
A Hybrid Genetic Algorithm for Multiway Graph Partitioning

So-Jin Kang

Motorola Korea Software Center

Kumha B/D, 41-2, Chungdam-Dong

Kangnam-Gu, Seoul, 135-766 Korea

Sojin.Kang@motorola.com

Byung-Ro Moon

School of Computer Science & Engineering

Seoul National University

Shilim-dong, Kwanak-gu, Seoul, 151-742 Korea

moon@cs.snu.ac.kr

Abstract

A hybrid genetic algorithm for multiway

graph partitioning is proposed. The algo-

rithm includes an e�cient local optimization

heuristic. Starting at an initial solution, the

heuristic iteratively improves the solution us-

ing cyclic movements of vertices. The sug-

gested heuristic performed well in itself and

as a local optimization engine in the hybrid

genetic algorithm. Combined with the frame-

work of hybrid genetic algorithms, it showed

signi�cant performance improvement.

1 Introduction

Given a graph G = (V , E) on n vertices, where V rep-

resents the set of vertices and E represents the set of

edges, k-way partitioning is grouping the vertex set V
into k disjoint subsets. In a k-way partition, the total
number of edges whose end points belong to di�erent

subsets is called the cut size. The k-way partitioning

problem is to �nd a k-way partition with minimal cut

size. A k-way partition is said to be strictly balanced if

the di�erence of cardinalities between the largest sub-

set and the smallest subset is at most one. In graph

partitioning, strict or rough balance is required in most

cases. If we have a good algorithm for strictly balanced

k-way partitioning, roughly balanced k-way partition-
ing needs only slight modi�cation in most cases. Two-

way partition is called bisection or bipartition. If there

is no balance requirement, graph bipartitioning prob-

lem can be solved to optimality in polynomial time

[14]. Hereafter, unless otherwise noted, graph parti-

tioning means strictly balanced partitioning. Graph

partitioning problems arise in diverse areas such as

parallel computing, sparse matrix factorization, net-

work partitioning, and VLSI circuit placement.

K-way partitioning is one of the most well-known NP-

hard problems [16]. It is known that the graph bisec-

tion problem is NP-hard even for bipartite graphs [16]

and that even �nding good approximation solutions

for general graphs or planar graphs is also NP-hard

[5]1. These results make it necessary to sacri�ce opti-

mality and look for approximation algorithms within

polynomial time budgets. Among such methods are

Kernighan-Lin algorithm (KL) [19], simulated anneal-

ing (SA) [20] [18], genetic algorithms (GA) [26] [9] [21]

[10] [17] [7] [29], tabu search (TS) [25] [12] [3], and

large-step Markov chain [23] [15].

KL is a group migration heuristic which starts with

an initial bisection and iteratively swaps pairs of ver-

tices to decrease the cut size. Owing to its simplicity

and e�ciency, it has been one of the most popular

algorithms for the last 30 years. For k-way partition-

ing, a well-known method is the recursive KL which

partitions the vertex set to smaller and smaller halves

by repeatedly applying KL [28] [7] [27]. Another is

the pairwise KL which was suggested in the original

paper for KL [19]. Starting at an initial k-way parti-

tion, it repeats the process that chooses two out of k
subsets and applies KL on the union of the two sub-

sets. They are described in Section 2. There are also

various sophisticated methods such as multi-level gain

[28], geometric embedding [1], solving by transforming

into a max-cut problem [22], relaxed locking [11], and

primal-dual algorithm [30].

Recursive KL and pairwise KL are known to be use-

ful in multiway partitioning. However, they have some

drawbacks. Recursive KL focuses on the current parti-

tioning without considering the connection inside each

subset; subsequent partitionings may have larger cut

size than are reasonable. Pairwise KL has a �xed se-

1For special classes of graphs such as trees and planar
graphs with O(log n) optimal cut size, exact polynomial
time algorithms exist [8].

quence of subset pairs for KL bisections. It thus re-

stricts the movement paths of vertices. It is particu-

larly weak when the number of subsets are consider-

ably large. We devised a heuristic that attempts direct

k-way partitioning and allows more freedom to vertex

movements. Starting at an initial k-way partition, the
heuristic improves on it by cyclic movements of ver-

tices.

There have been a number of studies on graph parti-

tioning in GA community, too [21] [13] [10] [17] [2] [6]

[7] [29]. But the experimental results were typically

not enough, with few exceptions, to verify the e�ec-

tiveness of GA approaches. Bui and Moon [7] sug-

gested genetic algorithms for graph partitioning with

extensive experimental results and showed its supe-

riority to SA and the multi-start KL. However, their

experiments were largely for graph bisection. In multi-

way partitioning, they combined the recursive KL and

the pairwise KL with the genetic search and showed

simple experimental results for 4-way graph partition-

ing. As we will be showing later, the frameworks of

the recursive KL and the pairwise KL turn out to be

not so e�ective for multiway graph partitioning. As

we devised a new multiway partitioning heuristic, we

combined it with the genetic search. The e�ectiveness

of the genetic search is examined in Section 5

The remainder of this paper is organized as follows;

Section 2 presents KL and two existing KL-based k-
way partitioning methods. Section 3 provides our new

local heuristic for k-way partitioning. A hybrid GA

which is the combination of GA and our local heuristic

is followed in Section 4. Lastly we show experimental

results in Section 5 and make conclusions in Section 6.

