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Premature convergence has long been recognized as one
notorious factor that leads to the unsatisfactory
performance of genetic algorithms (GAs). In particular,
due to the resulting loss of diversity of building blocks, it
impedes the perfect implementation of implicit
parallelism and thus hinders the efficacy of crossover. In
this paper, a new strategy for independent sampling of
building blocks (independent sampling genetic algorithms
(ISGAs)) is proposed in order to nicely implement
implicit parallelism. Simply stated, each individual
independently samples candidate schemata and creates
population diversity in the first phase (independent
sampling phase), subsequently elitism and population
structures are adopted for breeding to attain the global
optimum (breeding phase). The following addresses this
methodology in more detail.

INDEPENDENT SAMPLING PHASE

Step 1. Choose an empty set called EstSchPos for
collecting possible positions of useful schemata for future
processing. Then initialize a new string at random with
uniform probability for each bit. If its fitness is greater
than zero, go to step 2; if not, continue to pick up a new
string until its fitness exceeds zero, and then go to step 2.
Record the current fitness as OldFit.

Step 2. From the first bit to the last bit of this string
except the elements in EstSchPos, successively flip a bit
each time and evaluate the fitness of the resulting string.
Record the new fitness as NewFit. If NewFit is less than
OIdFit, record the position of this bit (by appending this
locus to EstSchPos) and its original bit value as a
candidate gene. (After step 2, we should be able to collect
a record for bit values and loci of candidate schemata.)

Step 3. Generate again a new string at random and replace
the alleles at positions EstSchPos with the corresponding
schema values discovered at step 2 until the fitness of the
resulting string exceeds OIdFit. Record the new fitness as
OldFit.

Step 4. Go to steps 2 and 3 until an optimum string has
been found, or the length of EstSchPos has reached the
string length, or until a maximum number of evaluations
has been performed.

Step 5. Return the current fitness value and the number of
function evaluations.

The philosophy embedded in the above algorithm is that
once several beneficial genes appear simultaneously, they
together contribute a fitness increase of the string
containing them; thus any loss of one of these genes leads
to the fitness decrease of the string.

BREEDING PHASE

After the independent sampling phase, the population is
expected to contain enough diverse candidate schemata,
because a number of individuals independently build up
an evolutionary avenue by various building blocks.
However, factors such as deception and incompatible
schemata could lead individuals to only arrive at
suboptimal solutions. To overwhelm this difficulty, in
each cycle, we first pick out the best string, and then look
for a mating partner with the highest rank according to the
exponential rank selection, and with the largest diversity
based on “hamming distance” to the best string.

To demonstrate the capability of the ISGA, we choose as
the testbed a 30-bit deceptive function whose fitness
landscape consists of ten copies of an order-3 fully
deceptive function as defined in the paper of messy GAs
(Goldberg, Korb, & Deb, 1989). Then we compare its
performance with those of several different types of GAs:
mGAs, modified mGAs (Goldberg, Deb, Kargupta, &
Harik, 1993), Breeder GAs (BGAs) (Miihlenbein &
Schlierkamp-Voosen, 1993). (The experimental result of
the ISGA is based on population size 50 and exponential
base 1.5.) The mean function evaluations to optimum is
2128 for ISGA, 40600 for mGA, 26650 for modified
mGA, and 16000 for BGAs, respectively; from which we
see that the ISGA significantly outperforms other GAs.
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