
An Empirical Investigation of Optimisation in Dynamic Environments
Using the Cellular Genetic Algorithm

Michael Kirley

Environmental and Information Sciences
Charles Sturt University

PO Box 789 Albury, NSW, 2640
Australia

mkirley@csu.edu.au

David G. Green

Environmental and Information Sciences
Charles Sturt University

PO Box 789 Albury, NSW, 2640
Australia

dgreen@csu.edu.au

Abstract
Many real-world optimisation problems are
dynamic. For such problems the goal is to track
the progression of optimal solutions across the
fluctuating fitness landscape rather than to find
an exceptionally good solution for a static
instance of the problem. Here we present a
novel approach for creating robust solutions for
non-stationary problems using the Cellular
Genetic Algorithm (CGA). The CGA maps the
evolving population of solutions onto a pseudo
landscape. Intermediate disturbances (disasters)
are introduced that break down the connectivity
in the pseudo landscape, leading to isolated
subpopulations. The dynamic spatial structure of
the CGA helps to maintain population diversity.
We investigate the performance of the algorithm
using a proposed benchmark problem.
Simulation results indicate that the CGA is able
to respond and adapt effectively to the dynamic
environment.

1 INTRODUCTION
For many real-world optimisation problems the
environment fluctuates, leading to dramatic changes in the
quality of individual solutions. In job scheduling, for
instance, the problem is continually changing as jobs are
completed and new jobs are added. To address such
problems, we require optimisation methods that are
capable of continually adapting the population of
solutions to a changing environment.

Most optimisation algorithms attempt to find an optimal
solution with respect to a specific, fixed fitness measure.
In the case of evolutionary algorithms (EA) a great deal of
effort has gone into designing efficient representation
schemes and genetic operators so as to produce rapid
convergence to a good solution. The rapid decrease in
diversity of the population results in a highly fit, but

homogeneous population, which does not allow the
algorithm to perform well in changing environments.

In recent years EAs have been applied to a range of
dynamic optimisation problems with varying degrees of
success (For example Branke (1999), Grefenstette (1999),
Lewis et al., (1998), Mori et al. (1997)). Typically,
additional heuristics are incorporated into the algorithm to
help deal with the non-stationary environment. The
previous approaches can be loosely classified into three
categories: 1. self-adaptation mechanisms, 2. maintenance
of diversity, and 3. memory techniques (Branke, 1999a).
The effectiveness of the enhanced EAs depends upon the
manner in which the environment changes (De Jong,
1999).

The major challenges when using EAs to solve dynamic
optimisation problems are to maintain diversity (or
generate diversity) in the population and to evolve robust
solutions that are able to track the optima. Ideally we
want an adaptive algorithm that responds in an
appropriate way every time a change in the environment
is detected. In this paper we present a novel approach for
creating robust solutions for non-stationary problems
using the Cellular Genetic Algorithm (CGA) (Kirley et
al., 1998). To enhance the standard genetic algorithm we
draw upon ideas from population dynamics and landscape
ecology, thereby producing populations and gene pools
that are highly adaptive. The rationale behind this
approach is that by mimicking nature more closely we
will be able to produce a range of good solutions for a
given problem in a changing fitness landscape (see
section 3).

The structure of the remaining sections of the paper are as
follows. In section 2 a brief description of previous work
using EAs for dynamic optimisation problems is given.
This is followed by a detailed description of the CGA
model. In section 4 simulation results are presented based
on a benchmark problem proposed by Grefenstette
(1999). We conclude with a discussion of the implications
of the results obtained and future research questions.

2 DYNAMIC ENVIRONMENTS

2.1 CHANGING LANDSCAPE

In natural environments the manner in which individuals
interact is constantly changing. The changes may be
random or deterministic. In the case of non-stationary
optimisation problems, if we can identify the "dynamics
of change" we will be in a better position to solve the
problem. Consider the situation where the fitness
landscape changes in an arbitrary manner or where the
rate of change of the environment increases. In these
scenarios we would expect any EA to struggle.

When designing EAs for non-stationary problems it is
important to examine the dynamics of the environment
relative to the rate of evolution. In this study we will
investigate the performance of the CGA in three different
changing environments based on the classification scheme
proposed by De Jong (1999):

1. Oscillating – the landscape cycles between a small
number of states. (De Jong - type 3).

2. Drifting – the landscape changes slowly over time.
The peaks move a small distance each generation (De
Jong - type 1).

3. Abrupt – the landscape undergoes major changes in a
non-deterministic manner. The changes represent
"cataclysmic events" (De Jong - type 4).

When a change in the environment has been detected,
relevant information about the change (the new fitness
function) must be passed to the algorithm.

