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Abstract

A new hybrid genetic algorithm for graph bi-
section is proposed. The algorithm includes
a new local optimization heuristic. Based on
the traditional framework of the Kernighan-
Lin algorithm, the local optimization uses
a new type of gain as the primary measure
for vertex movement. The new algorithm
showed signi�cant or dramatic improvement
over the state-of-the-art algorithms.

1 Introduction

Let G = (V;E) be an unweighted undirected graph,
where V is the set of vertices and E is the set of edges.
A k-way partition consists of k subsets of V , such that
the union of the k subsets is equal to V and the subsets
are mutually disjoint. In this paper, we consider only
balanced partitions where the di�erence of cardinali-
ties between the largest subset and the smallest one
is at most one. The cut size of a partition is de�ned
to be the number of edges whose endpoints are in dif-
ferent subsets of the partition. Formally, a balanced
k-way partition P k of the graph G is fC1; C2; : : : ; Ckg
such that Ci � V , [ki=1Ci = V , Ci \ Cj = � (i 6= j),
and jjCij � jCj jj � 1 for i, j = 1; 2; : : : ; k. The cut size
of P k is jf(v; w) 2 E : v 2 Ci; w 2 Cj ; i 6= jgj. The k-
way partitioning problem is the problem of �nding a
k-way partition with minimum cut size. If the num-
ber of subsets is two, the partitioning problem is called
graph bisection or graph bipartitioning problem. A gen-
eral approach for a k-way partitioning problem is to
�nd bipartitions recursively. Thus, most algorithms
for graph partitioning are for the graph bisection prob-
lem. This paper also focuses on the graph bisection
problem.

The graph bisection problem arises in many practi-
cal applications such as network partitioning, oor
planning, VLSI circuit placement, sparse matrix fac-
torization, parallel computing, etc. The problem has
been studied extensively in the past. Since it is
NP-hard for general graphs [GJ79] and even �nd-
ing good approximate solutions for general graphs is
also NP-hard [BJ92], practically heuristic algorithms
are used. A number of heuristics for graph bisec-
tion have been proposed. These include iterative
improvement algorithms [KL70] [FM82] and meta-
heuristic methods such as simulated annealing (SA)
[KGV83], tabu search (TS) [Glo89], large-step Markov
chain (LSMC) [MOF91], and genetic algorithms (GAs)
[Hol75] [Gol89]. The iterative improvement algorithms
are perhaps the most basic among these heuristics. An
iterative improvement algorithm is used as a heuristic
in itself, as a framework for further re�nement, or as
a local optimization engine in hybridization with SA,
TS, LSMC, GA, etc. Thus, having a good, basic itera-
tive improvement algorithm is crucial. The Kernighan-
Lin algorithm (KL) [KL70] is a representative iterative
improvement heuristic. Variants of KL are discussed
in [FM82], [Kri84], [DD96], etc.

A number of studies using GAs for the graph partition-

ing problem have been done [SR90] [CMR91] [Las91]
[CJ91] [MMMR94]. However, they have limited ex-
perimental data to show their performance. Recently,
Bui and Moon [BM96] used hybrid GAs in an exten-
sive study on the graph partitioning problem. They
reported superior results to multi-start KL and SA
[JAMS89]. Steenbeek et al. [SME98] proposed a hy-
brid GA which exploits clusters1. They showed per-
formance inbetween SA and Bui-Moon's GA.

In this paper, we suggest a hybrid genetic algorithm
for graph bisection which encourages clustered move-
ments of vertices. Like [BM96] and [SME98], e�ec-

1Subgraphs with a relatively high edge density.



tive local optimization is a major part of the GA. In
most local optimization algorithms for graph bisection,
poorly partitioned clusters are hard to be corrected.
We devised a local optimization algorithm alleviating
this problem and combined it with the power of ge-
netic search. We did experiments on open benchmark
graphs and compared the hybrid GA against state-of-
the-art algorithms in the literature.

The remainder of the paper is organized as follows. In
Section 2, we summarize the Kernighan-Lin algorithm.
In Section 3, we introduce lock gain and describe a
new local optimization algorithm. A hybrid genetic
algorithm is described in Section 4. In Section 5, we
present our experimental results. Finally, we make our
conclusions in Section 6.