2 Preliminaries

In this section, we describe the KL algorithm and two

existing KL-based k-way partitioning algorithms.

2.1 Kernighan-Lin Algorithm (KL)

The Kernighan-Lin algorithm [19] is a local optimiza-

tion heuristic for graph bisection. Starting with an

initial bisection, it continues swapping equal-sized sub-

sets of the bisection to create a new bisection. It

proceeds repeatedly until no improvement can be ob-

tained.

Let (A;B) be a bisection of G = (V;E). For vertices

a 2 A and b 2 B, denote by g(a; b) the reduction in the
cut size of the bisection when the two vertices a and

b are exchanged. Denote by gv the cut-size reduction

when vertex v moves to the opposite side. The related

equation is as follows:

g(a; b) = ga + gb � 2�(a; b)

where

�(a; b) =

�
1; if (a; b) 2 E
0; otherwise.

The pair (a; b) that maximizes g(a; b) is selected.

Once a and b are selected, they are assumed to

be exchanged and not considered any more for fur-

ther exchange. In this way, a sequence of pairs

(a1; b1); : : : ; (an=2�1; bn=2�1) are selected (ai 2

A; bi 2 B; i = 1; : : : ; n=2 � 1). The algorithm

then chooses a pair (X; Y), X = fa1; : : : ; akg and

Y = fb1; : : : ; bkg, such that
P

k

i=1 g(ai; bi) is maxi-

mized. This is a pass of KL. With the bisection ac-

quired after the exchange of X and Y , KL repeats the

above pass until no more improvement is possible.

2.2 Recursive KL (RKL)

Recursive KL (RKL) is a simple extension of bisection

to multiway partition. It hierarchically divides a given

graph into 2, 4, 8, . . . subsets by KL bisection algo-

rithm. This is a representative and popular approach

for k-way partitioning [28] [7] [27]. In this approach,

one �rst makes two equal-sized subsets, then divides

each of them independently into two subsets, and so

on till k subsets are created.

2.3 Pairwise KL (PKL)

A potential problem in RKL is that the �rst parti-

tioning tries to minimize the cut size between the �rst

two subsets without considering the connections inside

each subset. This may cause high cut size in subse-

quent partitions.

An alternative is to start with k subsets and directly

improves on them. This algorithm starts with k equal-
sized initial subsets. A pair of subsets among them

are selected and KL is applied to reduce the cut size

between the two subsets. The process continues until

a round of all possible combinations (
�
k

2

�
cases) do not

produce any improvement.

3 Cyclic K-way Partitioning
Algorithm (CP)

Two k-way partitioning algorithms described in Sec-

tion 2 use the KL bisection algorithm as an engine.

Since RKL tries to minimize the cut size of the cur-

rent bipartitioning, the cut size of subsequent biparti-

tionings can be hurt. In case of PKL, if it is desirable

that a vertex in subset i eventually moves to subset

j, it cannot directly move from subset i to subset j
unless they are directly paired; the vertex has to pass

through a number of other subsets according to the

given sequence of pairs. If the vertex fails to move

in at least one of the pairwise KL bisections, the ver-

tex cannot eventually propagate to the subset j. The
�xed sequence can be a barrier in the space search.

The common drawback of RKL and PKL is that k-
way partitioning is accomplished by a sequence of bi-

sections with \local scope." We suggest a direct k-way
partitioning with \more global scope."

In KL bipartitioning, there is only one gain gv for each
vertex because a vertex can move only to the opposite

side. On the other hand, in this k-way direct parti-

tioning, there exist k � 1 candidate subsets for each

vertex to move; we have k � 1 gains for each vertex.

Denote by gv[i] the gain by moving vertex v to subset

i. For ease of implementation, gv[i] is set to �1 if

vertex v currently belongs to subset i since it is not an
actual moving. We make cycles of vertex movements

based on these gains.

The Cyclic Partitioning algorithm (CP) is given in Fig-

ure 1. It starts with an initial k-way partition. With

the initial solution, a number of passes are performed

until the stop condition is satis�ed. In a pass (a call

of MoveCycles), a sequence of cyclic movements are

tried. Figure 2 shows an example sequence of move-

ments. In Figure 2(a), a sequence of vertices are se-

lected from subsets 3, 2, 0, 6, 0, 6, and 5 until the

movements make a cycle. Then the gain sums of par-

tial cycles are compared and the cycle with the max

gain sum is selected. Figure 2(b) shows the �rst three

partial cycles among six candidate cycles as a result

of Figure 2(a). The nomenclature for the algorithm

MoveCycles is as follows:

Vi : subset i,
S
1�i�k

Vi = V

Si : the subset to which ith vertex on a cycle of
movements belongs

Pv : the subset to which vertex v moves
gv[i] : the gain of moving vertex v to subset i
gv : the maximum among gv[i]'s for all i = 1; : : : ; k
Gij : the maximum among gv[j]'s for all v's in Vi
Gi : the maximum among Gij 's for all j = 1; : : : ; k

