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Abstract

This paper compares the performance of the
Bayesian optimisation algorithm (BOA) to
traditional Genetic Algorithms (GAs) such
as the simple GA, or an (u + A) Evolution
Strategy for a real-world telecommunication
problem. Users often notice that GAs per-
form well for real-world problems, but when
the problem is slightly scaled up or modified,
they sometimes fail unexpectedly. Compe-
tent GAs, such as BOA, however promise to
overcome this problem more efficiently, and
to behave more robustly on demanding prob-
lems. In this practical case study we use the
pruefernumber encoding as an example of a
bad encoding, that causes GAs difficulty in
finding a good solution. The results of the
experiments show that traditional GAs some-
times succeed and sometimes fail for differ-
ent parameter settings or modifications of the
encoding. The behaviour could not be pre-
dicted. The BOA however is able to perform
as well or better than the best traditional
GA, and more importantly does not fail once
in this case study. It seems that the BOA is a
step along the long road towards more robust
and competent GAs, that are easier to use by
real practitioners on problems with unknown
complexity.

1 Introduction

The development of more competent and robust GAs
has received more attention over the last few years.
These types of GAs promise the user to scale better
when used on difficult problems or bad encodings.

Until now competent GAs were mostly applied to ar-
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tificial lab environments. The purpose of this paper
is to use a competent GA (ComGA) for a real-world
telecommunication tree network design problem and
to compare its efficiency to traditional GAs. For the
encoding of the tree networks, the pruefernumber en-
coding is used. This encoding is highly suitable for
representing trees, but has the large disadvantage of
low locality (Palmer & Kershenbaum, 1994; Rothlauf
& Goldberg, 1999), making it very difficult for tradi-
tional GAs to find good solutions.

The paper is structured as follows. In the following
section we take a closer look at the motivation for
competent GAs. This is followed by a short overview
of the tree network design problem and the pruefer-
number encoding used. In section 4 we present the
different GAs (4.1) and the four different optimisation
cases (4.2). The results of the comparison between the
simple GAs and a competent GA (BOA) in section 5
are followed by concluding remarks.

2 The promise of competent GAs

This section provides a detailed description about
some problems with encodings and traditional GAs,
and why ComGAs could help a user to apply GAs to
problems of unknown complexity and properties.

Users are often confronted with the situation that a
GA does a good job for a small or easy problem,
but when scaled up to bigger or more complicated
problems, the traditional GA degrades or even breaks
down. The user is frustrated and starts knob twid-
dling until he gets good solutions (or not!). Research
is under way to help the user to overcome this problem
and to adjust the parameters of a GA autonomously
(Harik & Lobo, 1999). Nevertheless, finding good en-
codings, operators, and parameters that all fit together
is a difficult task and needs work, time, and sometimes
luck. The process of matching the encoding and the
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Figure 1: Necessary user interaction for traditional
GAs and ComGAs

GA often draws the line between failure or success of
optimisation. Figure 1 illustrates that when using a
traditional GA, the fitting between the GA, the en-
coding and the problem must be done iteratively by
hand. With ComGAs, at least the fitting of the en-
coding and the GA should be done autonomously by
the ComGA.

We must ask why a good fitting between the encoding
and the GA is necessary for the success of a GA? Some
of the requirements on good encodings can be postu-
lated following the theory of building blocks (Gold-
berg, 1989). For most of the current GAs the encoding
must be chosen such that the existing building blocks
(BB) in the gene are close together and not scattered
over the whole string. Otherwise the traditional re-
combination operators would frequently break up the
BB and the GA would not be able to detect the cor-
rect BBs (Harik, 1997). Also a high locality of the
encoding helps the GA to find its way to good solu-
tions. A high locality means that small changes in the
encoding lead to small changes in the encoded tree.
Traditional GA operators such as crossover and muta-
tion degrade on low locality encodings because in this
situation they behave like random search and do not
produce offspring which have much in common with
their parents.