2 The Kernighan-Lin Algorithm (KL)

The Kernighan-Lin algorithm [KL70] is often consid-
ered the �rst reasonable heuristic for the graph bi-
section problem. KL proceeds in a series of passes.
During each pass, the algorithm improves on an ini-
tial solution by swapping pairs of vertices to create a
new solution. This process is repeated on the new so-
lutions either for a �xed number of times or until no
improvement can be obtained.

Let (A;B) be an initial bipartition of G = (V;E). De-
�ne the gain gv of a vertex v to be the cut-size reduc-
tion by moving v to the opposite set. The gain g(a; b)
as a result of swapping vertices a 2 A and b 2 B is as
follows:

g(a; b) = ga + gb � 2�(a; b)

where

�(a; b) =

�
1; if (a; b) 2 E
0; otherwise.

At the beginning of a pass, all vertices are unlocked or
free, meaning that they are free to be moved. After
a vertex moved, it is locked for the rest of the pass.
KL iteratively swaps a pair of free vertices with the
highest gain. The swapping process is iterated until
all vertices are locked; and then the best bipartition
during the pass is returned as a new solution. Another
pass is then executed starting with this new solution.
The algorithm terminates when one or a few passes
fail to �nd a better solution.

The structure of the KL algorithm is given in Fig-
ure 1. A simple implementation of KL takes O(jV j3)
time per pass since it requires the evaluation of O(jV j2)
time to select the pair (a; b). Clearly, the number of

do f
Compute ga, gb for each a 2 A, b 2 B;
QA = �; QB = �;
for i = 1 to jV j =2� 1 f

Choose ai 2 A�QA and bi 2 B �QB

such that g(ai; bi) is maximal;
QA = QA [ faig; QB = QB [ fbig;
for each a 2 A�QA

ga = ga + 2�(a; ai)� 2�(a; bi);
for each b 2 B �QB

g
b
= g

b
+ 2�(b; bi)� 2�(b; ai);

g
Choose k 2 f1; : : : ; jV j =2� 1g

to maximize
P

k

i=1

g(ai; bi);

Swap the subsets f a1; : : : ; ak g and f b1; : : : ; bk g;
g until (there is no improvement)

Figure 1: The Kernighan-Lin algorithm

passes is bounded by O(jEj). Thus, the worst case

time complexity of KL is O(jEj jV j3). But, in prac-
tice, signi�cantly fewer passes (generally bounded by

a constant number) are needed to complete. There-
fore, it is natural to assume that the time complexity
of KL is O(jV j3).
To reduce the time complexity, Kernighan and Lin sug-
gested considering only the two or three vertices with
the highest gains in each set to select the max-gain
pair (a; b). When this method is used, they reported
that there is little degradation in the quality of the so-
lutions. Fiduccia and Mattheyses [FM82] provided a
KL-inspired algorithm which allows unbalanced parti-
tions to some degree and reduces the time per pass to
�(jEj). The main di�erence between KL and FM lies
in that a new partition in FM is derived by moving a
single vertex, instead of KL's pair swap. The key to
the speedup in FM is the gain bucket data structure,
which allows constant-time selection of the vertex with
the highest gain and fast gain updates after each move.
Even when we maintain two separate gain lists for KL,
it is possible that we can maintain them in �(jEj) time
if we use the gain bucket data structure. Bui andMoon
[BM96] suggested a variation of KL with �(jEj) time
complexity per pass. In this paper, we use this varia-
tion for KL implementation.

3 Lock-Gain Based Heuristic (LG)

3.1 Lock-Based Gain (Lock Gain)

Let (A;B) be an initial bipartition of G = (V;E). For
convenience, we assume that a given vertex v is in A
without loss of generality. De�ne the lock gain lv to be
the gain of moving vertex v to B only with respect to
the locked vertices. Formally, lv =j fw 2 B : (v; w) 2
E and vertex w is lockedg j � j fw 2 A : (v; w) 2 E
and vertex w is lockedg j. An example is given in Fig-
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Figure 2: Lock gain in graph bisection

ure 2. In the �gure, the general gain of moving v to set
B is �1; but when only locked vertices are considered,
the gain (lock gain) becomes 2. In particular, if all the
adjacent vertices of v are locked, then lv is equal to gv;
for the opposite case where all the adjacent vertices of
v are unlocked, lv is equal to zero.

The lock gain considers the �xed part of the gain since
locked vertices do not move any more. That is, the
general gain gv consists of two types of gain: �xed
gain plus changeable gain. We call them lock gain and
free gain, respectively. The free gain of vertex v can
change later as the free vertices move after the vertex
v is locked; the motivation of the suggested algorithm
is the suspicion that we have to give a preference to
the unchangeable gain (lock gain) over the changeable
gain (free gain).

