that achieve good

results with smaller populations. This can be done

by driving the simple GA to explore new, potential-

ly good regions of the solution space. Our knowledge

about the attributes of the solution space may be use-

ful to identify such regions.

The simple GA may be driven to explore new region-

s by the insertion of individuals that belong to these

regions. The main question in this case is how to �nd

these individuals. Our hypothesis is that these individ-

uals can be obtained by the use of a parallel GA [2], in

which each subpopulation evolves according to a di�er-

ent criterion. In the case of a multi-objective problem,

there may be a separated subpopulation trying to op-

timize each objective function. An additional Pareto-

oriented population would receive immigrants from all

others, and thus explore several interesting regions.

1.3 EÆciency and EÆcacy

We try to validate our hypothesis through the com-

parison of di�erent evolution strategies. In order to

compare them, we need the de�nition of quality at-

tributes. The eÆciency of an evolution strategy can

be measured as the number of generations required to

�nd a P-optimal solution. The eÆcacy of an evolution

strategy can be measured as its ability to �nd a large

number of points belonging to the P-optimal front. In

general, there is a trade-o� between eÆciency and eÆ-

cacy. For example, the use of Niching [8] improves the

eÆcacy but may reduce the eÆciency of a GA.

This paper is organized as follows: Section 2 describes

the scheduling problem we are interested to solve, and

how the solutions are represented as individuals in the

genetic algorithm. Section 3 presents the evolution s-

trategies used by the genetic algorithm, and the criteria

for comparing these strategies. Section 4 contains an

analysis of results, illustrating the performance of the

diverse strategies and how this performance is a�ected

by attributes of the problem. In section 5 we suggest

some directions for future research, and in section 6 we

bring our main conclusions.

2 The Scheduling Problem

The scheduling problem is characterized by a set of

intercommunicating processes that must be executed

on a parallel system. For our purposes we assume that

this parallel system is composed of a set of homoge-

neous processors that are completely connected, and

that the communication links that connect each pair

of processors have equal latency and bandwidth. Each

process has a duration time, which is the time required

for its execution on any processor. A process is exe-

cuted serially, without preemption. The inter-process

communication is done through messages. Each mes-

sage has a source and a destination process, and a du-

ration time, which is the time required to transmit the

message over a communication link. If the source and

destination processes are located in the same proces-

sor, the message is delivered instantly. After a process

�nishes its part of the computation, it may send mes-

sages to several dependent processes. A process that

depends on messages sent by other processes can start

its computation only after it receives all the messages

it is waiting for. A process that does not depend on

any previous process is called a root process. A pro-

cess that does not send messages to any other process

is called a leaf process.

The scheduling problem can be represented as a

weighted Directed Acyclic Graph (DAG), in which the

nodes represent processes and the edges represent mes-

sages. The weight of nodes and edges represent the du-

ration time of their respective processes and messages.

A schedule is composed of an assignment of processes

to processors and an ordering of execution among pro-

cesses. The dependencies in the DAG already de�ne a

partial ordering. A complete ordering is necessary to

determine which process has priority of execution, if

two or more processes are ready for execution at the

same processor when it becomes available. The total

execution time of a schedule is the time required for

the execution of all processes, from the beginning of

the �rst root process to the end of the last leaf pro-

cess. Other attributes of a schedule are the number of

processors used, which can be less than the total num-

ber of processors in the system, and the total weight

of messages sent. In general these are conicting at-

tributes, in the sense that one can not be optimized

without a�ecting the others.

In the past, scheduling was approached as a single-

objective problem, in which the function to optimize is

the total execution time. In this work we are interest-

ed in scheduling as a multi-objective problem, trying

to optimize also other attributes. When considered a

single-objective problem, scheduling in its general for-

m is known to be NP hard [1]. Clearly, treating it as

a multi-objective problem does not make it simpler.

The single-objective version was extensively studied

in the last decades [4], focusing on very particular cas-

es. For several of these special cases there are known

polynomial-time heuristics, and we can not expect ge-

netic algorithms to be a competitive technique. On the

other hand, for the more general problems, that were

proved to be intractable, and for the multi-objective

version, genetic algorithms are a powerful tool.