2.2 PREVIOUS EVOLUTIONARY
APPROACHES

In some circumstances it is possible to deal with dynamic
optimisation problems as a series of static problems. For
example, whenever a change in the environment is
detected, the EA could be restarted on the new problem.
However, this approach does not use information (partial
solutions) gained from the earlier problems.

A number of researchers have proposed different EA
models for dynamic optimisation problems. Cobb (1990)
introduced the notion of hypermutation. In this model
when a change in the environment is detected the
mutation rate increases significantly for a fixed number of
generations. Grefenstette (1999) goes on to investigate
further the effects of evolvable mutations for fluctuating
environments. In related work, Angeline (1997) has used
self-adaptive parameters to track moving optima.

The inclusion of "memory" or redundant genetic material
has been proposed by a number of researchers. Here
memory may be in the form of diploid (multiploid) genes
with a corresponding dominance mechanism (Goldberg
and Smith, 1987, Lewis et al., 1998). Dasgupta and
McGregor (1994) made use of a hierarchical tree-based
chromosome that constituted a form of long term
memory.

An alternative memory mechanism is the use of an
external pool of solutions, where selected individuals
(usually highly fit) are stored and reintroduced into the
evolving population in later generations. In the
Thermodynamical Genetic Algorithm (Mori et al., 1998),
the best individual from each generation is stored in
memory. The memory size is fixed and thus another
individual is deleted from the memory depending on its
age and the genetic diversity in the memory pool. Branke
(1999b) compares a number of replacement strategies for
inserting new individuals into memory in a similar study.

The results reported in the papers listed above indicate
that the effectiveness of the enhanced EAs depends upon
the manner in which the environment changes. Memory
based techniques appear to be better suited to periodically
changing environments. The self-adapting and diversity
maintaining algorithms are preferable in other
environments. In non-stationary landscapes, the trade-off
between selection and variation, and the corresponding
impacts on population diversity, is a critical performance
issue. (For a comprehensive review of EA based
approaches for dynamic optimization problems see
Branke (1999a)).

3 CELLULAR GENETIC ALGORITHM
The CGA was introduced by Kirley et al. (1998). A
discussion of the biological basis of the algorithm appears
in Green and Kirley (2000). In the CGA the evolving
population is mapped on to a two dimensional toroidal
grid; a pseudo-landscape. Computationally the CGA is a
fine-grained parallel genetic algorithm, but with certain
biologically inspired modifications. Whitley (1993)
introduced the term "cellular genetic algorithm" for this
sort of model. We add the potential to dynamically create
isolated sub-populations by including occasional
"disasters", which clear patches of the cells in the pseudo-
landscape.

The CGA extends the basic genetic algorithm in the
following ways:

1. It maps the population of solutions onto a toroidal
grid. This grid serves as a pseudo landscape in which
each cell represents a portion of the landscape. It
should be emphasised that this is entirely unrelated to
so-called fitness landscapes. Instead it is meant to
resemble real landscapes with the solutions being
akin to (say) plants spread out on the landscape.

2. In each cell, the genes comprise the state of the cell,
and breeding is confined to crossover between cells
within the same neighbourhood.

3. The cells in the CGA grid are considered to be
directly "connected" if one belongs to the
neighbourhood of the other. The usual definition of
connectivity from graph theory and topology applies:
two cells are connected if there is a sequence of pairs
of directly connected cells between them.

4. To the normal GA processes of mutation and culling,
the CGA adds spatial processes:

4.1. Some cells may be designated as "inactive" (ie.
uninhabitable), which means that they never
contain members of the population of solutions
and take no part in crossover and other
processes.

4.2. In the course of a run, some cells may be
temporarily empty, which mean that no member
of the population occupies them.

4.3. Intermittent "disasters" clear patches of cells,
leaving them temporarily empty. Disasters are
characterized by two parameters: their size (the
number of cells cleared) and their frequency.

4.4. Empty cells can be reinvaded by "seeding" from
live cells within the neighbourhood.

The CGA model exploits changes in landscape
connectivity to make the population and gene pools
highly adaptive. The introduction of disasters, which
fragments the population, moves the algorithm into a
different "phase" where variation rather than selection
dominates. As the nearest neighbours slowly reclaim the
cleared cells, the algorithms gradually shifts back into its
original phase (Figure 1). When individuals from the
fragmented population come into contact and mate, fitter
hybrids often appear.