3.2 The Algorithm

We propose a lock-gain based iterative improvement
algorithm. It has the same framework as KL. The
main di�erence with KL lies in that, instead of KL's
general gains, the new algorithm uses the lock gains
for vertex movements. Figure 3 shows the algorithm.
It starts with an initial bipartition and improves on it
through a number of passes. Let (A;B) be an initial
bipartition of G = (V;E). For vertices a 2 A and
b 2 B, denote by l(a; b) the lock gain when the two
vertices a and b are swapped. Then,

l(a; b) = la + lb � 2�(a; b):

�(a; b) was de�ned in Section 2. At the beginning of
a pass, every vertex v is unlocked and the lock gain
lv is set to zero. We choose the pair (a; b) which
maximizes l(a; b) over the two biggest las and the
two biggest lbs. Once vertices a and b are chosen,
they are assumed to be swapped and become locked.
After a vertex is locked, the lock gains and general
gains of its adjacent vertices are adjusted; note that

the adjustments in line 10 and line 11 are di�erent.
The swapping process is iterated until a sequence of
pairs (a1; b1); : : : ; (ajV j=2�1; bjV j=2�1) are chosen (ai 2
A; bi 2 B; i = 1; : : : ; jV j =2 � 1); the algorithm then
�nds a pair (X;Y ) of subsets, X = fa1; : : : ; akg and

Y = fb1; : : : ; bkg, such that
Pk

i=1 g(ai; bi) is maxi-
mized, and swaps the subsets X and Y . Note that,
although lock gains are used for vertex selection, the
general gains g(ai; bi) are used for the �nal decision
about X and Y . Another pass is then executed with
the bipartition acquired after swapping X and Y . It
terminates when one or more passes fail to �nd an
improved bipartition.

It takes O(jV j+ jEj) time to execute lines 2{5, 20, and
21. In the \for" loop of lines 6{19, the two adjustment
loops (lines 9{13 and lines 14{18) dominate the run-
ning time. In an amortized sense, the total number of
iterations of the two loops in lines 9{18 is bounded by
O(jEj). Therefore, if lines 12 and 17 can be done in
O(1) on average, the algorithm requires O(jV j + jEj)
time to complete one pass. In the next subsection, we
will address the issue of an e�cient implementation for
the operation of lines 12 and 17.

3.3 Implementation

In the following, we refer the Lock-Gain based iterative
improvement algorithm as LG. Like FM [FM82], we
use the bucket data structure to maintain two separate
lock-gain lists. This data structure allows constant-
time selection of a vertex pair and fast lock-gain up-
date after each swap. Since every lock gain is an in-
teger in the range [�Dmax; Dmax], where Dmax is the
maximum vertex degree in the graph, e�cient man-
agement of lock gains is possible. We use the same
management of buckets as that used in FM. At the
beginning of a pass, all vertices are inserted into the
bucket of the lock-gain value zero. Each step in the
pass, a vertex is selected from a bucket and deleted
from the bucket. After the vertex moves to the op-
posite side, the lock gains and the general gains of
unlocked vertices incident to the moved vertex are up-
dated. The update of a vertex is carried out by re-
moving it from its lock-gain bucket and inserting it
into the bucket of its new lock-gain value. If one of
these vertices has a new lock gain that is larger than
the current max lock gain, then the pointer to max
lock gain (denoted by MaxLockGain) is replaced by
this new value. If the bucket list with MaxLockGain
becomes empty, then MaxLockGain is decreased until
it indexes a non-empty bucket.

When a tie occurs in lock gain, we use the general
gain for tie-breaking, instead of stack-based manage-



1. do f
2. Compute ga, gb for each a 2 A, b 2 B;
3. Set la and l

b
to zero for each a 2 A, b 2 B;

4. Make two lock-gain lists of las and l
b
s;

5. QA = �; QB = �;
6. for i = 1 to jV j =2� 1 f
7. Choose ai 2 A�QA and bi 2 B �QB such that l(ai; bi) is

maximal over the two biggest las and the two biggest l
b
s;