Even for particular problems in which one objective

function is clearly more important than others, a

multi-objective genetic algorithm may be useful to

avoid the trap of local optima. It is known that the

general scheduling problem's solution space is char-

acterized by widely dispersed local optima [12]. The

maintenance of a broad Pareto front for each gener-

ation assures that genetic diversity is preserved, and

that there will always be potential paths of evolution

until the P-optimal front is found.

2.1 Schedule Representation

As seen before, a schedule of processes on several pro-

cessors is composed of two parts: an assignment of

processes to processors and an ordering of processes.

These two components are orthogonal, since the same

assignment may have several possible orderings, and

a particular process ordering may be applied to any

assignment.

Most works that tried to solve scheduling problems

through genetic algorithms encoded in each individu-

al both the the assignment and the ordering of pro-

cesses [13]. This approach has several drawbacks that

a�ect the performance of the genetic algorithm. The

schedule can not be represented as a simple sequence

of genes, since it must have two dimensions [5] [9] [16].

This causes the crossover and mutation operations to

be much more complex and time consuming. Even the

generation of the initial population is quite complicat-

ed, requiring the validation of each individual. The

search space is large, since for every possible assign-

ment we must consider all possible orderings. If B is

the number of processors in the system and N is the

number of processes in the DAG, the size of the search

space is of the order of O((BN)�N !), where BN is the

number of possible assignments and N ! is the number

of possible orderings. The exact size of the search s-

pace is hard to quantify, because valid orderings must

respect the precedence relations between processes.

The traditional research on scheduling has focused

much more in heuristics for the de�nition of good or-

derings than in �nding good assignments [10]. Most

of these heuristics actually de�ne tie-braking rules to

determine which process has priority of execution. For

example, higher priority can be given to processes that

have more successors, or to processes that are closer

to the roots of the DAG [6]. Some of these heuristics

were proven to produce optimal schedules (in relation

to execution time) for very special cases, which are

often far from real situations. However, these heuris-

tics produce good schedules also for the general case,

since the ordering they de�ne is clearly superior than

most of the N ! possible orderings. Hence, by using

a �xed heuristic to produce good orderings, it is pos-

sible to concentrate the search e�orts in the process

assignment space.

A process assignment may be simply encoded as a se-

quence of N digits in base B. For example, the assign-

ment of 32 processes to 2 processors can be represent

as a 32-bit word. Using this encoding, any possible

sequence of digits represents a valid assignment. The

operations of crossover and mutation are trivial, allow-

ing very eÆcient implementations without any need for

validation. Additionally, the search space is greatly re-

duced: its size is exactly BN . The great simpli�cation

of the evolution operations and reduction in the search

space clearly improve the eÆciency of the genetic al-

gorithm. Thanks to the use of proven heuristics to de-

termine the ordering of processes, this eÆciency gain

does not imply a loss of eÆcacy. In other words, it is

possible to �nd better solutions in a shorter time.

3 Evolution Strategies

We tested two versions of the algorithm, using hetero-

geneous and homogeneous populations. In both ver-

sions there are two isolated subpopulations that send

immigrants to a third main population. In the version

with heterogeneous populations (HT), the two sub-

populations evolve using a single objective function

and the main population is Pareto-oriented, evolving

non-dominated solutions and taking in consideration

both objective functions. In the version with homo-

geneous populations (HM), the three populations are

Pareto-oriented. The ow of immigrants is unidirec-

tional, from the subpopulation to the main one, to

preserve a higher level of genetic diversity in the total

population. Thus, the terms homogeneous and hetero-

geneous are used in relation to the evolution strategy

adopted by each population, and not in relation to the

diversity of their individuals.

Our hypothesis is that in HT the immigrants can have

an important role on the evolution process, driving the

main population to explore new regions in the solution

space. To verify it, HM is used as a control group, with

identical values for all other parameters of the genetic

algorithm. It must be noticed that HM represents al-

so the traditional strategy adopted by Pareto-oriented

GAs [3].

For scheduling problems, the two objective functions

are total execution time and total messages weight.

