
Modeling GA Performance for Control Parameter Optimization

Vincent A. Cicirello

Robotics Institute

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

vincent+@cs.cmu.edu phone: 412-268-1416

Stephen F. Smith

Robotics Institute

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

sfs@cs.cmu.edu phone: 412-268-8811

Abstract

The optimization of the control parameters

of genetic algorithms is often a time consum-

ing and tedious task. In this work we take

the meta-level genetic algorithm approach to

control parameter optimization. We enhance

this process by incorporating a neural net-

work for �tness evaluation. This neural net-

work is trained to learn the complex inter-

actions of the genetic algorithm control pa-

rameters and is used to predict the perfor-

mance of the genetic algorithm relative to

values of these control parameters. To vali-

date our approach we describe a genetic algo-

rithm for the largest common subgraph prob-

lem that we develop using this neural network

enhanced meta-level genetic algorithm. The

resulting genetic algorithm signi�cantly out-

performs a hand-tuned variant and is shown

to be competitive with a hill-climbing algo-

rithm used in practical applications.

1 Introduction

Genetic algorithms use a number of parameters to

control their evolutionary search for the solution to

their given problems. Some of these include rate of

crossover, rate of mutation, maximum number of gen-

erations, number of individuals in the population, and

so forth. There are no hard and fast rules for choosing

appropriate values for these parameters. An optimal

or near-optimal set of control parameters for one ge-

netic algorithm or genetic algorithm application does

not generalize to all cases. Choosing values for the

control parameters is often handled as a problem of

trial and error. It is common practice to hand opti-

mize the control parameters by tuning each one at a

time. This can be a very time consuming and tedious

task. And furthermore, this practice of tuning the con-

trol parameters one at a time is not likely to result in

the optimal parameter set as the parameters are not

independent and often interact in complex ways.

The problem of �nding optimal control parameters for

genetic algorithms has been studied by many (De Jong

1975; 1980; Grefenstette 1986; Scha�er et al. 1989;

Bramlette 1991; Wu & Chow 1995; Eiben, Hinterd-

ing, & Michalewicz 1999). Several of these approaches

incorporate a meta-level genetic algorithm. In the

present work, we take such a meta-level genetic algo-

rithm approach to optimizing genetic algorithm con-

trol parameters. Executing the primary genetic algo-

rithm to evaluate the �tness of a set of control pa-

rameters can be a computationally expensive opera-

tion particularly if the given set of control parameters

results in high convergence times. As an attempt at

improving the meta-level genetic algorithm approach

we incorporate a neural network for �tness evaluation.

This neural network is trained to learn the e�ects of

the complex interactions of the control parameters on

both the accuracy of the genetic algorithmas well as its

computational time. This neural network is then used

by the meta-level genetic algorithm to predict the per-

formance of the genetic algorithm for which optimal

control parameters are sought. Thus, �tness evalua-

tion becomes a far less expensive operation.

The motivation of this work is the development of a

genetic algorithm for the largest common subgraph

problem. Herein we describe our search for the opti-

mal control parameters for this genetic algorithm. We

begin by describing a genetic algorithm for the largest

common subgraph problem along with our attempt at

hand-tuning the control parameters. A neural network

then learns a model of this genetic algorithm's perfor-

mance relative to control parameter values. Optimal

control parameters are then evolved with the meta-

level genetic algorithm using this \surrogate" neural

network model for �tness evaluation. The resulting ge-



netic algorithm for the largest common subgraph prob-

lem is shown to be competitive with, and in some cir-

cumstances superior to, a hill-climbing algorithm used

in practical applications.

Section 2 describes the genetic algorithmdeveloped for

the largest common subgraph problem. In Section 3

we describe the techniques employed to optimize the

control parameters. Experimental results of the meta-

level optimization process as well as results comparing

the performance of the optimized genetic algorithm to

a hill-climbing algorithm are presented in Section 4.

Related work is discussed in Section 5. And �nally

Section 6 discusses conclusions.