8. QA = QA [ faig; QB = QB [ fbig;
9. for each a 2 A�QA adjacent to ai or bi f
10. la = la + �(a; ai)� �(a; bi);
11. ga = ga + 2�(a; ai)� 2�(a; bi);
12. if la changed then adjust the lock-gain list of side A;
13. g
14. for each b 2 B �QB adjacent to ai or bi f
15. l

b
= l

b
+ �(b; bi)� �(b; ai);

16. g
b
= g

b
+ 2�(b; bi)� 2�(b; ai);

17. if l
b
changed then adjust the lock-gain list of side B;

18. g
19. g

20. Choose k 2 f1; : : : ; jV j =2 � 1g to maximize
P

k

i=1

g(ai; bi);

21. Swap the subsets f a1; : : : ; ak g and f b1; : : : ; bk g;
22. g until (there is no improvement)

Figure 3: The lock-gain based iterative improvement algorithm

ment (LIFO strategy) in KL. If a tie occurs again in
general gain (i.e., the same lock gain and the same
general gain), then we apply the LIFO rule. In the
implementation of our tie-breaking strategy, a removal
in a bucket takes constant time but an insertion takes
O(jV j) due to the cost of maintaining a sorted list by
general gains. The worst case time complexity of LG
is O(jV j jEj) with this implementation. We alleviated
the burden for insertion by enlarging the number of
buckets from 2Dmax + 1 to (2Dmax + 1)2. Here, the
vertex v with lock gain lv and general gain gv is stored
at the bucket indexed by the value lv(2Dmax+1)+gv.
In this scheme, both the removal and the insertion
take O(1). If Dmax is �(jV j), then the cost of the

algorithm is �(jV j2) due to the number of buckets; if
Dmax is O(1) as in most cases, the cost of the algo-
rithm is �(jV j + jEj). Our experiments showed that
this implementation is very e�cient.

3.4 Theoretical Support

Throughout this subsection, we assume that (A;B) is
the initial bisection.

Remark 1 A pass is the process that chooses a se-

quence of pairs (a1; b1); : : : ; (ajV j=2�1; bjV j=2�1), where
ai 2 A and bi 2 B for i = 1; : : : ; jV j =2�1, �nds a sub-

set pair X = fa1; : : : ; akg and Y = fb1; : : : ; bkg that

maximizes

Pk
i=1 g(ai; bi), and swaps X and Y .

De�nition 1 After applying a pass to the bisection

(A;B), we have the bisection ((A�X)[ Y; (B � Y ) [
X)). Then, the real gain r(a; b) for a pair of vertices

a 2 X and b 2 Y is de�ned to be g(a; b) in the bisection

X Y

Initial situation in a pass

A B

A Bset set

2 2

A-A( (1 B-B1B1 A1) )U U

The situation for calculating g )

aa b b

1B 1A

(a,b

A- (X- {a})U(Y- {b}) B- (Y- {b})U(X- {a})

AB

of this imaginary situation
is the(

2 2

r a,b) (a,b)

1B 1A

a b

g

Figure 4: Real gain in graph bisection

((A�(X�fag))[(Y �fbg); (B�(Y�fbg))[(X�fag)).

Specially, if jX j = jY j = 1, then r(a; b) = g(a; b).

For those who are not clear about the real gain itself
or its motivation, consider X = fa1; : : : ; ai; : : : ; akg
and Y = fb1; : : : ; bi; : : : ; bkg (X � A; Y � B).
The gain g(ai; bi) in the middle of the pass con-
siders the gain before the vertices ai+1; : : : ; ak and
bi+1; : : : ; bk move. If we had known that X and
Y would be the best pair for swap, it would have
been better to consider the gain of (ai; bi) after
ai+1; : : : ; ak and bi+1; : : : ; bk move. The real gain was

devised to reect this; the real gain r(ai; bi) is g(ai; bi)
of the bisection ((A � fa1; : : : ; ai�1; ai+1; : : : ; akg) [
fb1; : : : ; bi�1; bi+1; : : : ; bkg; (B�fb1; : : : ; bi�1; bi+1; : : : ;
bkg)[ fa1; : : : ; ai�1; ai+1; : : : ; akg). Figure 4 shows an
imaginary situation for calculating r(a; b). As far as
the real gain is concerned, it is not important when
vertices ai and bi move; the only important thing is
the sets X and Y . The following proposition discusses
how to consider lock gains and free gains to achieve
maximal real gains.

