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Abstract

In earlier work we predicted program size
would grow in the limit at a quadratic rate
and up to �fty generations we measured
bloat O(generations1:2�1:5). On two simple

benchmarks we test the prediction of bloat
O(generations2:0) up to generation 600. In
continuous problems the limit of quadratic
growth is reached but convergence in the dis-
crete case limits growth in size. Measure-
ments indicate subtree crossover ceases to be
disruptive with large programs (1,000,000)
and the population e�ectively converges
(even though variety is near unity). Depend-
ing upon implementation, we predict run
time O(no. generations2:0�3:0) and memory
O(no. generations1:0�2:0).

1 INTRODUCTION

It has been known for some time that programs within
GP populations tend to rapidly increase in size as
the population evolves [Koza, 1992, Altenberg, 1994,
Tackett, 1994, Blickle and Thiele, 1994, Nordin and
Banzhaf, 1995, Nordin, 1997, McPhee and Miller,
1995, Langdon, 1998b, Soule et al., 1996, Langdon et

al., 1999]. If unchecked this consumes excessive ma-
chine resources and so is usually addressed either by
enforcing a size or depth limit on the programs or by
an explicit size component in the GP �tness [Koza,
1992, Iba et al., 1994, Zhang and M�uhlenbein, 1995,
Rosca, 1997, Rosca and Ballard, 1996] although other
techniques have been proposed [Ryan, 1994, Blickle,
1996, Nordin et al., 1996, Soule and Foster, 1997,
Soule, 1998, Hooper et al., 1997, Angeline, 1998,
Langdon, 2000]. However there is still interest in ex-
ploring why such bloat happens, its speed and the lim-
its (if any) on bloat.

We extend [Langdon et al., 1999, Langdon, 2000] to
consider unbounded arti�cial evolution for hundreds
of generations. Naturally bloat in such circumstances
is extremely resource intensive and so we have been
restricted to considering simple benchmark problems,
one discrete and one continuous. A binary tree version
of the Boolean 6 multiplexor problem [Koza, 1992] and
a symbolic regression of a fourth order polynomial. At
up to a million elements, these may be amongst the
largest programs deliberately evolved so far.

In Section 2 we briey restate our argument that bloat
occurs on average at a sub-quadratic rate. Section 3
describes two experiments which look for the proposed
quadratic limit, their results are given in Section 4.
While Section 5 shows measurements of GP speci�c
convergence, which explains why, in one case, the
quadratic limit is not reached. Section 6 gives results
on the potentially bene�cial impact of commonly used
depth and size limits. Section 7 discusses our theory
and results in comparison with other theories of bloat.
General conclusions for GP are drawn in Section 8.

2 THEORY

2.1 DISTRIBUTION OF FITNESSES

Provided programs are bigger than some problem and
�tness level dependent threshold, the distribution of
their �tness values in the GP search space does not
change with length [Langdon, 1999b]. Figure 1 shows

an example distribution of �tness against size. Note
as size increases the lines tend to lie parallel to the
y-axis, indicating little dependence upon size. Thus
the number of programs with a given �tness is dis-
tributed like the total number of programs. The
number of programs rises approximately exponentially
with program length. Also most programs have a

maximum depth near 2
p
�(internal nodes) (ignor-

ing terms O(N1=4) [Flajolet and Oldyzko, 1982]. See
dashed parabola line on Figure 2.
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Figure 1: Proportion of trees which yield each �tness
level on the even-6 parity problem. Trees of �tness
levels 0..26 and 38..64 are very rare. Note log z scale.

2.2 BLOATING

After a period GP (or any other stochastic search tech-

nique) will �nd it di�cult to improve on the best trial
solution it has found so far and instead most of the
trial solutions it �nds will be of the same or worse per-
formance. Selection will discard those that are worse,
leaving active only those that are as good as the best-
so-far. In the absence of bias, the more plentiful pro-
grams with the current level of performance are more
likely to be found [Langdon and Poli, 1997b]. The
distribution of these is similar to the distribution of
trees, therefore we expect the search to evolve in the
direction of the most popular tree shape.