2 Largest Common Subgraph Genetic

Algorithm

The largest common subgraph problem and other

closely related problems such as maximum subgraph

matching, graph isomorphism, subgraph isomorphism,

and error-correcting graph isomorphism are impor-

tant in many applications. Some of these applications

include chemical structure classi�cation, sub-circuit

identi�cation (Ohlrich et al. 1993), VLSI (Kodanda-

pani & McGrath 1986), CAD model comparison (Elin-

son, Nau, & Regli 1997; Cicirello & Regli 1999;

Cicirello 1999), pattern recognition (Cho & Kim 1992;

Lu, Ren, & Suen 1991; Pearce, Caelli, & Bischof 1994),

machine vision (Wong 1992; Christmas, Kittler, &

Petrou 1995), and case-based reasoning (Andersen et

al. 1994; Sanders, Kettler, & Hendler 1997).

The largest common subgraph problem seeks a sub-

graph from each of a pair of graphs such that these

subgraphs are isomorphic and such that this common

subgraph has the largest number of edges of all possi-

ble common subgraphs. This problem is known to be

in the class of NP-complete problems and is computa-

tionally intractable (Garey & Johnson 1979). Due to

its utility in a wide array of application areas, an e�-

cient approximation to the largest common subgraph

problem would be bene�cial.

Shoukry and Aboutabl (Shoukry & Aboutabl 1996)

describe an inexact solution to the largest common

subgraph problem using a two-stage Hop�eld neural

network. They show that their algorithm is easily

parallelized and compare its performance to a simi-

lar algorithm. Another inexact solution to the largest

common subgraph problem is the hill-climbing ap-

proach of Cicirello and Regli (Cicirello & Regli 1999;

Cicirello 1999). They take an iterative improvement

approach and restart the algorithm at random starting

points as an attempt at combating the problem of local

extrema. Algorithms for the closely related problem

of error-correcting graph isomorphism include those of

Messmer and Bunke (Messmer & Bunke 1996), Almo-

hamad and Du�uaa (Almohamad & Du�uaa 1993),

and Wang et al. (Wang, Fan, & Horng 1997).

In this work we develop a genetic algorithm approach

to the largest common subgraph problem. Chromo-

somes represent node permutations with individual al-

leles representing correspondences between nodes. In-

dices into the chromosome represent the nodes of the

graph with the smaller number of nodes. The val-

ues at the individual locations within the chromosome

represent nodes from the second graph. The complete

chromosome represents a mapping from the nodes of

the �rst graph represented by the indices to that of

the second graph represented by the values.

The �tness of a chromosome is the number of matched

edges in the mapping represented by the given chro-

mosome. Roulette wheel selection is used with each

chromosome in the population taking a portion of the

roulette wheel based on the value of its �tness evalua-

tion. An elitist strategy is also incorporated in which

the best two chromosomes in the population are car-

ried over to the next generation. These two elite indi-

viduals do not undergo mutation or crossover.

\Swap" mutation is used in which the value of each al-

lele is swapped with some other allele with some small

probability. If the graphs are of di�ering numbers of

nodes there are two choices of mutation operator: 1)

swap two alleles or 2) swap the value of one allele with

a node not currently in the chromosome.

A crossover operator that is loosely based on par-

tially matched crossover PMX is used. Wang et

al. (Wang, Fan, & Horng 1997) make use of PMX as

described in Goldberg (Goldberg 1989) within their

genetic algorithm for the closely related problem of

error-correcting graph isomorphism. In the present

work we have adopted a uniform variation of PMX.

Instead of choosing a segment of the chromosomes to

exchange, each allele is exchanged with some proba-

bility. Consider an example.

� Consider chromosomes f 5, 2, 3, 4, 1, 6 g and f 1,

4, 6, 2, 5, 3 g

� Crossover at points 1 and 3 to result in f 1, 2, 6,

4, 1, 6 g and f 5, 4, 3, 2, 5, 3 g

� As a result it is necessary to crossover at points 5

and 6 to obtain f 1, 2, 6, 4, 5, 3 g and f 5, 4, 3,

2, 1, 6 g

Finally, the following halting criteria are used: 1) the



�tness of some individual is equal to the number of

edges in one of the graphs (in this case the graphs

are actually subgraph isomorphic and that subgraph

isomorphism is found); 2) the �tness of all individuals

in the population are equal; 3) the �tness of the least

�t chromosome is within some small tolerance of the

�tness of the most �t individual; 4) some maximum

number of generations have been evolved; or 5) some

number of generations evolve with no improvement on

the �tness of the most �t individual.