Proposition 1 In a pass, let A1 � A and B1 � B



have been locked. If we assume that every subset pair in

A�A1 and B�B1 has the same probability to be added

to the best swap set (i.e., assume uniform probability
model), then for a pair of vertices a 2 A � A1 and

b 2 B �B1, E[r(a; b)] = l(a; b).

Proof: By the de�nition of real gain, r(a; b) = �xed

part + free part, where the �xed part is l(a; b) (since
the gain with respect to the locked vertices does not
change) and the free part is determined after a pass
terminates. If the algorithm chooses (A2; B2) for the
best swap set (and let the remaining sets be A3 and
B3, i.e., A3 = A� (A1 [A2) and B3 = B� (B1[B2)),
we have the bisection (B1 [ B2 [ A3; A1 [ A2 [ B3).
Assume r(a; b) = l(a; b)+ in this case. Now, consider
the subset pair (A3 [ fag; B3 [ fbg). If this pair is
chosen instead of (A2; B2), we have the bisection (B1[
B3 [ fbg[ (A2 �fag); A1 [A3 [ fag [ (B2 �fbg)). In
this case, r(a; b) = l(a; b)�. Every case has its mirror
case as this example. That is, there exists a symmetry.
Let the least upper bound of r(a; b)� l(a; b) be t. The
greatest lower bound of r(a; b)�l(a; b) is then �t by the
symmetry. Thus, by the symmetry and the uniform-
probability assumption, we also have

P [r(a; b)� l(a; b) = �] = P [r(a; b)� l(a; b) = ��]

where 0 � � � t.

Therefore,

E[r(a; b)] =

tX
�=�t

(l(a; b) + �)P [r(a; b) � l(a; b) = �]

=

tX
�=�t

l(a; b)P [r(a; b)� l(a; b) = �]

= l(a; b)

tX
�=�t

P [r(a; b)� l(a; b) = �]

= l(a; b):

Q.E.D.

The uniform-probability assumption is not very gen-
eral; the Proposition 1 is thus not a de�nite guide
for iterative improvement algorithms. However, it
strongly suggests that, unless otherwise clari�ed, one
had better not consider the free gains.

4 A Hybrid Genetic Algorithm

When a genetic algorithm is hybridized with a local
improvement heuristic, it is said to be a hybrid GA.
Several studies about hybridization of GAs have been
done [WGM94] [RB94] [LG97]. The general structure

of hybrid steady-state genetic algorithms is used in
our GA. In the following, we denote the framework by
GBA (the Genetic Bisection Algorithm).

� Encoding: In this problem, a chromosome cor-
responds to a bipartition (A;B) of the graph
G = (V;E). The number of genes in a chromo-
some is equal to jV j. Each gene corresponds to
a vertex in the graph. A gene has value zero if
the vertex belongs to the set A; otherwise, it has

value one.

� Initialization: GBA �rst creates p bipartitions at
random. The only constraint on a chromosome
is that the di�erence between the number of 0's
and that of 1's should be at most one. We set the
population size p to be 50 in GBA.

� Selection: We assign to each chromosome in the
population a �tness value calculated from its cut
size. GBA uses the roulette-wheel-based propor-

tional selection scheme.

� Crossover and Mutation Operators: A crossover
operator creates a new o�spring by combining
parts of the two parents. In our experiments, we
use the crossover of [BM96] with �ve cut points
and use no mutation. After the crossover, an o�-
spring may not satisfy the balance requirement. It
then selects a random point on the chromosome
and changes the required number of 1's to 0's (or
0's to 1's) starting at that point on to the right.
This adjustment produces some mutation e�ect.

� Local Optimization: After crossover and adjust-
ment, GBA applies a local optimization on the
o�spring. In our hybrid GA, we use KL and LG.

� Replacement: After generating an o�spring and
applying a local optimization on it, GBA replaces
a member of the population with the o�spring.
We use the replacement scheme of [BM96]. The
o�spring tries to �rst replace the more similar par-
ent, measured in bitwise di�erence and, if it fails,
then it tries to replace the other parent (replace-
ment is done only when the o�spring is better
than one of the parents). If the o�spring is worse
than both parents, we replace the worst mem-
ber of the population (Genitor-style replacement
[WK88]).

� Stopping Condition: For stopping, we use the
number of consecutive fails to replace one of the
parents. We set the number to be 20 in GBA.