�i : the gain of ith movement in a cycle
�i : the gain of the movement from subset Si to

the starting subset (for closing a partial cycle)
�j : the gainsum of cycle j

gv denotes the largest gain that can be obtained by

moving vertex v to any subset to which v does not

belong. Gi is the largest gain among all vertices in

subset i. It can be represented equivalently by Gi =

CP(G, P)
// P : a given initial partition;
repeat f

P MoveCycles(G, P);
g until (stop condition)

MoveCycles(G;P)
1. for each v 2 V f
2. 8i = 1; 2; : : : ; k, calculate gv[i];
3. gv max1�i�k gv[i];
4. g
5. for i 1 to k f
6. for j 1 to k
7. Gij maxv2Vi

gv[j];
8. Gi max1�j�k Gij ;
9. g
10. j 0;
11. do f
12. Choose a starting subset S0 s.t. 8j = 1; 2; : : : ; k;

GS0 � Gj ;
13. i 0;
14. do f
15. Choose a vertex v 2 Si s.t. gv � gu 8u 2 VSi

;
16. Pv a 2 f1, 2, . . . , kg that maximizes gv[a];
17. Move v to subset Pv and lock v;
18. �i GSi

; �i GSiS0 ;
19. i++;
20. Si Pv;
21. Adjust g's and G's that are a�ected by

v's movement;
22. g while (Si 6= S0);

23. Find l 2 f1, . . . , i� 1g that maximizes (
Pl�1

a=0
�a) + �l;

24. Undo the sequence of movements from Sl to S0
in the above;

25. Undo the sequence of adjustments from Sl to S0
in the above;

26. Move the maxgain vertex v 2 VSl
to S0;

27. Adjust g's and G's that are a�ected by the movement
of v from Sl to S0;

28. �j (
Pl�1

a=0
�a) + �l;

29. j++;
30. g while (9 at most one subset containing

any unlocked vertex);
31. Find m 2 f0, 1, . . . , j � 1g that maximizes

Pm

a=0
�a;

32. Undo the movements after the cycle m;

Figure 1: Cyclic Partitioning Algorithm (CP)

3
4

partition

SS 02

3

4

,

,

1S

S

6

starting

1

SS5

5

7

S 6

2

3

4

56

7

0

 1 2

(a) A Cyclic Movement

partition
starting

7

1
2

3

S0

 3->2->0->3

S1

S2

S3

 3->2->3 1

0

6 5

4

3

2

 3->2->0->6->3

(b) Subcycles

Figure 2: An Example of 8-way Cyclic Movements

Create initial population of �xed size p;
do f

Select parent1 and parent2 from population;
Normalization(parent1, parent2);
o�spring crossover(parent1, parent2);
CP(G, o�spring);
if suited (o�spring)
then replace(population, o�spring);

g until (stopping condition);
return the best answer;

Figure 3: The Genetic Cyclic Multiway Partitioning

Algorithm (GCMA)

maxi�j�k Gij or Gi = maxv2Vi
gv.

In the algorithm of Figure 1, lines 1 through 4 compute

the gains for all vertices. Lines 5 through 9 calculate

the gains related to each subset. Each loop of lines

11 through 30 creates a unit cycle of movements. As

shown in Figure 2(a), a starting subset S0 looks into

the next direction with the help of GS0 and then de-

cides S1, S2, : : : ; Si according to GS1 , GS2 , : : : ; GSi
,

respectively, until Si is the same as S0. After this

process, we �nd a partial cycle that maximizes the

gainsum (line 23). The gainsum of this cycle is stored

(line 28). A number of such cycles are produced as a

result of lines 11 through 30. Finally, a pre�x in the

sequence of cycles is selected to maximize the total

gain (line 31).

In KL, swapping a pair of vertices is the minimum unit

of change. On the other hand, a cycle of vertex move-

ments is the minimum unit of change in CP. There is

no restriction in the length of cycles. An obvious up-

per bound for the length is jV j � b
jV j

k
c+ 1 due to the

locking.

4 Genetic Cyclic Multiway
Partitioning Algorithm (GCMA)

A genetic algorithm starts with a set of initial solu-

tions (chromosome) which are called population. This

population evolves into di�erent population for a num-

ber of iterations. At the end the algorithm returns the

best member of the population as the solution to the

problem.

We combined CP with the genetic search. Figure

3 shows the structure of our hybrid GA for the mul-

tiway graph partitioning problem. We call this algo-

rithm Genetic Cyclic Multiway graph partitioning Al-

gorithm (GCMA). Every solution is represented by a

linear chromosome. We use a k-ary string for each

chromosome to represent a k-way partition. For ex-

Normalization(parent1, parent2)
//n : jV j
//count[k][k] : k is the number of subsets(partitions)
//map[k]

for i 0 to k
for j 0 to k

count[i][j] 0;
for i 0 to n

count[parent1 [i]][parent2 [i]]++;
for i 0 to k f

Find p and q that count[p][q] is maximum;
for j 0 to k

count[p][j] �1; count[j][q] �1;
map[q] p;

g
for i 0 to n

parent2 [i] map[parent2 [i]];

Figure 4: The Normalization Step Between Parents

ample, if the ith vertex belongs to subset j, the value
of the ith gene is j. We set the population size as 50.

