
1

n

e

e

o

 a

r of

:

A Non-Linear Schema Theorem for Genetic Algorithms

William A. Greene
Computer Science Department

University of New Orleans
New Orleans, LA 70148

bill@cs.uno.edu
504-280-6755
Abstract

We generalize Holland’s Schema Theorem to the
setting that genes are arranged, not necessarily in
a linear sequence, but as the nodes in a
connected graph. We have experimental results
showing that the flourishing of building blocks
can be expected for two distinct graphs we have
investigated, one being a tree and the other being
the lattice points in a cube in Euclidean 3-space.

1  INTRODUCTION

Holland developed the ground work for genetic
algorithms in the 1970’s (Holland, 1975). His Schema
Theorem says that building blocks should flourish. Its
proof relies on the fact that genes in a chromosome are
arranged in a linear sequence. But why limit ourselves to
this arrangement of genes? Ultimately genes should be
arranged in geometries most appropriate to the problem at
hand, which may not be sequential. For example, for
Koza’s work (Koza, 1992) in genetic programming, the
natural arrangement is tree-like. Other arrangements
which might be appropriate to some problem are (a) a
high-dimensional cube of short edge size, such as {0, 1,
2}20, or (b) a web of points on the surface of a sphere.

In this paper we generalize Holland’s Schema Theorem to
the case that genes are arranged, not necessarily in a
linear sequence, but as the nodes in a connected graph.

In this paper, a gene will simply be a bit.

2  HOLLAND’S SCHEMA THEOREM

First we carefully review the setting in which the theorem
is proved. We follow the development found in
(Goldberg, 1989). There is a universeU of individuals,
each of which is a bit string (a list of bits) of a fixed
length, call that lengthL. In set-theoretics,U = 2L. There

is a fitness functionf :  which assigns to each
individual a fitness value which is a positive real number.
Also present is a populationP which is a subset of the
universeU. There will be generations of the population.

A schema is to be a pattern which can match individual
bit strings. We use the asterisk, *, to be a wildcard
character, and then aschema is a string of lengthL each
of whose components is either a bit value 0 or 1, or the
wildcard character. The schema positions holding a 0 or
are calledfixed positions; those holding the wildcard are
unfixed. The schemamatches an individual bit string if
the latter agrees identically with the schema at the
schema’s fixed positions. If an individual bit pattern
matches a schema, we say that bit pattern is a
representative of the schema.

If L = 12, an example of a schema iss= (*, *, 0, *, *, 1, 0,
*, *, *, *, *). This schema has 3 fixed positions, at indices
3, 6, and 7. Theorder of a schema,order(s), is the
number of fixed positions in it, 3 for this example. The
defining length, , of a schema is the distance betwee
its first and last fixed positions. For the above example,
the first and last fixed positions are at indices 3 and 7
respectively, so the defining length is 7 - 3 = 4.

Now we return to the populationP which is a subset of
the universe. The population undergoes generational
changes by subjecting it to the evolutionary forces of
survival of the fittest, mating with crossover, and
mutation, soon to be detailed. Recall the presence of th
fitness functionf. Implicit in a generational change is the
hope that fitter and fitter individuals begin to appear in th
population as timet increases. Holland talks ofbuilding
blocks, meaning schemas of low defining length (so, als
low order) whose representatives tend to have higher
fitnesses. The supposition is that the fixed values within
building block are ones that are beneficial to the
individual. Holland’s Schema Theorem asserts that we
can expect an increase, as time advances, in the numbe
representatives of the good building blocks withinP.

Let the size of the population beN. Let the individuals in
P be denoteda1, a2, ...,aN, and let their associated fitness
values bef1, f2, ...,fN. Create the next generation
population as follows. We use theweighted roulette wheel
approach for choosing individuals for parenting: an
individualai is selected for parenting with a probability
equal to its relative fitness within the population, that is,
with probability . Having selected two parents

in this way, we perform mating with one-point crossover

U ℜ+→

δ s( )

f i Σ j f j( )⁄
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at random choose one of theL-1 positions 2 through
length L. Cut each parent in two, between the chosen
position and the preceding one, next interchange parental
fragments to form two children, then add the children to
the next generation. Continue in this way until the next
generation reaches the same size as the preceding one.
Note that two parents produce two children. Finally, with
some low probabilitypm, subject each bit in each child to
a mutational change.

Our population at timet, P(t), consists of individualsa1,
a2, ...,aN, with corresponding fitnessesf1, f2, ...,fN. LetH
be some given schema, and suppose withinP(t) there are
m representatives ofH, denote them .

Denote

which is the average fitness of theH-representatives in
P(t), and denote

which is the average fitness in the entire populationP(t).

The probability that a particularH-representative, ,

will be chosen for parenting is , therefore, the

probability that someH-representative is chosen for
parenting is . There are altogetherN

parents chosen, so the number of parents that areH-
representatives has expected value .

The latter number rewrites to .

Assuming a representative ofH is chosen for mating, and
recalling that a cutpoint for crossover is chosen with
uniform randomness to cut just in front of the positions
2..L, then the bit values making the parent a
representative ofH will not be separated from one another
under crossover if the cutpoint is chosen outside the span
of those bit values, and the latter happens with probability

. Thus, after mating with crossover,
the number of children that are representatives ofH

should be at least as big as .

Recallpm is the probability that a single bit is mutated to
the complementary value, andorder(H) is the number of
fixed positions inH. An H-representative remains such,

despite mutation, with probability .

Now, in the next generationP(t+1) of the population, the
number of representatives ofH should be at least as big as

(E1) .

