
Distributed Steady-State Neuro-Evolutionary Path Planning in
Non-Stationary Environments Using Adaptive Replacement

Gerry Dozier

Department of Computer Science and Software Engineering

Auburn University

Auburn, AL 36849-5347

email: gvdozier@eng.auburn.edu

Abstract

Recently, there has been an increasing in-

terest in applying evolutionary computation

to path planning. To date, these evolution-

ary path planners have been single agent

planners. In real-world environments where

the knowledge of obstacles is naturally dis-

tributed, it is possible for single agent path

planners to become overwhelmed by the vol-

ume of information needed to be processed

in order to develop accurate paths quickly

in non-stationary environments. This pa-

per presents an adaptive replacement strat-

egy that increases the e�ectiveness of steady-

state evolutionary path planning in slow, con-

stantly changing environments.

1 Introduction

Recently, there has been a growing interest in the use

of evolutionary computation (EC) for path planning

[18]. This interest has lead to the development of a

number of exciting and successful evolutionary path

planners. However, to date, all of these planners have

been single agent path planners that operate in sta-

tionary environments. In real-world situations, it is

possible for single agent path planners to become over-

whelmed by the sheer volume of information needed

to be processed in order to develop accurate paths

quickly. In the case of a multi-agent environment, the

reliance on centralized planning will result in an ine�-

cient utilization of the knowledge distributed among

the agents. Thus, there is a need for multi-agent

path planning protocols for distributed path planning.

These planning protocols must also be able to develop

paths for non-stationary environments.

The Distributed Path Planning Problem (DPPP)

can be stated as follows. Given an environment

(R;S;G;A;O) where R represents a \client" point

agent, S represents the starting point, G represent the

destination point, and A represents a set of distributed

\planning" agents, where each ai 2 A has knowledge

of a subset of obstacles, in O, located near the region

that ai occupies: discover a collision free path from

S to G using the \planning" agents in A that some

\client" agent, R, can traverse.

In this paper, we compare a number of steady-

state distributed neuro-evolutionary computations

(DNECs) [5] for path planning in non-stationary envi-

ronments. The DNECs evolve candidate paths (CPs)

that are represented as radial basis function networks

(RBFNs) [10]. By evolving, RBFNs the DNECs are

able to dramatically reduce the number of nodes (or

via points) needed to represent smooth CPs. The ma-

jor contribution of this paper is the presentation of

a new adaptive replacement strategy (ARS). Our re-

sults show that this new ARS is superior to static re-

placement strategies (SRS) for steady-state evolution-

ary search.

The remainder of this paper is organized as follows.

Section 2 provides a brief overview of distributed EC,

RBFNs, and steady-state ECs for non-stationary prob-

lems. In Section 3, the DNECs and the ARS are de-

scribed in detail. In Section 4, the test suite of �ve ran-

domly generated path planning problems is described

and in Section 5, our preliminary results are presented.

Section 6 provides a brief discussion and our conclu-

sions are presented in Section 7.

2 Background

2.1 Distributed ECs

Distributed Evolutionary Computations (DECs) typ-

ically fall into one of three categories: function-based

[2, 14], domain-based [1, 13], and variable-based [9, 12].

Function-based DECs distribute tasks (or functions) of

the evolutionary process (selection, procreation, eval-



uation) among k processors in order to speed-up the

processing time of a single EC.

Domain-based DECs (DBDECs) distribute a popula-

tion of P candidate solutions (CSs) among k proces-

sors. There are two types of DBDECs: coarse-grained

and �ne-grained. In coarse-grained DBDECs, k pop-

ulations of P
k
CSs are maintained. Thus, k ECs are

executed in parallel. Periodically, selected CSs are al-

lowed to migrate to other populations. Fine-grained

DBDECs usually assign one CS to each processor. The

populations or demes overlap as CSs are only allowed

to mate and compete for survival within their geo-

graphical neighborhoods.

In variable-based DECs (VBDECs), the structure rep-

resenting CSs is distributed. Let V represent the vari-

ables that form the structure of the CSs of a problem.

VBDECs, distribute
jV j
k

variables among k processors.