3 Control Parameter Optimization

The genetic algorithm that is described in Section 2

can be de�ned by the control parameter set � =

fP;C; U;M; T; Sg. P is the size of the population.

C is the crossover rate. U is the probability any

given allele is involved in crossover. M is the mu-

tation rate. T is the halting tolerance described in

Section 2. That is, the genetic algorithm halts if
Fitness(MostFit)�Fitness(LeastFit)

Fitness(MostFit) < T . And S controls

which mutation operator is used in the case of graphs

of di�ering numbers of nodes. That is, when muta-

tion occurs the operator that swaps the values of two

alleles is chosen with probability S and the operator

that swaps the value of an allele with a node not in

the current mapping is chosen with probability 1� S.

Our �rst attempt at the optimization of these control

parameters was one of hand-tuning. We began with

an initial set of control parameter settings taken from

standard practice and gradually perturbed one param-

eter at a time keeping the result provided it improved

the average performance of the genetic algorithm. The

result of this hand-optimization was the control pa-

rameter set D = fP = 50; C = 0:75; U = 0:50;M =

0:001; S = 0:50; T = 0:01g. Figure 1 compares the

genetic algorithm for the largest common subgraph

problem using these hand-tuned control parameters to

the hill-climbing approach of (Cicirello & Regli 1999;

Cicirello 1999). Using these hand-tuned parameters,

the genetic algorithm is less accurate than the hill-

climbing algorithm. However, it requires far less CPU

time to convergence. Perhaps it is possible to trade

o� more CPU time for added accuracy in the solu-

tions through the use of a more sophisticated control

parameter optimization strategy.

In this section, we formulate our approach to optimiz-

ing the control parameters of the genetic algorithm for

the largest common subgraph problem. A meta-level

genetic algorithm approach is taken. A neural network

is used to generate predictions of how well the genetic

algorithm will perform given a set of control parame-

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90

Genetic Algorithm
Hill-climbing

(a)

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90

Genetic Algorithm
Hill-climbing

(b)

Figure 1: Plots comparing the genetic algorithm with

hand-tuned control parameters to a hill-climbing algo-

rithm: (a) Accuracy vs graph size; (b) CPU time in

seconds vs graph size.

ters. This neural network prediction is used for �tness

evaluation by the meta-level genetic algorithm.

3.1 Neural Network Prediction of

Performance

The �tness function of the meta-level genetic algo-

rithm uses a neural network prediction of the perfor-

mance of the primary genetic algorithm given a set of

control parameters. The idea is that since it would be

a computationally expensive operation for the meta-

level genetic algorithm to actually execute the primary

genetic algorithm for each control parameter set that

it examines, a neural network can perhaps learn the

complex interactions of the control parameters.

The neural network we develop in this work has six

input units. These six input units are the values of the

control parameters � = fP;C; U;M; T; Sg. There is a

hidden layer of six sigmoid units in the network and



four sigmoid output units. These four output units

encode the value Fitness = round(159:0t1+t210 ). t1 is

the average accuracy of the genetic algorithmusing the

given control parameters afterm runs of the algorithm.

Accuracy is de�ned as
jEsj

jEj
where Es is the edge set

of the resulting approximation to the largest common

subgraph and E is the edge set of the actual largest

common subgraph. t2 is de�ned as the ratio 1 � C

Cm

where C is the average CPU time to convergence using

the given control parameters and Cm is the maximum

CPU time to convergence of any control parameter set

in the neural network training set. These output units

are treated as a binary representation of the value of

Fitness.

Training data for the neural network is gathered by

�rst generating a large number of control parameter

sets at random. Then the genetic algorithm is exe-

cuted several times using each of these random con-

trol parameter sets and the \true" value for Fitness

is �nally calculated.

A collection of isomorphic pairs of random graphs

ranging in size from 5 to 20 nodes were generated. This

collection was used to test the performance of sets of

control parameters. A total of 1250 control parameter

sets were generated randomly to be used as training

data. These control parameters were distributed in

the ranges described in Section 3.2. Fitness for each

of these 1250 control parameter sets were then calcu-

lated in batch by executing the largest common sub-

graph genetic algorithm on each pair of graphs in the

randomly generated collection.