2.3 EVOLUTION OF DEPTH

In a variety of problems in earlier work [Langdon,
2000] program depth in the population in runs us-
ing standard crossover grew rapidly but apparently
linearly. While problem dependent, on average trees
grew roughly one level per generation. (Recent work
suggests the shape of the initial trees is important).

2.4 EVOLUTION OF SHAPE

In the absence of size or depth limits, program shape
evolves towards the ridge in the distribution of pro-
grams [Langdon et al., 1999].

2.5 SUB-QUADRATIC BLOAT

If the programs within the population remain close
to the ridge in the number of programs versus their
shape and they increase their depth at a constant rate
this leads to a prediction of sub-quadratic growth in

0

200

400

600

800

1000

0 20 40 60 80 100

N
um

be
r 

of
 in

te
rn

al
 n

od
es

 a
nd

 te
rm

in
al

s

Tree Depth

5% peak 95%full

  minimal

mean and SD
Flajolet

Figure 2: Distribution of binary trees by size and max-
imum depth. Solid line and error bars indicate the
mean and standard deviation of the depth for trees of
a give size. The dashed line is the large tree limit for
the mean, i.e. 2

p
�(internal nodes). The full tree and

minimal tree limits are shown with dotted lines, as

are the most likely shape (peak) and the 5% and 95%
limits (which enclose 90% of all programs of a given
size).

their lengths'. (For modest size programs we expect

size O(gens
1:3
) rising to a limit of quadratic growth for

jprogramj � 1000 cf. [Flajolet and Oldyzko, 1982, Ta-
ble II]. Up to generation 50 [Langdon, 2000, Table 5]

reports good agreement on average.

3 EXPERIMENTS

As we intend to run arti�cial evolution for hundreds
of generations on rapidly bloating populations here we
restrict ourselves to two problems, one Boolean (6-
multiplexer [Koza, 1992, page 187]) and one contin-
uous (symbolic regression of the quartic polynomial
[Koza, 1992]). Note for speed the quartic problem is
simpli�ed and only uses ten test cases. As the distribu-
tion of the number programs' for each size and shape
is known for binary trees we use only binary func-
tions. Accordingly we introduce a new variation on
the Boolean 6-multiplexer problem by replacing Koza's
function set with his usual four binary Boolean oper-
ators. Using a 64 bit C++ compiler we can evaluate
all the 6-multiplexer �tness cases in parallel [Poli and
Langdon, 1999].

Apart from the binary function set, quartic problem
population size, the absence of size or depth restric-

tions and the use of tournament selection our GP runs
are essentially the same as [Koza, 1992]. Parameters
are summarised in Tables 1 and 2.



Table 1: GP Parameters for the Quartic Symbolic Re-
gression Problem

Objective: Find a program that produces the
given value of the quartic polynomial
x
2(x+1)(x� 1) = x

4 � x
2 as its out-

put when given the value of the one
independent variable, x, as input

Terminal set: x and 250 oating point constants
chosen at random from 2001 numbers
between -1.000 and +1.000

Functions set: + � � % (protected division)
Fitness cases: 10 random values of x from the range

-1 . . . 1
Fitness: The mean, over the 10 �tness cases,

of the absolute value of the di�er-
ence between the value returned by
the program and x

4 � x
2

Hits: The number of �tness cases (between
0 and 10) for which the error is less
than 0.01

Selection: Tournament group size of 7, non-
elitist, generational

Wrapper: none
Pop Size: 50
Max program: 106 program nodes
Initial pop: Created using \ramped half-and-

half" with depths between 8 and 5
(No uniqueness requirement)

Parameters: 90% one child crossover,
no mutation. 90% of crossover points
selected at functions, remaining 10%
selected uniformly between all nodes.

Termination: Maximum number of generations 600
or maximum size limit exceeded

4 RESULTS

4.1 QUARTIC SYMBOLIC REGRESSION

In nine of ten independent runs the population bloats.
(In run 102 at generation 7, GP �nds a high scoring
program of one function and two terminals, which it
is unable to escape from and the population converges
towards it. After generation 35 approximately 90% of
the population are copies of this local optima. Simi-
lar trapping is also reported in [Langdon, 1998b]). All
populations complete at least 400 generations. How-
ever three runs stop before 600 generations when they
reach the size limit (one million).