5 Experimental Results

5.1 Test Beds and Test Environment

We tested the proposed algorithm on a total of
28 graphs which consist of three groups of graphs.
Twenty four of them are the same graphs used in
[BM96]. They are composed of 16 graphs used in
[JAMS89] (8 random graphs and 8 geometric graphs)
and 8 graphs used in [BM96] (8 caterpillar graphs).
They have been used in a number of other stud-
ies [BM96] [SME98] [MF98] [BB99]. The other four
graphs were made by ourselves for this test. The dif-
ferent classes of graphs are briey described below.

� Gn:d : A random graph on n vertices, where an
edge is placed between any two vertices with prob-
ability p independent of all other edges. The prob-
ability p is chosen so that the expected vertex de-
gree, p(n� 1), is d.

� Un:d : A random geometric graph on n vertices
that lie in the unit square and whose coordinates
are chosen uniformly from the unit interval. There
is an edge between two vertices if their Euclidean
distance is t or less, where d = n�t2 is the ex-
pected vertex degree.

� cat:n : A caterpillar graph on n vertices, with each
vertex having six legs. It is constructed by start-
ing with a straight line (called the spine), where
each vertex has degree two except the outermost
vertices. Each vertex on the spine is then con-
nected to six new vertices, the legs of the cater-
pillar. With an even number of vertices on the
spine, the optimal bisection size is 1. rcat:n is
a caterpillar graph with n vertices, where each
vertex on the spine has

p
n legs. All caterpillar

graphs have an optimal cut size of 1.

All programs were written in C language and run on
an Alpha PC 600 MHz with Linux operating system.
They were compiled using GNU's gcc compiler. We
performed 1,000 runs for all experiments so the con�-
dence intervals of the experimental data are quite nar-
row.

5.2 Performance

Table 1 shows the performance of KL and LG. LG
signi�cantly outperformed KL for all tested graphs.
In particular, LG showed dramatic performance im-
provement on sparse geometric graphs and caterpillar
graphs. Sparse geometric graphs are prone to have lo-
cal clusters by the way they are designed. Caterpillar

graphs consist of unit clusters, where a unit cluster is
a subgraph consisting of an articulation point and its
corresponding legs. For these locally clustered graphs,
LG performed very well. It should be noted that cater-
pillar graphs are known to be di�cult for standard
graph bisection algorithms [Jon92]. In summary, LG
dominated KL for all tested graphs with particularly
dramatic improvement for graphs with clusters. Al-
though LG performed well, it seems that there is still
room for further improvement; when postprocessed by
KL, LG showed visible improvement for most graphs.
This result is given in the last column of Table 1. We
call this version Postprocessed LG or PLG.

Table 2 compares the performance of our GA with
state-of-the-art genetic algorithms for graph bisection.
We denote by PLG-GBA our genetic bisection al-
gorithm using PLG as a local optimizer. KL-GBA
and BFS-GBA are enhanced versions of the GAs in
[BM96]. CE-GA is the GA in [SME98]. PLG-GBA
and KL-GBA have the same framework except the

local optimization part. BFS-GBA is the KL-GBA
preprocessed with genetic reordering by breath-�rst
search [BM96] and it performed better than KL-GBA.
PLG-GBA overall signi�cantly outperformed the oth-
ers. In addition, even its average results were exactly
the same as the best known or optimal solutions ex-
cept for random graphs and two large sparse geometric
graphs with 5,000 vertices. To the best of our knowl-
edge, PLG-GBA is showing the best performance in
the literature with respect to the benchmark graphs.
Since it is a hybrid GA, the local optimization with
PLG dominates the running time. We observed that
the number of calls for PLG in a GA run was from 181
to 846 depending on graphs.

6 Conclusions

In this paper, we improved the performance of KL
through two steps. First, it was improved by using
the lock gain as the primary measure for vertex move-
ment. Second, by combining with the framework of
genetic algorithms, it showed one more dramatic im-
provement.

The key idea in this paper is that we used lock gains in
an iterative improvement process for graph bisection.
The PLG-GBA is a good example to utilize PLG. PLG
can be combined with other metaheuristics such as SA
[KGV83], tabu search [Glo89] [BB99], LSMC [MOF91]
[HKM97], etc. We believe that PLG is a strong candi-
date to improve existing results in those frameworks,
as it did in the framework of GA in this paper. Ex-
perimentation with respect to these methods is left for
future study.