The data was then divided into a training set of 1000

control parameter sets and a hold-out set of 250 con-

trol parameter sets. Back-propagation was used to

train the neural network with a learning rate of 0.5

and momentum of 0.5 for approximately 4000 epochs.

Accuracy of 69.8% was obtained over the training set

and 62.0% accuracy was obtained over the hold-out set

where we de�ne accuracy as the percentage of param-

eter sets for which the neural network correctly pre-

dicts the performance of the genetic algorithm. A cor-

rect prediction means that the �tness value predicted

by the neural network is within 0.03 of the actual �t-

ness value. The hold-out set was used to prevent over-

�tting of the training data. That is, the hold-out set

was not used as training data but the neural network

that resulted in the best performance over the hold-out

set was maintained during this training phase.

3.2 Meta-level Genetic Algorithm

For the meta-level genetic algorithm, we use a two-

point crossover operator with a crossover rate of 0.95,

a mutation rate of 0.0025, and a population size of 100.

Roulette wheel selection based on the �tness of the in-

dividuals of the population is used but with an elitist

strategy ensuring that the two most �t individuals of

the population survive in tact to the next generation.

The only stopping criterion is that the entire popu-

lation is of the same �tness. The meta-level genetic

algorithm uses the neural network developed in Sec-

tion 3.1 to evaluate the �tness of individuals in the

population.

Individuals are encoded as binary strings with each

control parameter encoded by some number of bits.

The population size is encoded using 4 bits. Each of

these 16 substrings correspond to a population size

ranging from 10 to 160 in increments of 10. Crossover

rate is encoded with the next 4 bits representing val-

ues between 0.25 and 1.0 in increments of 0.05. The

uniform parameter for the uniform crossover operator

and the mutation operator selector are each encoded

with 4 bits representing values between 0.15 and 0.9 in

increments of 0.05. The mutation rate is encoded with

4 bits representing the 16 values 2�i for i = 0; : : : ; 15.

Fitness tolerance is encoded in the same manner as is

the mutation rate. The complete individual is 24 bits

in length allowing for 224 unique individuals.

4 Experimental Results

4.1 Control Parameter Experiments

Using the meta-level genetic algorithm described in

Section 3.2 with the neural network as described in

Section 3.1 for �tness evaluation, a population of 100

optimal sets of control parameters were evolved. A

small sample of these can be seen in Table 1. The

thing that stands out the most in the �nal population

of parameter sets is that all individuals in this pop-

ulation state that the optimal mutation rate is either

0.03125 or 0.0625. This essentially signi�es conver-

gence for the value of the mutation rate in that these

two values are consecutive given the encoding scheme

used by the meta-level genetic algorithm. Looking over

these lists with the human eye reveals no obvious re-

lationship between the values of the parameters with

respect to performance of the genetic algorithm. The

�nal population evolved in 67 generations of the meta-

level genetic algorithm.

During the entire run of the meta-level genetic algo-

rithm, roughly 5000-6000 unique control parameter



Table 1: Sample of control parameter sets evolved by

the meta-level genetic algorithm.

P C U M S T

A 60 0.55 0.70 0.03125 0.50 0.003906

B 20 0.55 0.85 0.0625 0.50 0.000061

C 100 0.95 0.50 0.0625 0.80 0.000031

sets were examined. This is a very rough estimate.

6700 not necessarily unique parameter sets were ex-

amined (population of 100 and 67 generations). Fac-

toring in elitism results in 6566 not necessarily unique

parameter sets. With the crossover rate of 0.95, ap-

proximately 95% of each population is the result of

crossover leaving 6238 possibly unique control param-

eter sets. A number of these are likely to be dupli-

cates arriving at a very rough estimate of 5000-6000

unique parameter sets examined by the meta-level ge-

netic algorithm. Recall that the neural network was

trained with only 1000 training examples. Training a

neural network to learn how the control parameters

interact required only executing the largest common

subgraph genetic algorithm with 1000 control param-

eter sets rather than the 5000 that would have been

required without using the neural network.