Both objective functions must be minimized. These

functions are computed as follows:

The execution time depends on both the assignment

and the ordering of processes. The assignment of pro-

cesses to processors is determined by each individual's

genes. The ordering of processes is determined by a

heuristic which gives higher priority to processes that

have been waiting longer for execution.

A FIFO execution queue is maintained for each pro-

cessor. A process enters the execution queue of the

processor in which it was assigned at the moment it

becomes ready for execution. A process is ready for

execution when all the processes that precede it �n-

ished their execution and all the messages they sent

already arrived. In the beginning, all root processes

are inserted in the respective processor's queues, with

higher priority to processes with more successors. The

total execution time is then computed through an iter-

ation over the processors' queues until all processes are

�nished. We note that this ordering heuristic is sim-

ilar to the one that gives higher priority to processes

closer to the roots of the DAG.

In order to compute the messages weight it is suÆcien-

t to know the assignment of processes to processors.

This computation is trivial: A message is sent if the

sender and receiver processes were assigned to di�er-

ent processors. In this case, the weight of this message

must be added to the total messages weight.

3.1 Proximity and Coverage

For the comparison of the heterogeneous and homo-

geneous variants of the algorithm, we use two quality

attributes: proximity to the P-optimal front and cov-

erage of the population.

In most situations the P-optimal front is not known in

advance, thus it is not possible to measure the abso-

lute proximity. However, it is suÆcient to measure the

relative proximity, which is determined by the distance

between two fronts. For a given region in the solution

space, if the points in front A dominate the points in

front B, then clearly A is closer to the P-optimal front.

Coverage may be de�ned as the percentage of the solu-

tion space that is dominated by a given front. Again,

since it is not possible to know in advance the area

500

1000

1500

2000

2500

3000

3500

4000

4500

750 800 850 900 950 1000 1050 1100 1150

G13

3

3

3

G5
+

+
++ +

++

+
+ +

+ +

+
G10

2
2

2
2
222222

22
2

2

2

Figure 3: Evolution of Pareto fronts for HT

500

1000

1500

2000

2500

3000

3500

4000

4500

750 800 850 900 950 1000 1050 1100 1150

G1

3

3

3 3

3

G5

+

+ +

+ ++

+
G10

2222

2222 2
2 22 2 2

2

Figure 4: Evolution of Pareto fronts for HM

of the solution space and neither the density of the

population in di�erent regions, an exact value for the

coverage can not be computed. However, it is possible

to obtain an estimate using a Monte Carlo method:

Generating a large number of random solutions and

verifying the percentage of dominated ones.

4 Analysis of Results

Figures 3 and 4 show the evolution of the Pareto front,

during the �rst 10 generations, for the heterogeneous

(HT) and homogeneous (HM) versions of the algorith-

m. The X axis is the execution time and the Y axis

is the messages weight. In this case, the problem to

be solved has 32 processes and 165 messages, and the

system has 2 processors. Of course, each execution

of the algorithm produces reasonably di�erent result-

s, specially in the �rst generations, but these exam-

ples illustrate some typical characteristics of the evo-

lution process. The HT results show that the immi-

grants from subpopulations working on a single objec-

tive contribute to stretch the Pareto front, increasing

rapidly the coverage of the solution space. However,

this causes the evolution to become slower, since the

search e�orts are distributed among a larger number

of points in the front. The use of homogeneous popu-

lations causes the Pareto front to evolve faster towards

the optimal front, but its grow is slower, so that the

coverage does not increase so fast. Hence, these result-

s indicate that there is a trade-o� between proximity

and coverage.

After observing the evolution process for a larger num-

ber of generations, it becomes clear that the hetero-

geneous version su�ers from a serious problem: The

subpopulations working on a single objective tend to

converge much faster than the Pareto-oriented pop-

ulation. After they converge, their immigrants stop

contributing to the evolution of the Pareto front. To

avoid this problem, we adopted a restart mechanis-

m [11] that creates a completely new subpopulation

when appropriate. The good solutions found by the

previous subpopulation are still preserved in the main

population. A restart is done when the relative di�er-

ence between the best and the average �tness in the

subpopulation is below a given threshold. In our tests,

we adopted the value 0.001, or 0.1%, as this threshold.