The restricted mating scheme, combined with the
dynamic topology employed in the CGA, helps to
maintain diversity in the evolving population (Kirley et
al., 1998). However, when we are confronted with
fluctuating fitness landscapes, it is important to track near
optimal solutions as well. For non-stationary problems the
following modifications have been proposed when the
environment changes:

1. Full connectivity in the pseudo landscape is restored.
That is, all empty cells are reloaded (initialised).

2. An elite migration policy is implemented. The best
individual from each static instance of the problem is
stored in an external immigration (memory) pool.
When a change in environment is detected, the elite
migrants are reintroduced into the population at the
sites of previous disasters.

4 EXPERIMENTS

4.1 TEST PROBLEM

Recently, there has been a push to develop new
benchmark problem generators for dynamic environments
(Branke, 1999, Grefenstette, 1999, Morrison and De Jong,
1999). Branke suggests that problems such as the time-
varying knapsack problem used by Lewis et al., (1998),
and scheduling problems used by Louis and Xu (1996)

Figure 1: Patchy sub populations in the CGA. Black
indicates disaster zones, light colours indicate fitter

individuals. Isolated patches have formed as a result of
the accumulation of "disasters" in the pseudo landscape.

are not suitable as benchmarks. The periodically changing
environments and the implicit assumptions built into the
problems do not allow enough insight into the working of
the optimisation algorithm.

For our investigation we have used the dynamic fitness
landscape proposed by Grefenstette (1999). This artificial
landscape is made up of number of peaks of varying
heights, which can be changed independently using
runtime parameters. Individuals in the CGA population
are interpreted as points in n dimensional space:

x = { x1 , x2 , … xn }

The fitness landscape is defined as follows:

The landscape is specified as a set { gi }. Each gi is a
component in the landscape consisting of a single time
varying n dimensional Guassian peak (see Figure 2).

The fitness contribution to point x from gi is defined as:

where:

Amplitude – is the fitness contribution
obtained by an individual located at the
centre of the peak.

Centre – specifies the coordinates
associated with the maximum value of
the peak at time t.
Width – specifies how the fitness
contribution from this peak decreases as
a function of the distance from the
centre of the peak.

Euclidean distance between x and the
peaks centre.

)(max)(xgxf i=

)))(2/())(,(exp()()(22 ttcxdtAxg iiii σ−=

)(tAi

)(tci

))(,(tcxd i

)(tiσ

Figure 2: Fitness Landscape. A 3D plot of a static view of
the dynamic landscape. When the environment changes,
all peaks move in a random direction based on the run-
time parameters. The maximum peak amplitude = 100.

This problem is ideal because the rate of change of the
environment can be controlled, the landscape is rugged in
the sense that fitness is defined as the maximum
contribution of all peaks and, finally, the problem is
scalable.

4.2 MODEL PARAMETERS

To create the non-stationary landscapes we adopt the
same parameter settings for the test problem as
Grefenstette. The initial landscape consists of 256 peaks
uniformly distributed over the 2 dimensional region
bounded by (0,0) and (100,100). All peak amplitudes
were initialised uniformly from the interval [10,50]. One
randomly select peak is then assigned the optimal
amplitude of 100. All peak widths were set to 4, ie. the
peak’s fitness contribution drops to about 50% of its
amplitude at a distance of 4 from its centre. The dynamic
landscape is implemented by moving all peaks in
randomly selected directions over time. It is important to
note that the amplitudes are kept constant in all
environments.

To explore the effectiveness of the CGA we ran
experiments using the three different dynamic
environments identified in section 2. The motion of
individual peaks was controlled by two run-time
parameters:

1. drift rate - the distance each peak moves drawn from
the uniform interval [0,50].

2. punctuation rate - how often the peaks move (the
number of generations before the next change).

For the drifting environment the punctuation rate = 1
(every generation). In the abrupt environment the

punctuation rate = 20. The magnitude of the change was
equivalent to 50 generations of gradual change associated
with the drifting environment. For the oscillating
environment the landscape cycles between two different
states created using the abrupt method. Once again the
punctuation rate = 20.

The CGA model parameters are based on previous
experiments in static optimisation (Kirley et al., 1998). A
40 bit binary chromosome (2 × 20 bits strings, one for
each dimension) was used to encode solutions. The grid
size was set to 15, ie. a population of 225 individuals. A
fitness nearest neighbour strategy was used for mate
selection. In this strategy the fitness values of each of the
eight adjacent cells are sampled. In a form of tournament
selection, the fittest individual from the local area is
selected as the mating partner. The crossover rate and
mutation rates were set to 0.6 and 0.05 respectively.