Each processor uses an EC to evolve a population of

P partial CSs. These types of DECs are also known

as distributed co-evolutionary computations because

the partial CSs can be viewed as k species working

together to solve a problem in symbiotic fashion.

2.2 Steady-State Evolutionary Search in

Non-Stationary Environments

Research in the area of evolutionary search in non-

stationary environments, to date, has focused pri-

marily on two approaches: memory-based[7] and

mutation-based [3, 4, 8, 13, 16]. Memory-based

approaches enhance ECs with additional structures

that enable them to remember past solutions while

mutation-based approaches focus on using \higher

than normal" mutation rates in an e�ort to track non-

stationary optima. In this paper we investigate the

possibility of a third approach that can be used by

steady-state evolutionary search in non-stationary en-

vironments.

In [17], the authors introduce a simple modi�cation to

steady-state search that allows it to e�ectively track

optima in non-stationary environments consisting of

small changes that occur with low frequency. Rather

than replacing the worst individual each iteration [15]

they replaced the oldest.

The adaptive replacement strategy presented in this

paper is a generalization of the \replace the oldest"

strategy. The parameter that is adapted during search

is, 
, the number of �tness-based replacements before

one age-based replacement. Thus, the \replace the

oldest" strategy can be seen as 
 = 0. The value

assigned to 
 is based on the amount \stress"[3] the

EC is under as the environment changes.

2.3 RBFNs and Path Construction

The construction of CPs can be viewed as an interpo-

lation problem where the objective is to develop a con-

tinuous function that passes through n speci�ed nodes.

By using interpolation, fewer nodes are needed in order

to represent a smooth path. In fact, only n = jOj + 2

nodes need to be speci�ed, where O is the set of ob-

stacles and where the other two nodes represent the

start and goal nodes. Therefore one can perform path

planning by evolving nodes for interpolation RBFNs.

Consider a sequence of n nodes, [(x1; y1), (x2; y2), : : :,

(xn; yn)]. An interpolation RBFN representing this

sequence can be expressed as f(x) = �n
i=1�(x; xi)wi,

where �(x; xi) = exp( (x�xi)
2

2�2
) and where wi are

weights. In order to properly pass through the nodes,

a set of values must to be discovered for the weights.

This can be accomplished by solving the following lin-

ear equations for the set of weights (where � = 1p
2n
,

and where � must be non-singular) [10]:

2
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3 The DNECs

3.1 An Evolutionary Agent Protocol

The DNECs were developed for evolving CPs through

an environment composed of one-dimensional, non-

stationary obstacles. The obstacles are represented by

a vertical line segment with an upper and lower bound.

Associated with each obstacle in the environment is an

evolutionary agent located at the midpoint of the ob-

stacle. Each agent has an x coordinate that remains

constant and uses an EC to evolve a population of o�-

sets that are added to the upper or lower bounds of

the their associated obstacle to form feasible y coordi-

nates. Thus, each o�set of an EC represents one node

of a distributed CP. The values on the x and y axes

range from 0.0 to 1.0.

Figure 1 shows a pseudocode version of the protocol

used by an evolutionary agent. Each agent uses two

random number generators rnd1 and rnd2. The ran-

dom number generator, rnd1, is used for synchronizing

the tournament selection algorithm [11]. If the seed for

each evolutionary agent is identical then the selection

of parents will be synchronized (i.e., all the o�sets cor-

responding to a distributed parent will be selected by

the evolutionary agents). If the seeds of the agents are

di�erent, then an asynchronous form of tournament



selection will be used (i.e., each agent may select o�-

sets corresponding to di�erent distributed CPs to be

crossed and/or mutated).

After the seed has been given to an evolutionary agent,

the protocol proceeds as follows. An initial popula-

tion of P o�sets is randomly generated1. Each o�set

is then evaluated by sending it to the `Evaluate' pro-

cedure which takes as arguments the address of some

agent that will be evaluating the length of the dis-

tributed CP, the population of o�sets, the index of the

o�set to be evaluated, and the time of birth of the o�-

set (tob). This procedure converts the o�set into a y

value and then sends a message to the evaluator agent

containing the candidate node and the index of the dis-

tributed CP that the node belongs to. The evaluator

agent replies with a message which contains the index

of the distributed CP as well as the overall path length

associated with the CP. This path length is assigned

to the o�set as its �tness2. After a CP is evaluated

the position of the evolutionary agent (along with the

position of its associated obstacle) is changed.