For parent selection, we used the proportional roulette-

wheel selection. The probability that the best chromo-

some is chosen was given four times higher than the

probablity that the worst chromosome is chosen.

We normalized the parents before crossover. Figure 4

shows the process of normalization. It was used in [21]

and helps maintain consistency between the two par-

ents. Table 1 shows the e�ect of normalization. We

tested on a set of 10 graphs. For 8-way and 32-way

partitioning, the solution quality was signi�cantly im-

proved, due to the normalization. We used �ve-point

crossover operators. After crossover, chromosomes are

usually not balanced. We start at a random point on

the chromosome and adjust the gene values to the right

until the balance is satis�ed. This has some mutation

e�ect, so we do not add any speci�c mutation. The o�-

spring replaces the closer parent in Hamming distance

(only if it is better than the closer parent) and, if not,

the other parent is replaced if the o�spring is better.

If not again, the worst in the population is replaced.

5 Experimental Results

In this experiment, we used 40 benchmark graphs

which were devised by [4] [18] [7]. Their sizes range

from 100 to 5,252. They have been widely used for

benchmarking graph partitioning [24] [29] [3] although

largely used for bisection. We tested on 8-way and

32-way partitionings. The C language was used on a

Pentium III 450 MHz computer with Linux operating

system.

We �rst examine the performance of the suggested lo-

Table 1: Cut sizes of Experiments Without and With Normalization
8-way 32-way

Ordinary
1

Normailzed
2

Ordinary
1

Normalized
2

Graph
Best3 Average4 Best3 Average4 Best5 Average6 Best5 Average6

G500.04 3355 3369.21 3354 3364.13 4054 4069.58 4043 4057.20
G1000.0025 227 251.16 220 233.24 343 367.64 326 345.59

U500.40 1865 1866.50 1865 1866.01 5335 5348.10 5328 5338.24
U1000.05 71 114.36 57 83.96 153 198.66 130 147.29

reg500.20 131 144.32 128 133.77 240 244.90 128 133.77
reg5000.0 1107 1181.11 1096 1174.61 1750 1854.30 1096 1174.61

cat.5252 224 351.68 204 314.44 381 558.36 377 552.77

rcat.134 27 27.11 27 27.00 91 91.00 91 91.00

grid5000.50 250 254.74 250 250.20 673 700.06 659 676.60

w-grid100.20 60 60.00 60 60.00 128 128.00 128 128.00

1. No normalization between the two parents

2. Processed with normalization before crossover[21]
3. The best cut size of 100 runs
4. The average cut size of 100 runs

5. The best cut size of 50 runs
6. The average cut size of 50 runs

cal optimization heuristic itself against two traditional

heuristics mentioned before; then, we show the experi-

mental results of the hybrid GA with the new heuristic.

However, since the hybrid GA uses the local optimiza-

tion heuristic as an engine, it is obvious that the hybrid

GA would perform better than the local optimization

heuristic. We thus examine the e�ectiveness of genetic

search by comparison with a random multi-start local

optimization with comparable time budgets.

Table 2 shows the results on 8-way partitioning. The

three algorithms described in Section 2 and Section

3 are compared. The statistics are from 1,000 in-

dependent runs; so the average results are very sta-

ble. The bold-faced numbers indicate the best among

them. RKL was visibly faster than the other two at

the cost of low quality. On the other hand, with re-

spect to quality, PKL and CP were preferable. Their

performance was di�erent from graph to graph. For

random graphs (G*.*) and caterpillar graphs (cat.*,

rcat.*), CP outperformed RKL and PKL. For geomet-

ric graphs (U*.*) and all regular graphs (reg*.*), PKL

outperformed the others. RKL performed best for grid

graphs (grid*.*, w-grid*.*). Table 3 shows the results

on 32-way partitioning. The results are a bit di�erent

from those of 8-way partitioning. Most notably CP's

relative performance was improved. CP outperformed

the others for 28 graphs out of 40. On the other hand,

PKL's performance was sharply weakened.

The numbers of graphs that RKL performed best

among them in 8-way and 32-way partitionings were

8 and 7, respectively. In case of PKL, they were 16

and 5, respectively. In case of CP, they were 16 and

28, respectively. CP spent visibly more time than the

others. However, the others were not comparable with

CP even when similar time budgets were provided (by

giving more trials).

By combining CP with genetic search, its results

were signi�cantly improved. However, the hybrid GA

(GCMA) took 135 times more time than a single CP

run on the average. It is not clear how critical is the

genetic search to the performance improvement. We

examined this by comparing GCMA with a multi-start

CP which runs CP on 135 random initial solutions and

returns the best. The experimental results are shown

in Table 4. One can observe that, given comparable

time budgets, the genetic search is signi�cantly better

than the multi-start CP. For 8-way partitioning, the

best and the average are from 100 runs and, for 32-way

partitioning, they are from 50 runs. Thus, each of the

best in multi-start CP is from 13,500 and 6,750 runs

of CP. GCMA signi�cantly outperformed multi-start

CP in both 8-way partitioning and 32-way partition-

ing. We may try multi-start RKL or multi-start PKL.