As expected in all runs most new generations do not
�nd programs with a better �tness than found before.
I.e. changes in size and shape are due to bloat. Figure 3

Table 2: GP Parameters for Multiplexor Problem (as
Table 1 unless stated)

Objective: Find a Boolean function whose out-
put is the same as the Boolean 6 mul-
tiplexor function

Terminal set: D0 D1 D2 D3 A0 A1
Functions set: AND OR NAND NOR
Fitness cases: All the 26 combinations of the

6 Boolean arguments
Fitness: number of correct answers
Pop size: 500
Max program: 106 program nodes
Initial pop: Ramped half-and-half max depth be-

tween 2 and 6
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Figure 3: Evolution of tree shape in ten runs of the
quartic symbolic regression problem. Note log scales.

shows, while there is variation between the remaining
runs, on average each population evolves to lie close to
the ridge and moves along it, as predicted.

Figure 4 shows the average population depth varies
widely between runs and in several runs the mean
depth does not increase monotonically at a constant
rate. However the mean of all ten runs is better be-
haved and increases at about 2.4 levels per generation.

Figure 5 shows the coe�cient obtained by �tting a
power law to the evolution of mean size of programs
from generation 12 to later generations. Again there is
wide variation between runs but on average the expo-
nents start near 1.0 (generations 12{50) and steadily

rises to 1.9 (between generations 12 and 400). I.e. to-
wards the predicted quadratic limiting relationship be-
tween size and time.
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Figure 4: Evolution of tree depth in ten runs of the
quartic symbolic regression problem.
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Figure 5: Evolution of power law coe�cient in nine
runs of the quartic symbolic regression problem (ex-
cludes run 102). Error bars show standard error.

4.2 BINARY 6-MULTIPLEXOR

In all runs most new generations do not �nd better
programs and changes in size and shape are due to
bloat. Figure 6 shows, while there is variation between
runs, on average each population evolves to lie close to
the ridge and moves along it, as predicted.

Figure 7 shows the average population depth varies
widely between runs, as with the continuous problem,
and in several runs the mean depth does not increase
uniformly at a constant rate. However the mean of all
ten runs is better behaved and increases at about 0.6
levels per generation.

Figure 8 shows the coe�cient obtained by �tting a
power law to the mean size of programs. Again there
is wide variation between runs, however on average the
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Figure 6: Evolution of tree shape in ten runs of the
binary 6-multiplexor problem. Note log scales.
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Figure 7: Evolution of tree depth in ten runs of the
binary 6-multiplexor problem.

exponents start at 1.25 (generations 12{50) and rise.
E.g. between generations 12 and 100 it has reached 1.4.
By the end of the runs (generations 12{600) it reaches
1.5. This is approximately the same as for 6 multi-
plexor with the traditional, multi-arity, function set
[Langdon, 2000].

5 CONVERGENCE

We consider but reject two possible explanations
for the failure of the 6-multiplexor runs to reach a
quadratic exponent:

Firstly, the power law coe�cients for the two problems
are statistically di�erent. I.e. the di�erence (1.5 v. 2.0)
is unlikely to be due to random variations.

Secondly, the multiplexor programs are shorter, so the
Flajolet limit does not apply. However [Flajolet and
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Figure 8: Evolution of power law coe�cient in ten
runs of the binary 6-multiplexor problem. Error bars
indicate standard error.

Oldyzko, 1982, Table II] shows, the parabolic estimate

is within 10% of the actual mean for programs of more
than 1000 nodes. By generation 90 on average the bulk
of the populations exceed 1000. I.e. for at least 500
generations the bulk of the 6 multiplexor populations
are reasonably close to the Flajolet limit.