Table 1: Comparison of KL and Lock-Gain Based Heuristics

Graph KL LG PLG2

Ave(Min)1 CPU Ave(Min)1 CPU Ave(Min)1 CPU

G500.2.5 64.99(53) 0.0033 59.00(52) 0.0047 58.50(52) 0.0067

G500.05 244.98(221) 0.0051 236.20(219) 0.0108 234.60(219) 0.0135
G500.10 656.46(628) 0.0105 651.03(627) 0.0239 648.38(626) 0.0268

G500.20 1787.48(1752) 0.0202 1784.19(1753) 0.0554 1779.03(1750) 0.0683
G1000.2.5 126.06(103) 0.0104 111.87(99) 0.0131 110.98(99) 0.0153
G1000.05 501.20(470) 0.0142 481.23(458) 0.0335 478.77(457) 0.0425

G1000.10 1435.09(1392) 0.0254 1415.64(1375) 0.0697 1412.63(1374) 0.0810
G1000.20 3482.98(3409) 0.0526 3467.56(3402) 0.1538 3461.27(3397) 0.1695

U500.05 38.29(12) 0.0048 5.75(2) 0.0072 5.64(2) 0.0084
U500.10 90.20(26) 0.0080 30.84(26) 0.0134 30.21(26) 0.0147

U500.20 221.01(178) 0.0141 196.61(178) 0.0233 193.92(178) 0.0259
U500.40 436.57(412) 0.0234 423.98(412) 0.0411 414.80(412) 0.0442

U1000.05 74.57(26) 0.0139 3.89(1) 0.0203 3.82(1) 0.0215
U1000.10 163.84(51) 0.0216 52.23(39) 0.0323 51.37(39) 0.0369

U1000.20 312.13(222) 0.0380 265.87(222) 0.0681 260.47(222) 0.0800
U1000.40 860.00(737) 0.0625 811.56(737) 0.1363 801.64(737) 0.1603

cat.352 20.70(7) 0.0010 3.39(1) 0.0020 3.39(1) 0.0025
cat.702 41.80(19) 0.0020 3.48(1) 0.0050 3.48(1) 0.0063

cat.1052 58.36(29) 0.0033 3.35(1) 0.0088 3.35(1) 0.0101
cat.5252 251.79(177) 0.0233 3.15(1) 0.0893 3.15(1) 0.0989
rcat.134 10.74(1) 0.0003 2.18(1) 0.0007 2.18(1) 0.0008

rcat.554 34.14(3) 0.0013 3.29(1) 0.0035 3.29(1) 0.0042
rcat.994 58.17(5) 0.0027 2.65(1) 0.0081 2.65(1) 0.0089

rcat.5114 190.09(21) 0.0173 3.08(1) 0.0619 3.08(1) 0.0693

U2000.05 162.35(75) 0.0275 10.03(3) 0.0560 9.95(3) 0.0572

U2000.10 346.93(71) 0.0505 69.34(47) 0.0976 68.30(47) 0.1079
U5000.05 433.93(251) 0.0906 14.06(4) 0.1991 13.96(4) 0.2181

U5000.10 956.87(469) 0.1775 115.85(74) 0.3568 114.73(74) 0.4026

1. 1,000 runs on Alpha PC 600 MHz.

2. PLG denotes LG postprocessed by KL.
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Appendix: Multi-Start PLG vs. PLG-GBA
To compensate for the di�erence in the running time of
algorithms, we run PLG with many di�erent initial bisec-
tions and return the best. We denote by Multi-Start PLG
the algorithm that tries 500 runs of PLG and produces the
best as its �nal solution. Table 3 compares the performance
of Multi-Start PLG and PLG-GBA on the random graphs.
For the other graphs, both of them found the best known on
the average with few exceptions. PLG-GBA outperformed
Multi-Start PLG for all random graphs. The results show
the e�ectiveness of the genetic hybrid search process.

Table 3: Comparison of Multi-Start PLG and PLG-GBA

Graph Multi-Start PLG1 PLG-GBA

Ave2 CPU Ave2 CPU

G500.2.5 51.44 2.91 50.41 2.48
G500.05 219.48 6.87 218.04 5.60

G500.10 629.35 14.59 626.85 12.05
G500.20 1749.09 32.32 1745.59 29.42

G1000.2.5 98.55 8.26 96.23 6.81
G1000.05 456.41 19.46 449.49 22.89

G1000.10 1377.15 40.97 1364.42 45.16
G1000.20 3397.49 86.34 3384.49 77.90

1. Each run is the best of 500 runs of PLG.

2. 1,000 runs on Alpha PC 600 MHz.