But their performance will be clearly not comparable

even with multi-start CP.

6 Conclusions

We proposed a hybrid genetic algorithm for multiway

graph partitioning and provided extensive experimen-

tal results using over 4 million CPU seconds. In order

to design a good hybrid GA, we devised a new lo-

cal optimization heuristic. The most notable feature

of the algorithm is that it utilizes cyclic movements

of vertices. By attempting direct k-way partitioning

and allowing more freedom to vertex movements, it

improved the solution quality.

The genetic search turned out to be critical for the

performance. The comparison between multi-start CP

and GCMA showed the superiority of our genetic al-

Table 2: The Results of 8-way Partitioning Over 1,000 Runs
RKL PKL CP

Graph
Best Average CPUy Best Average CPUy Best Average CPUy

G500.005 131 145.52 0.02 131 143.64 0.10 133 148.00 0.20

G500.01 507 526.92 0.02 502 524.72 0.13 491 516.88 0.32
G500.02 1312 1343.74 0.04 1312 1341.46 0.22 1275 1318.29 0.55

G500.04 3447 3487.03 0.08 3438 3478.97 0.40 3396 3436.50 1.17
G1000.0025 254 278.67 0.05 253 274.13 0.23 266 290.97 0.36

G1000.005 1030 1063.67 0.06 1017 1050.46 0.35 1004 1036.81 0.60
G1000.01 2869 2913.03 0.10 2852 2901.38 0.57 2807 2856.86 1.08
G1000.02 6737 6802.69 0.19 6697 6782.33 1.04 6646 6709.38 2.02

U500.05 54 84.22 0.03 31 64.32 0.16 58 95.61 0.21

U500.10 174 242.72 0.04 156 209.73 0.26 185 272.75 0.40
U500.20 629 736.44 0.07 621 720.18 0.45 622 784.02 0.91
U500.40 1957 2109.33 0.13 1875 2051.54 0.75 1868 1961.05 1.95

U1000.05 97 163.13 0.06 97 131.42 0.35 152 202.65 0.32
U1000.10 247 398.02 0.11 226 346.12 0.63 378 524.19 0.61

U1000.20 862 1021.81 0.19 832 1013.02 1.17 861 1302.31 1.47
U1000.40 2586 2872.22 0.32 2592 2931.31 2.11 2565 3025.45 3.79

reg500.0 141 160.38 0.02 131 149.02 0.12 144 170.06 0.28
reg500.12 148 169.48 0.02 138 157.55 0.11 136 174.00 0.25

reg500.16 148 172.57 0.02 139 159.76 0.12 154 176.19 0.25
reg500.20 152 179.82 0.02 149 166.79 0.11 154 178.50 0.27
reg5000.0 1502 1601.01 0.37 1368 1431.07 2.50 1751 1851.47 2.82

reg5000.4 1528 1615.95 0.39 1375 1438.80 2.44 1752 1851.77 2.71
reg5000.8 1521 1631.84 0.43 1378 1445.56 2.40 1706 1853.48 2.86

reg5000.16 1527 1645.82 0.48 1365 1455.66 2.45 1744 1849.65 2.74

cat.352 35 51.02 0.01 31 43.55 0.05 28 41.13 0.22

cat.702 70 95.63 0.01 65 85.01 0.09 60 75.06 0.32
cat.1052 102 135.18 0.02 92 122.36 0.14 79 104.96 0.43

cat.5252 488 581.46 0.14 524 611.74 0.88 430 510.81 1.43
rcat.134 27 33.09 0.00 27 31.31 0.01 27 30.76 0.13

rcat.554 15 88.28 0.01 17 77.83 0.06 13 60.37 0.41
rcat.994 26 148.11 0.01 28 160.71 0.11 25 135.93 0.43
rcat.5114 135 543.14 0.11 345 866.91 0.67 196 566.25 1.30

grid100.10 42 44.94 0.00 41 48.58 0.02 40 43.04 0.08

grid500.21 90 97.71 0.01 94 113.27 0.13 87 110.43 0.27
grid1000.20 114 124.41 0.04 128 156.87 0.32 116 167.91 0.45
grid5000.50 250 280.16 0.27 283 362.22 2.75 256 620.58 2.79

w-grid100.20 60 64.77 0.00 61 67.25 0.02 60 61.81 0.08
w-grid500.42 135 143.30 0.01 139 153.84 0.13 132 149.80 0.24

w-grid1000.40 175 201.58 0.03 185 214.05 0.32 183 231.33 0.42
w-grid5000.100 400 448.68 0.25 426 488.11 2.79 419 725.73 2.88

y CPU seconds on Pentium III 450 MHz

gorithm. Since there have been few experimental re-

sults of multi-way graph partitioning on the bench-

mark graphs, the results in this paper may be used

as a basis for further experimental competitions. We

should also note that large-step Markov chain [23] [15]

and tabu search [25] [12] [3] are known to have e�ec-

tive search capabilities and have been successful for

a number of di�cult problems. Combining CP with

these approaches are left for further study.