To overcome this problem and to help the user, new
and more intelligent GA methods are necessary. These

kind of GAs should do the matching process between
the encoding and the GA autonomously (fig. 1), and
should be more robust when used on bad encodings.
Two different approaches to solve these problems are
applicable: Either the encoding can be modified in
such a manner that it is easier for a traditional GA to
find the correct BBs or the GA can be adjusted to the
properties of the encoding.

Changing the encoding means reordering the repre-
sentation that the BB are short and closed together.
When this is done successfully, a traditional GA should
be able to do a good job. Examples for this line of re-
search are fmGa (Goldberg et al., 1993) or GemGA
(Bandyopadhyay et al., 1998). When adjusting the
GA to the encoding, the GA must be able to detect
the linkage between the different alleles. During a GA
run new generations are produced according to the
gathered linkage informations. These kinds of compe-
tent GAs (ecGA (Harik, 1999), BOA (Pelikan et al.,
1999)) are able to "learn” the structure of the encod-
ing. They produce new individuals according to the
linkage they detect between the different alleles. In the
current case study we want to focus on the Bayesian
optimisation algorithm (BOA) for a telecommunica-
tion tree network design problem.

3 A case study in bad encodings:
Telecommunication tree network
design

This section gives a short description of the tree net-
work design problem and the chosen encoding.

3.1 The design problem

Finding good solutions for the tree network design
problem is important for many fields such as telecom-
munications, computers, transportation and distribut-
ing networks.

A tree network is defined as a connected graph with n
nodes and n — 1 links. There are no loops or rings in a
tree. Between any two nodes there exists only one pos-
sible path for the flow. The aim of the design process
is to minimise the overall cost of the telecommunica-
tion tree network. The location of the nodes, the level
of traffic between the different locations, and the cost
structure of the lines that can be used for construct-
ing the network are given. For fulfilling the demands
between the nodes different line types with different
capacities and costs are available. The cost of a line
consists of a fixed share for installing the line and a
length dependent share. The only design variable is



the structure of the tree. The structure is represented
by the pruefernumber (fig. 2) and describes between
which nodes in the network a link is established or
not. After determining the links between the nodes,
the overall flow over each link is calculated and a line
with the next higher available capacity is assigned to
the link. The overall cost of the network is calculated
by summing up the costs of all lines over all existing
links.

3.2 The pruefernumber encoding

The pruefernumber has the remarkable benefit that it
represents trees only and that all possible trees can be
represented by a pruefernumber.

In addition all trees are

O0—@ © represented equally. No

tree repair operators are nec-

(@——(s) essary when using GAs.

| Every possible number

represents a tree and is
valid (fig. 2).

pruefernumber 2 5 6 5

/1N

bitstring 010 101 011 101  Unfortunately, the prue-
fernumber has the major
Figure 2: A tree, its prue- drawback that the local-
fernumber and the corre- ity of the encoding is low
sponding bitstring and irregular over the en-
tire solution space (Rothlauf & Goldberg, 1999). Only
for star networks do small changes of the pruefernum-
ber lead to small changes in the encoded tree. For
all other networks a slightly different pruefernumber
often represents a completely different network. As
a result the pruefernumber causes problems for a GA
and seduces the user to start knob twiddling until he

is satisfied with the results.

The pruefernumber itself is a number with n — 2 digits
of base n for a tree with n nodes. For our investigation
the pruefernumber is represented as a bitstring.

A good description of the construction of the prue-
fernumber can be found in Palmer and Kershenbaum
(1994).

4 Experiments

4.1 Three different evolutionary optimisation
algorithms

For our investigation we compare the efficiency of
the Bayesian optimisation algorithm (BOA) (Pelikan,
1999) with a modified, crossover based (u + ) Evo-
lution Strategy (Béack & Schwefel, 1995) and a simple
Genetic Algorithm.

4.1.1 A Simple Genetic Algorithm

The simple GA (SGA) is based on Goldberg’s basic
implementation (Goldberg, 1989).We must tell the GA
the probability of crossover and mutation and what
kind of selection and recombination scheme should be
used. In all our runs we use tournament selection. For
recombination either one-point or uniform crossover is
used. The crossover rate was normally set to 1 and no
mutation was used.