The next experiments compare the performance of

three versions of the algorithm: Homogeneous popula-

tions (HM), heterogeneous populations without restart

(HT), and heterogeneous populations with restart

(HTR).

In these three versions, all parameters are identical:

The two subpopulations and the main population have

100 individuals each, so the total population size is

300. For each new generation, the 20% best individu-

als of each population are preserved and participate in

crossover with equal probability. After crossover, the

10% best individuals of each subpopulation are sent as

immigrants to the main population. The new immi-

grants replace the worse individuals of the main pop-

ulation. Crossover is done in a single random point,

with mutation probability 0.01, or 1%. These are ar-

bitrary values, and we did not try to optimize them,

since our main goal is to compare evolution strategies.

However, it must be noticed that the population is

small relatively to the problems' size.

4.1 Benchmark Results

We compared the performance of the three di�erent

versions using a set of DAGs which are part of a stan-

dard benchmark for scheduling problems [10]. This is

a set of 36 di�erent DAGs classi�ed according to their

communication to computation ratio (CCR). The C-

0

100

200

300

400

500

600

700

800

900

10 15 20 25 30 35

HM

3 3 3 3 3 3

3

3

3

3

3

3

3

HT

+ + +
+ + +

+
+

+

+ +
+

+
HTR

2 2 2 2 2 2 2 2

2
2

2 2

2

Figure 5: Generations to �nd optimal, CCR=0.1

0

100

200

300

400

500

600

700

800

900

10 15 20 25 30 35

HM

3 3 3 3 3 3

3
3

3 3

3

3

3

HT

+ + + + + +

+
+

+ +

+ ++
HTR

2 2 2 2 2 2 2 2 2 2

2 2

2

Figure 6: Generations to �nd optimal, CCR=1.0

CR is computed as the total weight of messages divided

by the total weight of processes, and thus is a static

problem attribute. There are three groups of 12 DAGs

each, with CCR values of 0.1, 1 and 10, and problem-

s varying in size from 10 to 32 processes. The CCR

is an important attribute, which a�ects the character-

istics of the solution space. In problems with small

CCR, the total execution time and the total messages

weight are inversely related, while in problems with

large CCR they are directly related.

We know the optimal execution time for these DAGs

on a system with 2 processors, so our tests consisted

of running the GA until a solution having this time

is found. This solution does not necessarily belong

to the P-optimal front, since it may be dominated by

another solution with the same execution time and

lower messages weight. However, for our purposes,

�nding such a solution is a good termination criterion,

because it indicates that the current Pareto front is

close enough to the optimal one.

0

100

200

300

400

500

600

700

800

900

10 15 20 25 30 35

HM

3 3 3 3 3 3 3 3

3
3

3

3

3

HT

+ + + + + + +
+

+ +
+

+

+
HTR

2 2 2 2 2 2 2 2 2 2 2
2

2

Figure 7: Generations to �nd optimal, CCR=10.0

Figures 5, 6 and 7 show the number of generations re-

quired by the di�erent versions of the algorithm to �nd

the optimal solution. The X axis is the problem size

(number of processes), and the Y axis is the number of

generations. The values presented in these �gures are

the average of a thousand executions of each version of

the algorithm for each problem. In each execution, the

GA runs at most a thousand generations, and stops as

soon as it �nds a solution with optimal execution time.

These results show that the version using heteroge-

neous populations with restart always outperforms the

other two, in the sense that it requires less generations

to �nd a solution with optimal execution time. In par-

ticular, HTR seems to be more scalable than the other

strategies.

It is interesting to note that, in all three versions of the

algorithm, when the CCR increases the number of re-

quired generations decreases. This indicates that, for

these strategies, scheduling problems with low CCR

are harder to solve. As observed before, in problems

with high CCR the two objective functions are direct-

ly related. As a consequence, the size of the Pareto

front becomes smaller with each generation, and the

evolution tends to be faster. We believe that this is a

general characteristic of problems in which the di�er-

ent objective functions are directly related. This is a

potential topic for future research.