Having rejected these our proposed explanation is, in
discrete problems, crossover may cease to be disrup-
tive when the programs become very large. (Similar
inability to e�ect big trees is reported in [Langdon and
Nordin, 2000, Section 2]). In fact there are whole gen-
erations when every program in the population has an
identical �tness. Therefore the selection pressure driv-
ing bloat falls as the populations grow in length and we
suggest this is why the quadratic limit is not reached.
[Tackett, 1994] also points to the importance of selec-
tion pressure on bloat. Figure 9 shows the fraction
of parent programs selected entirely at random rises
towards 100% in all ten runs.

6 DEPTH AND SIZE LIMITS

In this last experimental section we present an exper-
iment on the quintic symbolic regression problem (pa-
rameters as [Langdon, 2000]). This shows we can ap-
proximately predict when depth and size limits com-
monly used in GP will have an impact on the evolving
population. This is so early that we anticipate these
limits usually have an e�ect. Depth limits will tend
to cause bushier solutions to be produced. Bushier
trees are more likely to solve some problems (e.g. the
parity problems) than random trees [Langdon, 1999b].
Hence a depth limit could have an unanticipated ben-
e�t. Conceivably there are problems when the bias

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000

P
ec

en
ta

ge
 R

an
do

m
 T

ou
rn

am
en

ts

Number of Programs Created

Figure 9: Fraction of selection tournaments where all
7 potential parents have the same �tness. For clarity
we plot the mean of ten generations at a time. Ten
runs of the binary 6-multiplexor problem.

introduced by a size limit could be helpful. However
[Gathercole, 1998, Langdon and Poli, 1997] show when
the whole population presses against size or depth lim-
its, they constrain subtree crossover possibly resulting
in premature convergence.

Using the average depth of the initial population and
rate of increase in depth from [Langdon, 2000, Ta-
ble 4] we can estimate how long it will take for bloat to
take the population on average to the depth limit (17).
�gens = (17� 3:64)=1:2 = 12.

Figure 10 plots the mean sizes and depths for: no lim-
its, a conventional depth limit (17) and a size limit
of 200. They lie almost on top of each other un-
til the fourth tick mark (corresponding to generation
12). Co-incidentally this is also the point where the
size limited population diverges from the unlimited
population. Given the variability between runs, the
agreement between the prediction and measurements
is surprisingly good.

7 DISCUSSION

[Tackett, 1994] and [Altenberg, 1994] both suggest
Andy Singleton �rst proposed what is now often called
the intron explanation for bloat. I.e. programs become
longer not because longer programs are better but
because they harbour more ine�ective code (introns)
than shorter ones. Since crossover chooses a point in
the parent at random, having a higher ratio of ine�ec-

tive to e�ective code, means there is more chance of
crossover altering the ine�ective code. In which case
the children behave exactly like their parents. In a
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conventional GP, this means children of longer parents
will have a higher chance of having the same �tness as
their parents than the children of shorter programs.
Once bloat is underway, almost no improvements in
�tness are made, so the struggle for survival goes not
to the children who are better than their parents but to
those that are the same as their parents. I.e. children
of long programs have more chance of themselves being
selected to have parents than children of shorter pro-
grams. (This implicitly assumes that long programs
tend to produce long children). Since the same prefer-
ence for children of long programs occurs in each gen-
eration, on average program size increases with time.
As observed.

This is attractive but as Soule points out it is not the
full story [Soule and Foster, 1997, Soule and Foster,
1998, Soule, 1998, Langdon et al., 1999]. He suggests
there is at least one additional mechanism involved.
While, contrary to speculation in [Altenberg, 1994],
subtree crossover on average introduces no size change.
But there is a \removal bias" which means on average
children which are smaller than their parents are less
�t than children which are bigger. Soule also investi-
gated the evolution of tree shape.

Note these mechanistic explanations don't tell us any-
thing about the rate of bloat or predict ultimate shape.
Indeed the iterative nature of the intron explanation
has lead to false predictions of exponential growth.