4.1.2 An Evolution Strategy

The (u + A) Evolution Strategy (ES) produces new
generations mainly with crossover and not mutation.
Because the locality of the pruefernumber encoding
is low, a mutation based approach would result more
often in a random rather than a precise search. In each
generation A individuals are created by recombination
(uniform or one-point crossover) and mutation from
the p parent individuals. Then the new A individuals
are examined and the p best are chosen from all A+ p
individuals. One consequence of this strategy is that
a once found good solution can only be replaced by
better solutions.

4.1.3 The Bayesian Optimisation Algorithm

The BOA must be told the population size n , the max-
imum length k of the Building Blocks, the percentage
of parents and offspring and the threshold e for fixing
the alleles in the gene. It terminates, when all alleles
are fixed and the population is converged. In all runs
the truncation selection with a percentage of parents
7 = 50% was used. The worst 50% of the population
are replaced by the offspring. For the length of the
BBs equal to zero (no interactions between the bits)
the BOA should behave like a simple GA with uniform
crossover and a proportional selection scheme. A more
complete description of the algorithm can be found in
Pelikan et al., 1999.

4.2 Four network design problems

Our network problems are derived from a real-world
26-node problem from a company with locations all
over Germany. To make our case study more repre-
sentative we have chosen four different design prob-
lems: First we have a 16-node problem with all traffic
ending in node 1. In the second problem, one of the
nodes is removed and some additional traffic is added.
The third problem uses a modified cost-function for
the lines. Finally we look at a 16-node problem with
traffic between all nodes.



4.2.1 Problem 1: One headquarter and 15
branch offices

This problem is the original design problem.

All 15 branch offices (node 2
to 16) communicate only with
the headquarter (node 1). For
the cost structure we use the
cost model of the German Tele-
com from 1996. The cost of
renting a line depends on the
length and the capacity of the
link. Also for installing a
link some money must be paid.
Possible line capacities are 64
kBit/s, 512 kBit/s and 2,048
MBit/s. The optimal solution
for this problem (fig. 3) is 60883
DM/month. The complexity of the problem is low.

Kasten: 50883.71

Figure 3: Best solu-
tion for problem 1

4.2.2 Problem 2: One headquarter and only
14 branches

If one node is left out and some additional traffic is
added, finding the best solution is a little bit more
involved than in problem 1.

We illustrate in figure 2 that
each pruefernumber is encoded
as a binary bitstring. There-
fore we can get invalid solu-
tions.! The probability of get-
ting an invalid digit is about
% = 6.25%. With 13 digits in
each pruefernumber the proba-
bility of getting a valid bitstring
is about 0.9375'% = 43.2%.
Invalid pruefernumbers are re-
paired by shifting the highest
order bit from 1 to 0 to get valid
numbers. This causes the encoding to be a little bit
more complicated and disruptive and makes it harder
for the GA.

Kosten: 58891.78

Figure 4: Best solu-
tion for problem 2

4.2.3 Problem 3: One headquarter, 15
branches and cheap lines for everybody

In this scenario (fig. 5(a)) the costs for installing a line
is only 10% of the costs in problem 1. Therefore the
cost of a link is mainly determined by the length of the
links. Hence the optimal structure is more like a min-
imum spanning tree. If the cost of the link would be
determined only by the length of the link, and if there
was only one possible capacity, the optimal solution is
the minimum spanning tree. Otherwise the problem is

!The binary string 1111 encodes the node number 16,
but there are only 15 nodes.

Kosten: 28557.29

Koster: 11293845

(a) problem 3 (b) problem 4

Figure 5: Optimal solutions for problem 3 and 4

exactly like problem 1.

4.2.4 Problem 4: 4 headquarters, 12
branches and all are working together

In problem 4 (fig. 5(b)) the demand matrix is com-
pletely filled. Between every node i and j exists some
traffic. Between the four headquarters (node 1, 2, 3
and 4) the traffic is uniformly distributed between 256
kBit/s and 512 kBit/s. Every other node communi-
cates with the four headquarters and has a uniform
demand between 0 and 512 kBit/s. This demand is
split into the headquarters at a ratio of 0.4, 0.3 0.2
and 0.1 for the node 1, 2, 3 and 42. Between all 12
branch offices the demand of the traffic is uniformly
distributed between 0 and 64 kBit/s. To make the
problem more realistic two additional line types are
available. It is possible to use a line of 128 kBit/s and
4096 kBit/s with twice the cost of a 64kBit/s resp. the
2048 kBit/s line.