Figure 8 shows the relation between the number of

restarts required by HTR and the CCR of the prob-

lem. The X axis is the problem size and the Y axis is

the number of restarts. When comparing this graph to

the previous ones, we observe that the ratio between

the number of generations and the number of restarts

required by HTR is almost constant, i.e., it does not

depend on the value of the CCR. This indicates that

populations that evolve according to a single-objective

0
5
10
15
20
25
30
35
40
45
50

10 15 20 25 30 35

CCR 0.1

3 3 3 3 3 3
3 3

3

3

3

33

CCR 1.0

+ + + + + + + +
+ +

+
+

+
CCR 10.0

2 2 2 2 2 2 2 2
2 2

2

2

2

Figure 8: Number of restarts for di�erent CCRs

function are not a�ected by the CCR in the same way

as Pareto-oriented populations. Further research is re-

quired for a better understanding of the properties of

the search space in both cases.

As a general conclusion, for problems in which there

is an inverse relation between the di�erent objective

functions the HTR strategy is more e�ective, since the

immigrants contribute to increase the coverage of the

Pareto front. In contrast, for problems in which there

is a direct relation between the di�erent objective func-

tions the HTR strategy is more eÆcient, since the im-

migrants contribute to improve the proximity to the

P-optimal front.

4.2 Comparison to Heuristics

During our experiments, we observed that in several

cases our multi-objective GA was able to �nd opti-

mal solutions that could not be found by tradition-

al scheduling heuristics. Table 1 is based on values

provided by Kwok and Ahmad [10] for the set of 36

problems discussed above. They implemented 11 dif-

ferent heuristic algorithms that are documented in the

scheduling literature, and tested them for each prob-

lem in the set. The table shows, for each problem,

characterized by size and CCR, the number of heuris-

tic algorithms that were able to �nd the optimal exe-

cution time.

Table 1 provides interesting information, specially

when compared to our results. It is clear that the

performance of the heuristics is related more to the

structure of the problem than to its size. Some small

problems could not be solved by any heuristic. When

the CCR increases, the eÆcacy of the heuristics de-

creases, which is the opposite behavior of our GA. For

almost half of the problems (16 out of 36), no heuristic

Problem CCR CCR CCR

Size 0.1 1.0 10.0

10 7 7 0

12 1 0 3

14 0 4 2

16 7 0 3

18 0 4 0

20 0 0 3

22 3 3 0

24 0 0 1

26 5 1 0

28 4 4 0

30 3 3 0

32 0 0 3

Table 1: Number of heuristics that found the

optimal execution time (out of 11)

was able to �nd the optimal execution time. In aver-

age, the heuristics were able to solve less than 20% of

the problems. In contrast, our HTR strategy was al-

ways able to �nd the optimal solution for each of these

problems. As shown in �gures 5, 6 and 7, the optimal

solution is found in less than 300, 200 and 100 gen-

erations for problems with CCR value of 0.1, 1.0 and

10.0, respectively. It must be noticed also that several

of the optimal solutions provided by greedy heuristics

actually use more than two processors.

5 Future Research

As observed in the previous section, the performance of

our HTR strategy is directly related to the problem's

CCR. This may be an important issue for further re-

search: Since the CCR is easy to compute, it can be

used to develop adaptable GAs that select evolution

parameters, such as the population size, dynamically.

In all our tests, we used a single heuristic to determine

the priorities of processes. It would be interesting to

have a pool of several good heuristics available. Each

individual in the population could choose from this

pool the heuristic that provides the best result for it-

s particular process assignment. This technique may

increase considerably the probability that the optimal

solution is actually found by the GA, and its imple-

mentation is simple.

It would be also interesting to apply our HTR strategy

to solve other kinds of multi-objective problems. In

particular, a topic that needs more research is how

the properties of the solution space are a�ected by

the kind of relation (direct or inverse) between the

di�erent objective functions.