[Rosca, 1997] suggests GP evolves programs from the
root down. He and Soule point out (in side-e�ect free
programs) introns can exist only at the edges of trees.
I.e. all the code beneath an intron must also be inef-
fective. Stressing the importance of the code near the

root, in the GP process. Poli also shows we can nul-
lify the advantage of a high ine�ective code ratio by
having multiple operations (actually mutations). Us-
ing a constant mutation rate per tree node, the chance
of altering e�ective code depends upon its size and is
independent of the amount of ine�ective code.

Often GP analysis assumes the population is made of
full binary trees. This is obviously wrong but sim-
ple. Section 2 points out that GP populations tend
to become like random trees. While apparently more
complex than full binary trees, random trees do have
nice mathematical properties that might make analy-
sis of the evolution of populations of them tractable.
In GP we often use function sets containing functions
of more than one arity. This considerably complicates
analysis. Fortunately its does not appear to dramat-
ically change the properties of random trees or GP
and it may be possible to continue to approximate the
behaviour of real GP populations by assuming only
binary functions. Or even the apparently extreme po-

sition of assuming totally random arities. The mathe-
matics of such random trees has also been analysed.

The theory in Section 2 does not deal particularly with
mechanisms and so is simple. It can be applied to
non-GP search techniques and other types of search
operator and gives a simple approximate prediction of
average evolution of program shape. By making the
assumption of linear increase in depth, Section 2 gives
us a domain independent prediction of sub-quadratic
bloat which can be used to give quantitative predic-
tions in a given problem.

This is not to say the others are wrong. Far from it.
(We and others have measured the growth of introns).
Section 2 gives another way of thinking about evolu-
tion of trees.

8 CONCLUSIONS

Average growth in program depth when using stan-
dard subtree crossover with standard random initial
trees is near linear. The rate is about 1 level per
generation but varies between problems. When com-
bined with the known distribution of number of pro-
grams, this yields a prediction of sub-quadratic, rising
to quadratic, growth in program size. There is con-
siderable variation between runs but on the average
we observe sub-quadratic growth in size. Which in a
continuous domain problem, rises apparently towards
a quadratic power law limit.

Discrete mean length�O(generations2:0)
Continuous lim

g!1
mean length=O(generations2:0)



However in large discrete programs we observe a new
type of genetic programming (GP) speci�c conver-
gence: the whole population has the same �tness, even
though its variety is 100%. This reduces the selection
pressure on the population which, we suggest, is the
reason why the growth remains sub-quadratic.

Most GP systems store each program separately
and memory usage grows linearly with program size.
I.e. O(generations1:2�2). Run time is typically dom-
inated by program execution time, which is propor-
tional to its length [Langdon, 1998b, D.8], therefore
run time O(generations2:2�3).

In other systems the whole population is stored in a
directed acyclic graph (DAG) [Handley, 1994]. New
links are created at a constant rate. However memory
usage may be less than O(generations), since every
generation programs are deleted. In the absence of
side e�ects and with a �xed �tness function it may
be possible to avoid re-evaluating unchanged code by
caching intermediate values. I.e. only code from the
crossover point to the root would be execute. Then
run time should be proportional to the average height
of trees. So run time O(generations2).

Note we refer to standard sub-tree crossover, other
genetic operators and/or representations have di�er-
ent bloat characteristics. For example [Nordin and
Banzhaf, 1995] suggests program size increases expo-
nentially with generations in his linear machine code
representation and crossover operator. While new
mutation [Langdon, 1998a] and crossover operators
[Langdon, 2000] can reduce bloat in trees.

GP populations using standard sub-tree crossover (and
no parsimony techniques) quickly reach bounds on size
or depth commonly used. When this will happen can
be readily estimated. We suggest such bounds may
have unanticipated (but problem dependent) bene�ts.

To allow big programs (1,000,000 nodes) to evolve we
were restricted to simple problems which and can be
solved by small trees. However our results do raise the
question of how e�ective subtree crossover will be on
complex discrete problems whose solutions are big pro-
grams. It may also be the case that subtree crossover
will cease to be e�ective (i.e. explorative, disruptive) if
the program is structured as big trees. GP may need
to limit tree size (perhaps by evolving programs com-
pose of many smaller trees) and/or alternative genetic
operators may be required.
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