5 Experimental results

This section presents computer experiments investi-
gating the performance of the different optimisation
methods. The goal is not to find exactly the “opti-
mal” parameter settings, but more to have a closer
look at the robustness. To get more generality, all
four different optimisation scenarios (4.2) are studied.
For optimisation we use the simple Genetic Algorithm
(SGA), a crossover-based Evolution Strategy (ES) and
the Bayesian optimisation algorithm (BOA) from sub-
section 4.1.

?Node 1 is the most important node and 40% of the
traffic of the branches ends there, in node 2 30% of the
traffic ends, and so on.



The section starts with a description of the optimisa-
tion parameters. Then the performance of the simple
GA is compared with the efficiency of the ES. That is
followed by an investigation of the performance of the
BOA. Also some parameter twiddling is done to get
an idea of the robustness of the optimisation methods.

5.1 The design of the computer experiments

Because of the high complexity of the problem and
to gain statistical evidence from the results, 100 runs
were performed for each parameter setting. The runs
terminated after convergence, or if no convergence is
possible, after 200 generations.? The population size
is varied from 1000 to 7500 individuals®.

In Abuali et al. (1995) it was shown that a GA works
well on the pruefernumber encoding for one-point or
uniform crossover. As we get the best results using
tournament selection we use this selection scheme with
a tournament size of 3. In the (u+ \) Evolution Strat-
egy the size of the parents u is equal to the size of the
offspring A. For the BOA the fittest 50% of the pop-
ulation are treated as parents. The offspring replace
the worst 50% of the population in each generation.
The threshold € is set to 0.01. The maximum length &
of the Building Blocks is set to 0,1,2,3 or 5. The mu-
tation rate for the SGA and the ES is set to zero. For
recombination either one-point or uniform crossover is
used. For the encoding of the pruefernumber we use
the bitstring from fig. 2. As an extension and to make
the encoding more demanding for a GA the positions
of the bits are scrambled randomly. This eliminates
the effort of the position of an allele in the string.

5.2 “Traditional” GAs

We want to compare the efficiency of a simple GA and
a crossover-based (u+ A) Evolution strategy for differ-
ent crossover schemes and pruefernumber encodings.

In figure 6 the averaged lowest cost for problem 1 is
shown. The cost of the cheapest solution at the end
of the run is plotted over the number of fitness calls
till convergence. It can be seen that the SGA with
uniform crossover performs poorly and is not able to
detect good solutions. Whereas an ES with uniform
crossover performs as well as an ES or SGA with one-
point crossover. The SGA and as well an ES degrade
for problem 2 (figure 7) when using uniform crossover.

30Only very few runs were stopped after 200 generations.
As we use no mutation the populations converged typically
after 50 to 120 generations.

4The populations converged typically after 50 000 (1000
ind.) respective 400 000 (7500 ind.) fitness calls

Only GAs with one-point crossover can find good so-
lutions. The situation is similar for problem 3 (fig.
8) and problem 4 (fig. 9). The ES with one-point
crossover performs best and the SGA with one-point
crossover is slightly worse. An ES and a SGA with
uniform crossover fail. If the positions of the pruefer-
number bitstring are scrambled randomly the ES and
the SGA fail for each of the four scenarios (fig. 6-9).
For onepoint crossover, where we have seen good re-
sults for the unscrambled encoding, the GAs degrade.
Looking at the effort of different crossover operators
reveals that one-point crossover is mostly better than
uniform crossover. Scrambling the positions of the bit-
strings causes the GAs to fail. The GAs are not able
to detect the correct BBs.