For each of the non-stationary landscapes four different
EA configurations were examined; a standard genetic
algorithm (GA) as described by Michalewicz (1996) and
three different connectivity parameter settings for the
CGA. The specific parameter settings were:

1. GA (standard genetic algorithm)

- population size = 225

- crossover rate = 0.6 (one point crossover)

- mutation rate = 0.05

2. FG (fine-grain model)

- local neighbourhood size = 1

3. Disaster (FG + intermediate rate of disturbances)

- disaster size (zone radius) = 5 cells

- disaster frequency = 0.3

4. Reload (disasters + memory)

- disaster size (zone radius) = 5 cells

- disaster frequency = 0.3

- random reloading of empty cells

- elite migration

4.3 RESULTS

The CGA and standard GA models were written in Java
and implemented on a Sun Ultra Sparc 1. All
configurations were executed 50 times for a maximum of
200 generations. The optimum value in each landscape
configuration is 100 (Figure 2).

To compare the performance of each configuration under
investigation we use the current-best metric described by
Grefenstette (1999). The current-best metric is the
average value of the best fitness value in the current
population. Figures 3 displays results for each of the
dynamic landscapes examined. In Figure 4 we compare
two additional time-averaged measures, online and offline

Figure 3: Current-best fitness vs generation for the each of the dynamic environments.

Figure 6: Time-average performance measures: Online
performance (dashed line) and Offline performance

(solid) for the reload configuration for each of the test
landscapes.

performance for the reload parameter settings. Offline
performance is a running average of the best solutions at
each timestep. Online performance is simply the mean
fitness for all individuals generated in a given run.

5 DISCUSSION
The CGA can be seen as a hybrid between a fine-grained
and a coarse-grained parallel GA. External stimuli
(disasters) alter the density of occupied cells in the grid
leading to abrupt changes in connectivity. These changes
generate population responses very different from the
slow, neo-Darwinian dynamics of standard GAs. The
resulting "patchy populations" that are formed maintain
some degree of independence allowing the exploration of
different regions of the search space. Consequently the
algorithm is able to explore novel solutions while
simultaneously refining optimal ones.

For non-stationary problems our objective is to track the
progression of good solutions across the fluctuating
fitness landscape. In this study, we compare the
performance of three different configurations of the CGA
and a canonical genetic algorithm. The CGA model
offers the advantage of providing a flexible, adaptive
population that is able to respond to a changing
environment.

Figure 3 provides a summary of the CGA performance in
each of the dynamic landscapes. In the oscillating
environment there is a significant difference between the
configurations examined. In the standard GA mode the
current best individual value fluctuates significantly
throughout the run. As the number of generations
approaches 200 the fitness value slowly increases towards
the known optimum. In the fine-grain and disaster modes
the algorithm was able to track near optimal solutions,
with an associated time delay. When the elite migrants
were reintroduced into the population (reload mode), the
algorithm was able to move the population towards a new
global optimum almost instantaneously.

For the drifting environment (Figure 3), an examination
of the standard GA plot reveals a large variation in the
current best value. In various stages (for example,
generations 20-30, 30-60) the algorithm appears to be
trapped in local optima. The performance of the fine-grain
and disaster configurations was very similar. Here the
optimum value in each generation fluctuated around the
mid 90s mark. The plot for the reload mode provides an
interesting result. In this configuration, when a change in
environment is detected, any vacant site in the pseudo-
landscape is re-initialised. Elite migrants are also re-
introduced into the population. The poor performance
depicted in this plot can be explained by the rate of
change of the environment. The population is unable to
adapt fully to the new problem before the environment
changes again. The influx of elite migrants each time the

landscape changes, has the negative effect of steering the
search into areas already examined. For the given
population size, after generation 100, more than half the
population in each generation is made of up individuals
reloaded from memory.

The abrupt environment is the final plot in Figure 3. In
this scenario the problem changed by a significant amount
every 20 generations. The CGA was able to track a near
optimal value. The fine-grain and disaster modes
produced similar results. The spatial distribution of the
CGA population provides the necessary basis to maintain
diversity of solutions. In the reload mode there appears to
be slightly less variation in the average fitness values.
However, the difference is not significant. In the standard
GA plot we see that changes to the fitness landscape have
dramatic effects on the current best value at times (for
example, generations 75-100, 160). As was the case in
each of the other dynamic environments, the standard GA
takes a longer time to adapt to the changing environment.

To further explore the implications of the modifications
included in the CGA for dynamic environments, we focus
our attention on time-averaged performance measures. In
Figure 4 online and offline measures for a typical trial are
plotted for the reload mode. The online plots are very
similar for all dynamic environments, starting at approx
25 and increasing to approx 35. In the earlier generations
the introduction of disasters tends to decrease the online
performance as expected. Similar trends are evident in the
offline performance. Variations in the offline performance
may be attributed to the rate of change of the
environment.