Acknowledgements

This work was partly supported by Motorola Korea

and Brain Korea 21 Project.

References

[1] C. J. Alpert and A. B. Kahng. Multiway partition-
ing via geometric embeddings, orderings, and dynamic
programming. IEEE Trans. on Computer-Aided De-

sign of Integrated Circuits and Systems, 14(11):1342{
1358, 1995.

[2] M. Anil, M Kishan, K. M. Chilukuri, and R. Sanjay.
Optimization using replicators. In International Con-

ference on Genetic Algorithms, pages 209{216, 1995.

[3] R. Battiti and A. Bertossi. Greedy, prohibition, and
reative heuristics for graph partitioning. IEEE Trans.

on Computers, 48(4):361{385, 1999.

[4] T. N. Bui, S. Chaudhuri, F. T. Leighton, and
M. Sipser. Graph bisection algorithms with good aver-
age case behavior. Combinatorica, 7(2):171{191, 1987.

[5] T. N. Bui and C. Jones. Finding good approximate
vertex and edge partitions is NP-hard. Information

Processing Letters, 42:153{159, 1992.

[6] T. N. Bui and B. R. Moon. On multi-dimensional
encoding/crossover. In International Conference on

Genetic Algorithms, pages 49{55, 1995.

[7] T. N. Bui and B. R. Moon. Genetic algorithm
and graph partitioning. IEEE Trans. on Computers,
45(7):841{855, 1996.

[8] T. N. Bui and A. Peck. Partitioning planar graphs.
SIAM J. Comp., 21(2):203{215, 1992.

Table 3: The Results of 32-way Partitioning Over 1,000 Runs
RKL PKL CP

Graph
Best Average CPUy Best Average CPUy Best Average CPUy

G500.005 200 212.76 0.03 202 218.58 0.37 196 211.28 1.55

G500.01 676 695.10 0.04 690 706.99 0.47 654 675.34 2.87
G500.02 1667 1687.77 0.05 1674 1699.87 0.61 1617 1639.73 5.89

G500.04 4181 4207.29 0.10 4177 4211.63 0.92 4084 4117.70 15.20
G1000.0025 366 383.08 0.07 366 385.10 0.91 368 392.18 2.21

G1000.005 1335 1361.88 0.09 1349 1378.36 1.16 1291 1324.13 4.12
G1000.01 3569 3599.51 0.14 3570 3618.87 1.57 3470 3507.04 8.45
G1000.02 8127 8164.21 0.25 8123 8176.54 2.25 7942 8004.31 17.49

U500.05 135 168.34 0.05 127 150.52 0.68 134 163.40 2.41

U500.10 564 625.76 0.07 552 591.84 0.92 553 597.84 4.17
U500.20 1912 1997.52 0.11 1878 1960.92 1.30 1842 1907.00 12.48
U500.40 5394 5498.45 0.19 5385 5531.51 1.81 5346 5489.48 48.83

U1000.05 199 249.74 0.11 165 199.85 1.57 216 272.64 3.26
U1000.10 651 782.66 0.18 634 714.93 2.56 659 795.46 7.80

U1000.20 2511 2693.37 0.30 2512 2684.59 4.02 2476 2628.23 23.92
U1000.40 7630 7891.14 0.50 7564 7858.76 6.34 7374 7652.98 64.94

reg500.0 246 260.46 0.03 258 273.08 0.45 232 249.23 1.72
reg500.12 245 258.83 0.04 252 268.33 0.46 231 246.16 1.60

reg500.16 245 260.50 0.04 245 269.35 0.46 232 248.01 1.57
reg500.20 251 266.74 0.04 260 275.21 0.45 240 253.36 1.58
reg5000.0 2179 2243.29 0.56 2056 2114.34 8.74 2036 2101.29 16.55

reg5000.4 2184 2248.46 0.59 2051 2119.55 8.74 2032 2102.67 16.55
reg5000.8 2187 2250.72 0.62 2062 2123.90 8.65 2023 2105.70 16.89

reg5000.16 2186 2252.22 0.69 2054 2121.53 8.62 2037 2104.19 16.81

cat.352 91 101.19 0.01 86 95.94 0.20 90 100.84 1.45

cat.702 116 146.06 0.03 88 125.83 0.52 90 104.61 5.26
cat.1052 169 199.94 0.04 144 184.02 0.73 152 168.66 6.23

cat.5252 717 812.60 0.20 715 861.21 4.22 575 645.56 18.95
rcat.134 91 92.56 0.00 91 95.01 0.04 91 93.38 0.29

rcat.554 170 190.91 0.02 159 182.56 0.28 159 162.08 5.00
rcat.994 73 220.01 0.03 32 188.70 0.70 31 32.88 8.72
rcat.5114 688 1041.41 0.20 870 1341.51 3.23 605 943.45 45.71