After the initial generation of o�sets has been gen-

erated and evaluated, the evolutionary agent begins

its iterative loop of selection, procreation and replace-

ment. In this loop, the timer (t) is incremented and

two parents are selected via (synchronous or asyn-

chronous) tournament selection.

After two parent o�sets have been selected, one o�-

set in the population must be selected to be replaced.

This is an important part of the protocol. One cannot

focus on selecting the worst �t individual [17] which

we refer to as �tness-based replacement. Instead a

balance must be negotiated between �tness-based re-

placement and age-based replacement. In age-based

replacement, the oldest individual is selected to be re-

placed. We de�ne the �tness-based replacement rate,


, to be the number of consecutive �tness-based re-

placements executed before a single age-based replace-

ment is executed3.

Once an o�set is selected to be replaced, the parent

o�sets then create a child o�set, �ic, through the use

of three operators. The �rst operator is BLX-0.0

crossover [6] and works as follows: �ic = rnd2(�ip; �iq),

where rnd2 returns a uniform random number within

the interval [�ip; �iq ]. The second and third operators

use only the �rst parent selected and are as follows:

�ic = rnd2(�ip; 0:0) and �ic = �ip+rnd2(�ip; 0:0). Each

1O�set are always checked to make sure that their as-
sociated y value is within [0.0,1.0].

2Since the associated path length of an o�set is assigned
as its �tness, the lower the �tness the better the o�set.

3In [17], the authors only investigate the use of 
 = 0.

EvolutionaryAgenti(EvaluatorAgent;Seed)f
t = 0;
Randomly Generate n o�sets (�ij);
for j = 1 to n f

t = t+ 1;
Evaluate(EvaluatorAgent,�i,j,t);
updateTheO�sets(�i);

g
while (t � NumberOfIterations) f

t = t+ 1;
p = selectParentFrom(�i,Seed,rnd1);
q = selectParentFrom(�i,Seed,rnd1);
w = selectToDie(�i);
if (rnd2(0:0; 1:0) < 0:5)

�ic = rnd2(�ip; �iq);
else if (rnd2(0:0; 1:0) < 0:5)

�ic = rnd2(�ip; 0:0);
else

�ic = �ip + rnd2(�ip; 0:0);
�ic = �ic +N(0; s);
Mutate(�ic,�,rnd2);
�iw = �ic;
Evaluate(EvaluatorAgent,�i,w,t);
updateTheO�sets(�i);

g
g

Evaluate(EvaluatorAgent; �i; k; t)f
if (�ik < 0:0)

sendTo(EvaluatorAgent,(xi; �ik + lbi),k);
else

sendTo(EvaluatorAgent,(xi; �ik + ubi),k);
receiveFrom(EvaluatorAgent,k,PathLength);
fik = PathLength;
tobik = t;

g

Mutate(�ik; �; rnd2)f
if (rnd2(0:0; 1:0) � �)

�ik = ��ik;
g

Figure 1: Evolutionary Agent Protocol

o�spring undergoes a Gaussian disturbance, N(0; s).

The child o�set is then mutated using sign mutation

which 
ips the sign of the o�set. After sign mutation,

the child replaces the o�set selected to die and is evalu-

ated. After each o�spring is evaluated the coordinates

of the evolutionary agent are changed and the popula-

tion of o�sets is updated so that the distributed paths

will remain stationary.

3.2 An Adaptive Replacement Strategy

Instead of using a constant 
, it would be more ad-

vantageous to adapt 
 during search. The reasons for

this stem from the fact that the EC's perception of

environmental change will vary during evolution. If



the environment remains relatively stationary, then a

large 
 would be more e�ective than a smaller one.