6 SUMMARY AND FUTURE WORK
The experimental results presented in this paper indicate
that the CGA is able to respond and adapt effectively to
dynamic environments. In the case where the environment
oscillates between states, the use of elite migrants
improved the overall performance. In the other non-
stationary environments considered, the spatial population
structure helps to maintain diversity in the population, and
consequently solution quality. It was found that the reload
option actually inhibits the search for optimal solutions if
the rate of change of the environment is too great. In all
dynamic environments considered the performance of the
standard GA, when tracking the optimal value, was
inferior to the CGA. The dynamic communication
topology of the CGA provides a biologically based
approach for solving optimisation problems in dynamic
environments.

In future work we will examine the performance of the
CGA on other proposed benchmarks and real-world
problems. An interesting research question is to analyse
the effectiveness of using the patchy sub populations to
evolve solutions for static instances of the dynamic
problem at the same time.

References

P.J. Angeline (1997). Tracking extrema in dynamic
environments. In Sixth International Conference on
Evolutionary Programming. pp.335-345. Springer-
Verlag.

J. Branke (1999a). Evolutionary Approaches to dynamic
optimization problems - A Survey. In A. Wu (ed.)
GECCO Workshop on Evolutionary Algorithms for
Dynamic Optimization Problems. pp. 134-137.

J. Branke (1999b). Memory-Enhanced Evolutionary
Algorithms for Changing Optimization Problems. In
Proceedings of the Congress on Evolutionary
Computation (CEC’99), IEEE, vol.3 pp. 1875-1882.

H. Cobb (1990). An investigation into the use of
hypermutation as an adaptive operator in genetic
algorithms having continuous time-dependent
nonstationary environments. Technical Report AIC-90-
001. Naval Research Laboratory, USA.

D. Dasgupta and D.R. McGregor (1992). Nonstationary
function optimization using the structured genetic
algorithm. In B. Manderick (ed) Parallel Problem Solving
from Nature - PPSN II. pp 145-154. Elsevier.

K. De Jong (1999). Evolving in a Changing World. In Z.
Ras and A. Skowron (eds) Foundation of Intelligent
Systems. Lecture Notes in Artificial Intelligence 1609 pp
513-519. Springer.

D. Goldberg and R. Smith (1987). Nonstationary function
optimization using genetic dominance and diploidy. In
Proceedings of the Second International Conference on
Genetic Algorithms. pp. 59-68. Morgan Kaufmann.

D.G. Green and M.G. Kirley (1999). Adaptation, diversity
and spatial patterns. Knowledge-Based Intelligent
Engineering Systems 4 (2).

J. Grefenstette (1999). Evolvability in Dynamic Fitness
Landscapes: A Genetic Algorithm Approach. In
Proceedings of the Congress on Evolutionary
Computation (CEC’99), IEEE, vol.3 pp. 1875-1882.

M. Kirley, X. Li, and D.G. Green. (1998). Investigation
of a cellular genetic algorithm that mimics landscape
ecology. In X.Yao et al. (eds), Simulated Evolution and
Learning SEAL98, Lecture Notes in Artificial Intelligence
1585. pp. 90-97. Springer.

J. Lewis, E. Hart and G. Ritchie (1998). A Comparison of
Dominance Mechanisms and Simple Mutation on Non-
Stationary Problems. In A. Eiben et al. (eds) Parallel
Problem Solving from Nature - PPSN V. Lecture Notes in
Computer Science 1498. pp 119-128. Springer.

S. J. Louis and Z. Xu (1996). Genetic algorithms for
open-shop scheduling and re-scheduling. In M. Cohen et
al. (eds) ISCA Eleventh International Conference on
Computers and Their Applications. pp 99-102.

Z. Michalewicz (1996). Genetic Algorithms + Data
Structures = Evolutionary Programming - Third Revised
Edition. Springer.

N. Mori, H. Kita and Y. Nishikawa (1997). Adaptation to
changing environments by means of the thermodynamical
genetic algorithm. In A. Eiben et al. (eds) Parallel
Problem Solving from Nature - PPSN V. Lecture Notes in
Computer Science 1498. pp 149-158. Springer.

R.W. Morrison and K.A. De Jong (1999). A test problem
generator for non-stationary environments. In
Proceedings of the Congress on Evolutionary
Computation (CEC’99), pp. 2047-2053.IEEE.

D. Whitley (1993). Cellular genetic algorithms. In S.
Forest (ed). Proceedings of the 5th Int. Conference on
Genetic Algorithms. pp.658-662. Morgan Kauffmann.