Let us now take a look at just how well the evolved

control parameters perform. First note that none of

the control parameter sets in Table 1 were in the neu-

ral network training set. These three were chosen at

random from the �nal population. An experiment was

conducted to compare their performance to that of a

control parameter set that was derived through hand-

tuning.

As can be seen in Figure 2 (a), all three of these evolved

control parameter sets perform better than the hand-

tuned parameter set in terms of accuracy. It is di�cult

to judge which of these three is best in terms of accu-

racy. But choosing one based only on accuracy is not

necessary. Figure 2 (b) shows a plot of the average

CPU time required by the largest common subgraph

genetic algorithm using each of these four parameter

sets. Control parameter set B is clearly the winner

among sets A, B, and C. It is not, however, faster

than the hand-tuned set. But taking both accuracy

and CPU time into consideration, there is a clear ar-

gument in favor of control parameter set B as the best

of these four.

0.7

0.75

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20

A
B
C
D

(a)

0

5

10

15

20

25

30

35

40

45

4 6 8 10 12 14 16 18 20

A
B
C
D

(b)

Figure 2: Plots comparing the performance of the con-

trol parameter sets in Table 1 with that of the hand-

tuned set, D = (P = 50; C = 0:75; U = 0:50;M =

0:001; S = 0:50; T = 0:01): (a) plot of accuracy vs

graph size; (b) plot of CPU time in seconds vs graph

size.

4.2 Comparison with Hill-Climbing

Here we experimentally compare the genetic algorithm

described in this work using the control parameter set-

tings derived in Section 4.1 to the hill-climbing algo-

rithm described in (Cicirello & Regli 1999; Cicirello

1999). The results are shown in Figure 3. The algo-

rithms were executed on randomly generated isomor-

phic pairs of graphs from size 5 nodes to 90 nodes.

Isomorphic pairs were chosen for the experiment to al-

low for some basis of computing the accuracy of the

result. The experiments were performed on a Pentium

III using the Linux operating system and C++ for im-

plementation.

The genetic algorithm described in this work and the

hill-climbing algorithm compare similarly in terms of

accuracy. However, the more interesting result is that

of the CPU time comparison. For graphs with 45



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90

Genetic Algorithm
Hill-climbing

(a)

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90

Genetic Algorithm
Hill-climbing

(b)

Figure 3: Plots comparing the genetic algorithm ap-

proach to a hill-climbing algorithm. The control pa-

rameters obtained through means of meta-level opti-

mization are used: (a) Accuracy vs graph size; (b)

CPU time in seconds vs graph size.

nodes or less the hill-climbing algorithm requires less

CPU time then does the genetic algorithm. But for

graphs with more than 45 nodes, the genetic algo-

rithm of this work far out-performs the hill-climbing

algorithm.

5 Related Work

One of the earliest studies of genetic algorithm con-

trol parameters is that of De Jong (De Jong 1975).

He analyzed a class of genetic algorithms for function

optimization. De Jong's optimal control parameters

became widely used despite lack of knowledge of opti-

mality with respect to problems outside of his test col-

lection. Scha�er et al. (Scha�er et al. 1989) expanded

De Jong's test suite and performed a more systematic

study of the e�ects of the control parameters.

Grefenstette (Grefenstette 1986) saw the problem of

tuning the control parameters of the primary genetic

algorithm as a secondary or meta-level optimization

problem. This meta-level optimization problem is one

of searching a parameterized space of genetic algo-

rithms. To solve this meta-level optimization problem,

Grefenstette made use of a genetic algorithm. This

meta-level genetic algorithm was parameterized with

De Jong's optimal control parameters: population of

50, cross-over rate of 0.6, mutation rate of 0.001, gen-

eration gap of 1.0, scaling window of 7, and an elitist

strategy (De Jong 1975). Grefenstette's results showed

a slight improvement over De Jong's with control pa-

rameters: population size of 30, cross-over rate of 0.95,

mutation rate of 0.01, and an elitist strategy (Grefen-

stette 1986).