However, as the rate of change of the environment in-

creases the 
 value should decrease to prevent the se-

lection algorithm from selecting individuals based on

old, out-dated �tnesses.

An e�ective adaptive replacement strategy (ARS)

would be one that attempts to balance the convergence

of the population with the perceived rate of change of

the environment. This ratio can then be used as the 


value for a speci�ed amount of time.

The ARS can be derived using the following notation.
Let:

xk ; denote the best individual in the population

at time k4,

"(xk;m); denote the �tness associated with xk at time

m, where m � k;

dfp
dt

; denote the change in the best �tness of the

population with respect to time

=
"(xk��t; k ��t)� "(xk; k)

�t
;

dfb
dt

; denote the change in of the previous best in-

dividual's �tness over time

=
"(xk��t; k ��t)� "(xk��t; k)

�t
;

dfp
dfb

; denote the ratio of the population conver-

gence (with respect to the best �tness in the

population) to the perceived change in the

environment,

therefore,


 =

8><
>:

�t if dfb � 0

j
dfp
dfb
j if dfp � 0 and dfb < 0 (1)

0 otherwise

In Equation 1, three triggers [3, 4] are shown. The �rst

trigger causes the EC to use �tness-based replacement

exclusively. Any time the ARS DNEC perceives that

the environment is stationary or that the previous best

individual's path length decreases5 as the environment

changes then 
 = �t.

4In this paper one time unit is equivalent to one CP
evaluation or one iteration of the distributed steady-state
EC.

5This can happen when by updating an o�set the value
of the o�set goes from nonnegative to negative or vice
versa.

The second trigger allows 
 to be assigned interme-

diate values within the interval [0;�t]. As long as

the rate of population convergence is greater than the

perceived rate of change of the environment then a

non-zero value will be assigned to 
. If the case arises

where j
dfp
dfb

j � �t then 
 is set equal to �t.

Finally, the third trigger is used to envoke the \re-

place the oldest" strategy. Our hypothesis is that when

this strategy is used, especially with smaller popula-

tion sizes (5-20 individuals), a type of hyper-diversity

[3, 4] will result.

4 The Test Suite

Our test suite consisted of �ve randomly generated

non-stationary path planning problems. For each

problem, the number of equally spaced obstacles was

randomly selected from the interval, [4,8]. Problems

1 and 5 consisted of 4 obstacles while Problems 2-4

consisted of 8 obstacles. The length of each obstacle

was randomly selected from the interval [0.15,0.35].

For each of the �ve problems the start and destination

points were (0.0,0.5) and (1.0,0.5).

Each obstacle, o 2 O, slides parallel to the y-axis.

The obstacles move at a constant rate with the y-

coordinate of each obstacle changing every time a dis-

tributed CP is evaluated. The rate at which an ob-

stacle moves is determined by �o =
2(1�!o)

g�2 , where !o
represents the length of o and g represents the maxi-

mum number of path evaluations allowed. The obsta-

cles initially move upwards until they reach the edge of

the top boundary of the environment and then move

downward until they reach the bottom boundary of

the environment. At this point, they being moving

upwards again. After g path evaluations all obstacles

will have returned to their original starting positions.

5 Results

A total of 48 DNECs were compared. These DNECs

were distinguished by three attributes: type of selec-

tion, which was taken from the set, fa; sg, (where

a denotes asynchronous selection and s denotes syn-

chronous selection), population size, which was taken

from the set, f5; 10; 20; 160g, and the value of 
 which

was taken from the set f0; 1; 2; 4; 8; �g, where � denotes

the use of the ARS.

The other parameter settings for the 48 DNECs were

as follows. The usage rates for the three operators

were 0.5, 0.25, and 0.25. The standard deviation of

the Gaussian disturbance of the DNECs was set to

0.03 (s = 0:03), and the sign mutation rate was set to

0.05 (� = 0:05). The length, l, of a CP was determined



as follows: l = �19
i=0dst(

i
20
; f( i

20
); i+1

20
; f( i+1

20
)), where

dst(b; c; e; f) returns the distance between points (b; c)

and (e; f). For the eight DNECs using the ARS, �t

was set to 5 and at t = 0 
 was initialized to 1.