6 Conclusions

We have presented a new evolution strategy for multi-

objective genetic algorithms that exploits the idea of

heterogeneous subpopulations. We de�ned the con-

cepts of proximity and coverage to compare Pareto

fronts, and how they relate to the eÆciency and eÆ-

cacy of the algorithm. We have analyzed the inuence

of immigrants from heterogeneous subpopulations on

the evolution process, and how this strategy a�ects

the eÆciency and eÆcacy of the algorithm. Our re-

sults show that the evolution strategy based on het-

erogeneous subpopulations with restart is consistently

superior to the traditional strategy, based on homo-

geneous subpopulations. We have also shown the dif-

ference in the solution space for directly and inverse-

ly related objective functions, and suggested that this

knowledge may be used to select evolution parameters

dynamically.

Our approach to scheduling as a multi-objective prob-

lem represents a new direction with promising results.

We have also shown how the implementation of genetic

algorithms to solve scheduling problems can be great-

ly improved, through the use of proved heuristics to

determine the process ordering and a simple encoding

for the assignment of processes to processors. These

implementation improvements may yield substantial

performance gains.

We hope that this paper will stimulate further research

in the �eld of multi-objective genetic algorithms, as

well as more applications of evolutionary approaches

to solve scheduling problems.

Acknowledgments

Thanks to Yu-Kwong Kwok and Ishfaq Ahmad for the

benchmark with dozens of nice scheduling problems.

Thanks to Claudia Goldman for fruitful discussions.

This research was supported in part by grants from

the Ministry of Defense and the Ministry of Science.

References

[1] Peter Brucker. Scheduling Algorithms. Springer,

1995.

[2] Erick Cant�u-Paz. A survey of parallel genetic al-

gorithms. Technical Report 97003, IlliGAL, Uni-

versity of Illinois, May 1997.

[3] C. A. C. Coello. An updated survey of evolution-

ary multiobjective optimization techniques: State

of the art and future trends. In 1999 Congress on

Evolutionary Computation, July 1999.

[4] E. G. Co�man, editor. Computer and Job-shop

Scheduling Theory. Wiley, 1976.

[5] R. Corrêa, A. Ferreira, and P. Rebreyend.

Scheduling multiprocessor tasks with genetic al-

gorithms. IEEE Transactions on Parallel and

Distributed Systems, 10(8):825{837, August 1999.

[6] Hesham El-Rewini and Ted G. Lewis. Distributed

and Parallel Computing. Manning, 1998.

[7] David E. Goldberg. Genetic Algorithms in

Search, Optimization and Machine Learning. Ad-

dison Wesley, 1989.

[8] J. Horn and N. Nafpliotis. Multiobjective opti-

mization using the niched pareto genetic algorith-

m. Technical Report 93005, IlliGAL, University

of Illinois, July 1993.

[9] E. S. H. Hou, N. Ansari, and H. Ren. A genetic

algorithm for multiprocessor scheduling. IEEE

Transactions on Parallel and Distributed Systems,

5(2):113{120, February 1994.

[10] Y. Kwok and I. Ahmad. Benchmarking and com-

parison of the task graph scheduling algorithms.

Journal of Parallel and Distributed Computing,

59:381{442, 1999.

[11] J. Maresky, Y. Davidor, D. Gitler, G. Aharoni,

and A. Barak. Selectively destructive re-start. In

Proceedings of the 6th. International Conference

on Genetic Algorithms, 1995.

[12] D. C. Mattfeld and C. Bierwirth. A search s-

pace analysis of the job shop scheduling problem.

Technical report, Dept. of Economics, University

of Bremen, Germany, April 1996.

[13] Zbigniew Michalewicz. Genetic Algorithms + Da-

ta Structures = Evolution Programs. Springer,

3rd edition, 1996.

[14] J. D. Scha�er. Some Experiments in Machine

Learning Using Vector Evaluated Genetic Al-

gorithms. PhD thesis, Vanderbilt University,

Nashville, 1984.

[15] S. Voget and M. Kolonko. Multidimensional opti-

mization with a fuzzy genetic algorithm. Journal

of Heuristics, 2:221{244, 1998.

[16] A. Y. Zomaya, C. Ward, and B. Macey. Genetic

scheduling for parallel processor systems: Com-

parative studies and performance issues. IEEE

Transactions on Parallel and Distributed System-

s, 10(8):795{812, August 1999.