grid100.10 122 133.72 0.01 165 172.90 0.03 108 108.95 0.23

grid500.21 232 248.43 0.04 251 275.57 0.58 226 251.38 3.00
grid1000.20 318 336.47 0.09 363 399.03 1.39 337 387.35 5.22
grid5000.50 660 732.12 0.77 884 978.64 11.24 952 1233.53 11.09

w-grid100.20 141 154.54 0.01 184 192.13 0.03 128 128.56 0.24
w-grid500.42 276 293.43 0.04 296 317.02 0.57 272 292.15 2.90

w-grid1000.40 387 413.53 0.09 433 462.90 1.38 398 449.53 4.60
w-grid5000.100 819 898.95 0.75 1026 1114.88 11.19 1043 1372.60 10.53

y CPU seconds on Pentium III 450 MHz

[9] J. P. Cohoon, W. N. Martin, and D. S. Richards. A
multi-population genetic algorithm for solving the k-
part on hyper-cubes. In Fourth International Confer-

ence on Genetic Algorithms, pages 244{248, 1991.

[10] R. Collins and D. Je�erson. Selection in massively par-
allel genetic algorithms. In Fourth International Con-

ference on Genetic Algorithms, pages 249{256, 1991.

[11] A. Dasdan and V. Aykanat. Two novel multiway
circuit partitioning algorithms using relaxed locking.
IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, 16(2):169{178, 1997.

[12] M. Dell'Amico and F. Ma�oli. A new tabu search ap-
proach to the 0-1 equicut problem. InMeta-Heuristics

1995: The State of the Art, pages 361{377. Kluwer
Academic Publishers, 1996.

[13] R. J. Donald and A. B. Mark. Solving partitioning
problems with genetic algorithms. In International

Conference on Genetic Algorithms, pages 442{489,
1991.

[14] L. R. Ford and D. R. Fulkerson. Flows in Networks.
Priceton University Press, 1962.

[15] A. S. Fukunaga, J. H. Huang, and A. B. Kahng. On
clustered kick moves for iterated-descent netlist parti-
tioning. In IEEE International Symposium on Circuits

and Systems, volume 4, pages 496{499, 1996.

[16] M. Garey and D. S. Johnson. Computers and

Intractability: A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, 1979.

[17] M. Harpal, M. Kishan, M. Chilukuri, and R. Sanjay.
Genetic algorithms for graph partitioning and incre-
mental graph partitioning. In IEEE Proceedings of the

Supercomputing, pages 449{457, 1994.

[18] D. S. Johnson, C. Aragon, L. McGeoch, and
C. Schevon. Optimization by simulated annealing:
An experimental evaluation. Operations Research,
37:865{892, 1989.

[19] B. Kernighan and S. Lin. An e�cient heuristic proce-
dure for partitioning graphs. Bell Systems Technical

Journal, 49:291{307, 1970.

[20] S. Kirkpatrick, Gelatt C. D. Jr., and M. P. Vec-
chi. Optimization by simulated annealing. Science,
220(4598):671{680, May 1983.

Table 4: The Results of Multi-Start CP and GCMA

8-way 32-way

Multi-Start CP GCMA Multi-Start CP GCMAGraph
Best1 Average2 CPU3 Best Average CPU3 Best4 Average5 CPU3 Best Average CPU3

G500.005 130 135.50 26.13 116 124.80 18.75 195 198.82 204.20 181 187.04 148.70

G500.01 489 497.40 42.51 468 477.14 39.78 652 659.14 381.19 631 642.02 305.42
G500.02 1283 1293.53 71.44 1257 1268.45 75.09 1608 1619.56 784.48 1587 1594.98 744.53
G500.04 3384 3401.18 152.58 3354 3364.13 198.52 4076 4092.24 2030.90 4043 4057.20 2035.89

G1000.0025 262 271.60 47.07 220 233.24 51.34 371 375.30 294.87 326 345.59 268.77
G1000.005 997 1007.08 79.13 942 959.09 86.16 1288 1297.46 548.70 1222 1246.87 571.08

G1000.01 2801 2816.53 140.62 2729 2746.65 185.89 3454 3471.18 1147.36 3370 3400.74 1474.57
G1000.02 6632 6651.13 258.36 6531 6562.20 403.43 7949 7962.84 2355.47 7839 7862.33 3878.28

U500.05 53 69.24 28.47 22 33.35 38.99 130 137.12 316.93 115 120.76 286.51
U500.10 163 196.58 54.50 143 149.58 64.58 550 559.84 561.43 532 541.40 541.93

U500.20 613 633.60 126.22 611 613.08 124.37 1831 1849.64 1657.32 1825 1832.66 1351.17
U500.40 1867 1870.42 261.24 1865 1866.01 150.17 5337 5362.40 6385.35 5328 5338.24 4983.42
U1000.05 140 157.80 44.46 57 83.96 74.37 211 228.52 442.98 130 147.29 810.77

U1000.10 349 399.12 86.19 187 217.53 136.55 653 692.90 1029.54 577 589.17 1762.44
U1000.20 855 963.94 197.05 812 822.35 240.63 2441 2481.28 3140.80 2367 2394.17 4107.66