In our study, the 48 DNECs were divided into classes

based on the selection method and the population size

used. Each of the DNECs was run a total of 31 times

on each of the problems with g = 2000. For each class

the best performing SRS DNEC was determined by

comparing instances on each of the �ve problems and

choosing the DNEC that had the greater number of

statistically signi�cant average o�-line performances.

For these comparisons a paired Student's t-test was

used. Any jtj � 1:7 signaled a statistically signi�cant

di�erence in average performance.

In Tables 1 and 2, the performances of the synchronous

and asynchronous DNECs are compared. Each cell

of the tables records the average o�-line performance

along with the standard deviation of the average o�-

line performance recorded in parentheses. For each

class, the best performing SRS DNEC is highlighted

in boldface and is compared with an ARS DNEC using

the Student's t-test. The t values are recorded on the

row beneath the recorded performances of the ARS

DNECs.

In Table 1, notice that the for the synchronous SRS

DNECs, the best 
 decreases as the population size

increases. We believe this to be because the DNECs

with larger population sizes converge at a slower rate.

Thus, the faster the speed of convergence the higher


 can (and will need to) be. Our results suggest that

the best setting for 
 is 40
P .

When comparing the best SRS DNECs with the ARS

DNECs, the di�erences in the performances are all sta-

tistically signi�cant in favor of the ARS DNECs except

when the population size is 160 (see Problem 5).

The observations made concerning the performances

of the synchronous DNECs are similar for the perfor-

mances of the asynchronous DNECs in Table 2. Once

again the best setting is 
 = 40
P for the asynchronous

SRS DNECs. As was seen in Table 1, the asynchronous

ARS DNECs have statistically signi�cant better per-

formances on each of the �ve problems except when

the population size is large (see Problem 5).

Although the performances of the DNECs are all close,

the best overall synchronous and asynchronous SRS

DNECs were (s; 5; 8) and (a; 5; 8). This was primar-

ily because they had signi�cantly better performances

than their counterparts with larger populations on the

problems with only four obstacles, Problems 1 and 5.

When these two DNECs were compared neither had

a statistically signi�cant better performance on any of

the problems. Similarly, for the same reason, the best

overall ARS DNECs were (s; 5; �) and (a; 5; �). When

their performances are compared the former has a sta-

tistically signi�cant better performance on Problem 2

while the latter has a statistically signi�cant better

performance on Problem 4.

Figure 3 shows a plot of the 
 values of (s; 5; �) for

each of the 5 problems. For each plot, the x-axis cor-

responds to the number of evaluations (time) and the

y-axis corresponds to the value of 
. Notice that for

each of the plots a variety of values for 
 can be seen.

6 Discussion

Of the performances of the 48 DNECs, those that con-

sistently perform the worst have 
 = 0, the \replace

the oldest" strategy. This seems to have more to do

with the population size than anything else. Using

the \replace the oldest" strategy in combination with

a small population will cause the best individuals to

be removed too quickly from the population. These

individuals will not have enough opportunities to in-


uence the direction of the search. As a result, the

population will experience an in
ux of diversity. This

is especially the case when the selective pressure of the

selection algorithm is low with respect to the rate at

which the best individuals leave the population. Thus,

lower 
 values allow for a greater in
ux of diversity.

7 Conclusions

In this paper, we have shown how RBFNs and EC can

be combined and used e�ectively for distributed path

planning in non-stationary environments. More im-

portantly we have developed an adaptive replacement

strategy that is triggered by the convergence of the EC

as well as the perceived change in the environment.

Our results show that 
 rate is an important parameter

in determining the e�ectiveness of the DNECs. Also

the results show that adapting 
 during evolution is

superior to using a static value for 
. In this study, the

type of selection used (synchronous or asynchronous)

was not a factor in the performance of the DNECs.