Bramlette (Bramlette 1991) presents modi�ed meth-

ods of selecting initial populations and mutation op-

erators for improving the performance of genetic al-

gorithms for function optimization. He tests his tech-

niques on a meta-level genetic algorithm to optimize

the control parameters for some other genetic algo-

rithm.

Wu and Chow (Wu & Chow 1995) apply a meta-level

genetic algorithm approach to optimizing the control

parameters of genetic algorithms for nonlinear mixed

discrete-integer optimization problems. They supply

results of experiments on three such problems.

De Jong (De Jong 1980) applies a genetic algorithm

approach to control parameter optimization of dynam-

ical systems, not necessarily to control parameters of

a genetic algorithm.

Eiben et al. (Eiben, Hinterding, & Michalewicz 1999)

argue for control parameters that evolve during the

course of execution. The idea is to tune the genetic

algorithm to the problem while searching for the so-

lution. Cao and Wu (Cao & Wu 1999) take this ap-

proach and use a Markov process to adapt the control

parameters.

6 Conclusions

In this work we have developed a neural network en-

hanced meta-level genetic algorithm approach to con-

trol parameter optimization. For �tness evaluation,

the meta-level genetic algorithm makes use of a neural

network prediction of the performance of the primary

genetic algorithm given a set of control parameters as

input. By training a neural network to learn the com-

plex interactions of the control parameters of the ge-

netic algorithm, we are able to provide an e�cient al-

ternative to running the actual algorithm for purposes

of meta-level optimization.



This approach to meta-level control parameter opti-

mization has allowed us to develop a genetic algorithm

for evolving inexact solutions to the largest common

subgraph problem e�ciently and accurately. The over-

all approach of using a genetic algorithm for �nding ap-

proximate solutions to the largest common subgraph

problem has been shown to be asymptotically more

e�cient than hill-climbing. The solutions produced

by this genetic algorithm are also just as accurate as

the solutions of the hill-climbing algorithm. The re-

sults of the experiments presented in this work suggest

that for relatively small graphs of roughly 40 nodes or

less the hill-climbing algorithm performs best, but for

larger graphs the genetic algorithm of this work far

out-performs the hill-climbing algorithm.

Further experimental evidence is necessary to fully un-

derstand the bene�ts of this evolutionary approach to

the largest common subgraph problem. For example,

it would be bene�cial to conduct experiments examin-

ing the performance of the genetic algorithm for other

types of random graphs such as varying the density of

edges of these graphs as well as labeling the nodes.

It may also be bene�cial to apply the techniques of this

work to other control parameter optimization prob-

lems. For example, neural network models of the per-

formance of such algorithms as simulated annealing

and tabu search relative to their respective control pa-

rameters may be built and used for the purpose of

control parameter optimization.

References

Almohamad, H. A., and Du�uaa, S. O. 1993. A

linear programming approach for the weighted graph

matching problem. IEEE Transactions on Pattern

Analysis and Machine Intelligence 15(5):522{525.

Andersen, W. A.; Hendler, J. A.; Evett, M. P.; and

Kettler, B. P. 1994. Massively parallel matching of

knowledge structures. In Kitano, H., and Hendler, J.,

eds., Massively Parallel Arti�cial Intelligence. Menlo

Park, California: AAAI Press/The MIT Press. 52{

73.

Bramlette, M. F. 1991. Initialization, mutation and

selection methods in genetic algorithms for function

optimization. In Belew, R. K., and Booker, L. B.,

eds., Proceedings of the Fourth International Confer-

ence on Genetic Algorithms, 100{107. San Mateo,

CA: Morgan Kaufmann.

Cao, Y. J., and Wu, Q. H. 1999. Optimization of con-

trol parameters in genetic algorithms: A stochastic

approach. International Journal of Systems Science

30(5):551{559.

Cho, C. J., and Kim, J. J. 1992. Recognizing 3-D

objects by forward checking constrained tree search.

Pattern Recognition Letters 13(8):587{597.

Christmas, W. J.; Kittler, J.; and Petrou, M. 1995.

Structural matching in computer vision using prob-

abilistic relaxation. IEEE Transactions on Pattern

Analysis and Machine Intelligence 17(8):749{764.