Reasons for this unexpected result could be due to the
low locality of the pruefernumber and the importance
of the order of the digits in the bitstring®. Using two
long substrings (one-point crossover) is better for the
fitness of the offspring than using a lot of small “sub-
strings” of length 1 (uniform crossover).

Trying to adjust the GA more to the problem can im-
prove the results a little bit. In figure 10 and 11 differ-
ent plots for problem 2, a crossover rate of 0.8 and a
mutation rate of 0.01 and 0.02 are shown for one-point
and uniform crossover. It can be seen that finding the
best parameters is tricky. Adding mutation leads for
one-point crossover to better results for the ES and to
worse results for the SGA. For uniform crossover only a
mutation rate of 0.01 increases the performance of the
SGA. When using an ES the performance of uniform
crossover is better with mutation.

The problems with “traditional” GAs are illustrated
with this case study very clearly. The robustness of
the GAs could not be foreseen and they could degrade
on problems by slightly changing the parameters or
modifying the encoding.

5.3 Competent GAs

As we have seen in subsection 5.2 that uniform
crossover is bad for the performance of a GA, the BOA
is expected to have a hard time. We have seen that it
is advantageous to transfer longer bit chains from the
parents to the offspring, but the BOA must construct
this chains from the linkage between the different al-
leles in the string.

Figure 12 shows the performance of the BOA for differ-
ent BB lengths k£ and compares it to the performance
of the best traditional GAs for problem 1. Increasing

SCompare the performance of the GA for the scrambled
and unscrambled encoding.
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Figure 6: The performance of the SGA and the ES on
problem 1. The SGA fails for uniform crossover. Both
GAs fail for a scrambled encoding.

Figure 9: The performance of the SGA and the ES on
problem 4. They perform well for onepoint crossover.
Both fail for uniform crossover or scrambled encoding.
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k leads to better results and for £ = 5 the performance
of the BOA is about the same as the best traditional
GA (ES with uniform crossover). For k = 0 the per-
formance of the BOA is approximately the same as a
SGA with uniform crossover, so this case is missing in
all figures. In figure 13, 14 and 15 the performance
of the BOA is shown for problem 2, 3 and 4. In all
plots the BOA behaves for high £’s about equally and
performs as well as the best “traditional” GA. For the
scrambled pruefernumber bitstring the performance of
the BOA for £ = 5 is a little bit worse than for the
unscrambled bitstring. Nevertheless the performance
is in comparison to traditional GAs (fig. 6-9) quite
good. The BOA performs well, the traditional GAs
fail.

To have a look at the robustness of the BOA the pa-
rameters are varied for problem 2 and the effect on
the solution quality is examined. Modifying the ratio
between parents and offspring of the BOA for k = 1 in
figure 16 shows no large changes. The BOA performs a
little bit better, but we get no dramatic improvements
or deterioration.

Comparing all results shows that the BOA is able to
find good solutions. The effort for the more complex
statistical model is larger, but the algorithm is in com-
parison to traditional GAs able to find good solutions
for all reasonable parameter settings and it does not
degrade on bad encodings. The behaviour of the BOA
is robust. Even for a scrambled pruefernumber bit-
string the BOA can detect good solutions, whereas the
traditional GAs fail.

6 Conclusion

The experiments have shown that the BOA, as an ex-
ample for competent GAs, is able to keep the promise
of more robust GAs for a special real-world telecom-
munication problem. The BOA always performs well
independently of the parameter settings or the modi-
fications of the encoding, whereas the traditional GAs
like simple GA and Evolution Strategy sometimes fail
and sometimes succeed. Even when scrambling the
positions of the pruefernumber bitstring randomly the
BOA was able to find good solutions. The traditional
GAs however failed. The BOA seems to be able to
detect the linkage also for bad encodings. Using the
BOA means more computational effort, but the user is
rewarded with a more robust algorithm. This should
increase the acceptance of GAs for users who solely
want to solve their problems and are not interested in
finding exactly the optimal parameter settings or en-
codings. It was shown that the BOA is a step on the
long road to user-friendly, easy to handle, robust and
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Figure 12: The performance of the BOA on problem 1
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reliable Genetic Algorithms.
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