Our future research will be devoted towards developing

DNECs for environments with more complex obstacles

and obstacle motions.
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Figure 2: The Test Suite

Distributed Path Planning Problems
Algs 1 2 3 4 5
(s; 5; 0) 1.409 (0.023) 2.295 (0.046) 2.379 (0.042) 2.325 (0.048) 1.454 (0.021)
(s; 5; 1) 1.236 (0.013) 1.999 (0.039) 2.081 (0.025) 2.003 (0.040) 1.297 (0.022)
(s; 5; 2) 1.177 (0.012) 1.858 (0.035) 1.935 (0.038) 1.845 (0.043) 1.238 (0.018)
(s; 5; 4) 1.157 (0.014) 1.747 (0.052) 1.784 (0.042) 1.696 (0.052) 1.226 (0.012)
(s; 5; 8) 1.200 (0.017) 1.676 (0.047) 1.681 (0.058) 1.612 (0.047) 1.273 (0.030)
(s; 5; �) 1.124 (0.012) 1.550 (0.065) 1.580 (0.057) 1.513 (0.045) 1.185 (0.020)

t = 21:08 t = 8:16 t = 6:19 t = 10:90 t = 16:07

(s; 10; 0) 1.258 (0.022) 2.003 (0.041) 2.087 (0.039) 2.015 (0.042) 1.321 (0.023)
(s; 10; 1) 1.163 (0.014) 1.801 (0.029) 1.872 (0.046) 1.757 (0.037) 1.231 (0.017)
(s; 10; 2) 1.161 (0.013) 1.709 (0.037) 1.746 (0.050) 1.645 (0.040) 1.249 (0.017)
(s; 10; 4) 1.216 (0.019) 1.655 (0.046) 1.670 (0.060) 1.610 (0.050) 1.313 (0.029)
(s; 10; 8) 1.293 (0.038) 1.645 (0.086) 1.678 (0.066) 1.601 (0.082) 1.415 (0.039)
(s; 10; �) 1.140 (0.015) 1.532 (0.056) 1.582 (0.070) 1.478 (0.051) 1.204 (0.019)

t = 19:06 t = 9:66 t = 5:04 t = 10:08 t = 16:38

(s; 20; 0) 1.210 (0.019) 1.885 (0.039) 1.970 (0.036) 1.848 (0.036) 1.277 (0.023)
(s; 20; 1) 1.186 (0.016) 1.738 (0.040) 1.754 (0.045) 1.672 (0.042) 1.279 (0.022)
(s; 20; 2) 1.226 (0.018) 1.677 (0.044) 1.708 (0.063) 1.621 (0.066) 1.341 (0.040)
(s; 20; 4) 1.279 (0.025) 1.668 (0.067) 1.698 (0.061) 1.621 (0.081) 1.416 (0.042)
(s; 20; 8) 1.324 (0.027) 1.736 (0.104) 1.752 (0.066) 1.666 (0.070) 1.495 (0.050)
(s; 20; �) 1.171 (0.015) 1.524 (0.086) 1.586 (0.057) 1.500 (0.046) 1.243 (0.022)

t = 11:81 t = 8:90 t = 9:00 t = 10:66 t = 12:74

(s; 160; 0) 1.315 (0.038) 1.842 (0.074) 1.876 (0.088) 1.782 (0.086) 1.422 (0.052)
(s; 160; 1) 1.389 (0.048) 1.810 (0.075) 1.804 (0.109) 1.780 (0.095) 1.476 (0.066)
(s; 160; 2) 1.427 (0.048) 1.799 (0.092) 1.841 (0.108) 1.771 (0.087) 1.523 (0.046)
(s; 160; 4) 1.447 (0.062) 1.792 (0.103) 1.840 (0.087) 1.764 (0.100) 1.586 (0.084)
(s; 160; 8) 1.490 (0.111) 1.840 (0.092) 1.848 (0.148) 1.795 (0.117) 1.601 (0.095)
(s; 160; �) 1.300 (0.026) 1.594 (0.088) 1.645 (0.114) 1.588 (0.083) 1.405 (0.042)