Cicirello, V. A., and Regli, W. C. 1999. Resolv-

ing non-uniqueness in design feature histories. In

Bronsvoort, W. F., and Anderson, D. C., eds., Pro-

ceedings of the Fifth Symposium on Solid Modeling

and Applications, 76{84. New York: ACM SIG-

GRAPH.

Cicirello, V. A. 1999. Intelligent retrieval of solid

models. Master's thesis, Drexel University, Philadel-

phia, PA.

De Jong, K. A. 1975. An Analysis of the Behavior of

a Class of Genetic Adaptive Systems. Ph.D. Disser-

tation, University of Michigan, Ann Arbor, MI.

De Jong, K. 1980. Adaptive system design: A genetic

approach. IEEE Transactions on Systems, Man, and

Cybernetics 10(9):566{574.

Eiben, A. E.; Hinterding, R.; and Michalewicz,

Z. 1999. Parameter control in evolutionary algo-

rithms. IEEE Transactions on Evolutionary Compu-

tation 3(2):124{141.

Elinson, A.; Nau, D. S.; and Regli, W. C. 1997.

Feature-based similarity assessment of solid models.

In Ho�man, C., and Bronsvoort, W., eds., Fourth

Symposium on Solid Modeling and Applications, 297{

310. New York: ACM.

Garey, M. R., and Johnson, D. S. 1979. Comput-

ers and Intractability: A Guide to the Theory of NP-

Completeness. New York: W. H. Freeman and Com-

pany.

Goldberg, D. E. 1989. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison Wes-

ley.

Grefenstette, J. 1986. Optimization of control pa-

rameters for genetic algorithms. IEEE Transactions

on Systems, Man, and Cybernetics 16(1):122{128.

Kodandapani, K. L., and McGrath, E. J. 1986. A

wirelist compare program for verifying VLSI layouts.

IEEE Design and Test 3(3):46{51.

Lu, S. W.; Ren, Y.; and Suen, C. Y. 1991. Hierarchi-

cal attributed graph representation and recognition

of handwritten Chinese characters. Pattern Recogni-

tion 24:617{632.



Messmer, B., and Bunke, H. 1996. Fast error-

correcting graph isomorphism based on model pre-

compilation. Technischer Bericht IAM-96-012, Insti-

tut f�ur Informatik, Universit�at Bern, Schweiz.

Ohlrich, M.; Ebeling, C.; Ginting, E.; and Sather,

L. 1993. Subgemini: Identifying subcircuits using a

fast subgraph isomorphism algorithm. In Proceedings

of the 30th International Design Automation Confer-

ence, 31{37.

Pearce, A.; Caelli, T.; and Bischof, W. F. 1994.

Rulegraphs for graph matching in pattern recogni-

tion. Pattern Recognition 27(9):1231{1246.

Sanders, K. E.; Kettler, B. P.; and Hendler, J. A.

1997. The case for graph-structured representations.

In Proceedings of the Second International Confer-

ence on Case-based Reasoning (ICCBR). Berlin-

Heidelberg-New York: Springer-Verlag.

Scha�er, J. D.; Caruana, R. A.; Eshelman, L. J.; and

Das, R. 1989. A study of control parameters a�ecting

online performance of genetic algorithms for function

optimization. In Scha�er, J. D., ed., Proceedings of

the Third International Conference on Genetic Algo-

rithms. San Mateo, CA: Morgan Kaufmann.

Shoukry, A., and Aboutabl, M. 1996. Neural network

approach for solving the maximal common subgraph

problem. IEEE Transactions on Systems, Man, and

Cybernetics: Part B - Cybernetics 26(5):785{790.

Wang, Y. K.; Fan, K. C.; and Horng, J. T. 1997.

Genetic-based search for error-correcting graph iso-

morphism. IEEE Transactions on Systems, Man, and

Cybernetics: Part B - Cybernetics 27(4):588{597.

Wong, E. K. 1992. Model matching in robot vi-

sion by subgraph isomorphism. Pattern Recognition

25(3):287{304.

Wu, S. J., and Chow, P. T. 1995. Genetic algo-

rithms for nonlinear mixed discrete-integer optimiza-

tion problems via meta-genetic parameter optimiza-

tion. Engineering Optimization 24(2):137{159.