U1000.40 2564 2574.94 485.23 2562 2562.23 470.18 7370 7410.90 8688.90 7329 7343.08 7494.34

reg500.0 136 143.90 35.77 116 123.47 28.42 230 234.82 232.10 222 228.96 145.48

reg500.12 144 152.08 34.60 118 124.17 34.34 228 232.42 215.74 222 226.90 125.14
reg500.16 147 154.92 34.16 122 125.91 34.48 231 234.90 209.71 222 229.00 131.22

reg500.20 151 158.92 33.97 128 133.77 32.39 236 240.38 206.29 231 235.84 128.38
reg5000.0 1690 1760.94 368.35 1096 1174.61 586.90 2031 2049.12 2286.98 1720 1845.36 2748.89

reg5000.4 1735 1770.84 370.50 1093 1162.79 632.17 2032 2051.94 2296.16 1725 1845.10 2903.34
reg5000.8 1675 1766.82 368.55 1098 1179.79 597.55 2027 2053.36 2302.16 1737 1837.87 2842.56
reg5000.16 1721 1767.26 367.89 1077 1134.26 682.06 2025 2052.20 2305.64 1693 1802.83 2998.63

cat.352 29 32.85 30.08 19 25.27 26.78 90 93.30 192.26 85 86.58 168.55

cat.702 58 62.00 42.32 31 49.71 38.72 90 94.10 712.55 60 79.71 845.03
cat.1052 83 86.90 57.21 50 73.46 46.79 148 154.16 832.70 101 141.36 1046.32
cat.5252 429 447.40 198.31 204 314.44 265.66 563 589.24 2573.53 377 552.77 2905.65

rcat.134 27 27.23 18.33 27 27.00 7.18 91 91.00 41.33 91 91.00 9.32
rcat.554 14 16.57 56.41 9 13.23 31.13 159 159.00 675.14 159 159.24 275.33

rcat.994 26 54.87 58.73 15 19.51 42.35 31 31.72 1190.67 31 31.08 262.78
rcat.5114 124 227.02 178.98 45 51.73 144.32 495 612.42 6223.60 489 491.38 8936.98

grid100.10 40 40.00 11.11 40 40.00 3.89 108 108.00 30.30 108 108.02 9.88
grid500.21 87 88.58 36.67 86 86.60 21.52 225 230.22 402.18 220 223.10 234.93

grid1000.20 114 120.57 59.59 114 114.02 40.65 327 340.14 701.70 314 316.52 502.79
grid5000.50 311 361.08 381.02 250 250.20 316.21 918 992.18 1506.38 659 676.60 2065.60
w-grid100.20 60 60.00 10.77 60 60.00 3.40 128 128.00 31.37 128 128.00 9.87

w-grid500.42 132 133.43 33.33 131 132.49 17.43 268 273.38 393.29 266 270.16 195.11
w-grid1000.40 180 187.08 57.39 176 179.92 42.29 392 407.48 635.82 384 387.48 404.96

w-grid5000.100 415 486.95 388.53 400 400.95 328.71 1069 1144.46 1471.00 820 840.68 1854.84

1. The best of 13,500 runs of CP
2. Average of 100 runs, each of which is the best of 135 runs of CP

3. CPU seconds on Pentium III 450 MHz
4. The best of 6,750 runs of CP
5. Average of 50 runs, each of which is the best of 135 runs of CP

[21] G. Laszewski. Intelligent structural operators for the
k-way graph partitioning problem. In Fourth Interna-

tional Conference on Genetic Algorithms, pages 45{
52, 1991.

[22] C. H. Lee, M. Kim, and C. I. Park. An e�cient k-
way graph partitioning algorithm for task allocation in
parallel computing systems. In 1st International Con-

ference on System Integration, pages 748{751, 1990.

[23] O. Martin, S. W. Otto, and E. W. Felten. Large-
step markov chains for the traveling salesman prob-
lem. Complex Systems, 5:299{326, 1991.

[24] B. R. Moon and C. K. Kim. A two-dimensional em-
bedding of graphs for genetic algorithms. In Interna-

tional Conference on Genetic Algorithms, pages 204{
211, 1997.

[25] E. Rolland, H. Pirkul, and F. Glover. A tabu search
for graph partitioning. Annals of Operations Research,
63, 1996.

[26] Y. Saab and V. Rao. Stochastic evolution: A fast
e�ective heuristic for some genetic layout problems.
In 27th IEEE/ACM Design Automation Conference,
pages 26{31, 1990.

[27] P. Sadayappan, F. Ercal, and J. Ramanujam. Par-
titionig graphs on message-passing machines by pair-
wise mincut. Information Sciences, pages 223{237,
1998.

[28] L. A. Sanchis. Multiple-way network partitioning.
IEEE Trans. on Computers, 38(1):62{81, 1989.

[29] A. G. Steenbeek, E. Marchiori, and A. E. Eiben. Find-
ing balanced graph bi-partitions using a hybrid ge-
netic algorithm. In IEEE Conference on Evolutionary

Computation, pages 90{95, 1998.

[30] C. W. Yeh, T. Y. Lin, and C. K. Cheng. A general
purpose multiple way partitioning algorithm. In 29th

IEEE/ACM Design Automation Conference, pages
421{426, 1991.