t = 2:57 t = 13:82 t = 8:12 t = 14:65 t = 1:36

Table 1: The Performances of the Synchronous DNECs on the Path Planning Problems



Distributed Path Planning Problems
Algs 1 2 3 4 5

(a; 5; 0) 1.401 (0.026) 2.272 (0.043) 2.354 (0.043) 2.220 (0.034) 1.451 (0.022)
(a; 5; 1) 1.240 (0.019) 1.989 (0.040) 2.070 (0.042) 2.000 (0.037) 1.300 (0.015)
(a; 5; 2) 1.180 (0.015) 1.863 (0.035) 1.931 (0.037) 1.839 (0.043) 1.241 (0.022)
(a; 5; 4) 1.158 (0.013) 1.736 (0.044) 1.786 (0.049) 1.726 (0.047) 1.220 (0.013)
(a; 5; 8) 1.199 (0.021) 1.657 (0.040) 1.684 (0.041) 1.634 (0.061) 1.277 (0.021)
(a; 5; �) 1.129 (0.017) 1.510 (0.066) 1.582 (0.060) 1.541 (0.054) 1.180 (0.018)

t = 14:80 t = 10:16 t = 8:09 t = 6:38 t = 22:29

(a; 10; 0) 1.261 (0.022) 2.010 (0.039) 2.084 (0.034) 2.016 (0.038) 1.328 (0.021)
(a; 10; 1) 1.162 (0.011) 1.803 (0.038) 1.858 (0.045) 1.750 (0.032) 1.230 (0.014)
(a; 10; 2) 1.168 (0.014) 1.706 (0.049) 1.775 (0.046) 1.658 (0.055) 1.246 (0.016)
(a; 10; 4) 1.226 (0.026) 1.655 (0.064) 1.675 (0.045) 1.609 (0.036) 1.314 (0.027)
(a; 10; 8) 1.281 (0.025) 1.653 (0.077) 1.677 (0.065) 1.600 (0.071) 1.403 (0.036)
(a; 10; �) 1.142 (0.013) 1.541 (0.056) 1.584 (0.051) 1.483 (0.043) 1.201 (0.018)

t = 16:64 t = 9:05 t = 7:33 t = 13:68 t = 21:84

(a; 20; 0) 1.206 (0.019) 1.900 (0.031) 1.971 (0.035) 1.848 (0.032) 1.277 (0.023)
(a; 20; 1) 1.188 (0.017) 1.733 (0.039) 1.756 (0.044) 1.664 (0.045) 1.284 (0.029)
(a; 20; 2) 1.219 (0.016) 1.695 (0.049) 1.693 (0.049) 1.626 (0.053) 1.332 (0.036)
(a; 20; 4) 1.279 (0.026) 1.675 (0.071) 1.715 (0.070) 1.657 (0.071) 1.409 (0.030)
(a; 20; 8) 1.329 (0.022) 1.736 (0.101) 1.700 (0.065) 1.679 (0.100) 1.462 (0.033)
(a; 20; �) 1.175 (0.021) 1.515 (0.076) 1.560 (0.051) 1.471 (0.036) 1.241 (0.027)

t = 8:66 t = 11:46 t = 12:04 t = 13:60 t = 14:38

(a; 160; 0) 1.311 (0.029) 1.857 (0.068) 1.879 (0.095) 1.807 (0.071) 1.410 (0.047)
(a; 160; 1) 1.381 (0.043) 1.829 (0.121) 1.847 (0.084) 1.789 (0.072) 1.493 (0.055)
(a; 160; 2) 1.432 (0.075) 1.824 (0.126) 1.824 (0.098) 1.792 (0.099) 1.494 (0.057)
(a; 160; 4) 1.468 (0.066) 1.836 (0.121) 1.839 (0.073) 1.787 (0.109) 1.560 (0.090)
(a; 160; 8) 1.516 (0.143) 1.830 (0.095) 1.856 (0.112) 1.800 (0.114) 1.591 (0.083)
(a; 160; �) 1.291 (0.023) 1.636 (0.109) 1.671 (0.117) 1.601 (0.088) 1.407 (0.045)

t = 3:07 t = 10:86 t = 7:78 t = 10:50 t = 0:23

Table 2: The Performances of the Asynchronous DNECs on the Path Planning Problems
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Figure 3: The 
 Values for the 5 Path Planning Problems
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