If the factor complementary tom,

(E2)

is greater than 1, we conclude that the number ofH-
representatives can be expected to increase fromP(t) to
P(t+1). The smaller  is, the closer factor

 is to 1. The smallerpm andorder(H)

are, the closer factor  is to 1. If ,

the average fitness of thoseH-representatives inP(t), is
somewhat greater than , the average fitness of all 
P(t), then the quantity (E2) can exceed 1. Whence:

Holland’s Schema Theorem: Assume schemaH has
short defining length  (therefore, also low value for
order(H)). Also assume the mutation ratepm is low. If the
representatives ofH have somewhat above average fitnes
within the populationP(t) at timet, then the number of
representatives ofH can be expected to increase in the
next generationP(t+1).

3  A NON-LINEAR SCHEMA THEOREM

Now we want to consider scenarios where individuals in
universe are described by some set of bit values but whe
the bits are arranged in a configuration which is not
necessarily a linear sequence. For example, the bits mi
be arranged as the nodes of a tree. Or they might be
arranged as the lattice points (the points with integer
coordinates) in a parallelepiped (a “box”) in multi-

dimensional real space .

More generally, we will assume the bits are arranged as
the nodes in some connected finite graphG. We shall
assume there is some notion of the distance between tw
nodes (perhaps path length inG). Also we will assume
there is some natural notion of ways to cutG into two
non-empty subsets of its nodes (possibly by clipping on
or several edges inG).

A schema will be as before: atG’s nodes we assign values
of either 0 or 1 or the wildcard, *. Fixed positions in the
schema, versus unfixed positions, means the same as
before. The order of a schema means (as before) the
number of fixed positions in it.

We need a notion analogous to a schema’s defining
length. We have assumed there is a notion of distance
between two nodes inG. If B is some subset ofG-nodes,
define thediameter  of B to be the maximum
distance between any two nodes inB. Since graphG is
finite, the diameter of anyG-subset, includingG itself, is
a well-defined (finite) positive real number. Given a
schemaH, define itsrelative diameter

 =

wherefixed(H) is the set of fixed nodes inH. Figure 1
suggestively illustrates the diameters  and

. The relative diameter of a schema is a rea
number in the unit interval [0, 1]. Note that in the origina
Holland scenario, whenL bits are arranged in a linear

ai1
ai2

… aim
, , ,

µ H( ) Σk f ik
( ) m⁄=

µ P( ) Σ j f j( ) N⁄=

aik

f ik
Σ j f j( )⁄

Σk f ik
( ) Σ j f j( )⁄

N Σk f ik
( ) Σ j f j( )⁄⋅

m µ H( ) µ P( )⁄⋅

1 δ H( ) L 1–( )⁄( )–

m
µ H( )
µ P( )
------------ 

  1 δ H( )
L 1–
------------– 

 ⋅ ⋅

1 pm–( )order H( )

m
µ H( )
µ P( )
------------ 

  1 δ H( )
L 1–
------------– 

  1 pm–( )order H( )⋅ ⋅ ⋅

µ H( )
µ P( )
------------ 

  1 δ H( )
L 1–
------------– 

  1 pm–( )order H( )⋅ ⋅
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∆ G( )
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sequence, the relative diameter of a schemaH is
.

When graphG is cut in two (in some natural but as yet
unspecified way), it is possible for two fixed positions in
a schema to become separated (wind up in separate
subsets ofG-nodes); term this adisruption of the schema.
Define thedisruption probability, dp(H), of a schemaH
to be the probability that a random cut (whatever that may
mean) disrupts the schema. Note that in the original
Holland scenario, whenL bits are arranged in a linear
sequence, the disruption probability of a schemaH is

, so, is equal to the relative diameter

.

Now we prove the non-linear analogue of Holland’s
Schema Theorem. Let schemaH be given. Suppose there
arem representatives ofH in the populationP(t). As
before,  denotes the average fitness of theH-

representatives inP(t), and  the average fitness of
the entire populationP(t). Again, when creating a
generational change, we select individuals for parenting
by a weighted roulette wheel. Again the number of
parents which areH-representatives has expected value

. Two children are formed from two
parents by making a random cut ofG, then interchanging
parental fragments. A child of anH-representative
continues to be anH-representative if the random cut did
not disruptH, which happens with probability 1 -dp(H).
At this point we make the critical assumption: Assume

. Then the number of children which are
H-representatives should be at least as big as

, and after mutation, the

number of children which areH-representatives should be
at least as big as

(E3) .

Of course, this is the analogue to the expression (E1) in
section 2 above.

Non-Linear Schema Theorem: Let H be a schema.
Assume (i) the mutation ratepm is low, (ii) H has low

order, (iii)H has low relative diameter , and (iv)

. If representatives ofH have somewhat
above average fitness within the populationP(t), then the
number of representatives ofH can be expected to
increase in the next generationP(t+1).

Of course, for this theorem it would be enough to replac
(iii) and (iv) with (iii´) dp(H) is low. But we anticipate
that, in general,dp(H) is considerably harder to calculate
than .

With regard to proving theorems about the burgeoning o
building blocks, possible relations between  and
dp(H) are:

1.  for all schemaH;

2.  for all schemaH which have low

relative diameter ;

3.  for the majority of schemaH which
have low relative diameter.

4  BITS ARRANGED IN A TREE

Now we investigate connecting bits as the nodes in a tr
In particular, consider the full binary tree T on 63 nodes
In this tree, levels 0 through 5 are full; level 5 contains 3
leaf nodes. The edges in this graph are those that conn
children to parents. Only the root node has no parent, s
there are 62 edges altogether. For our notion of distanc
we will use path length between two nodes (we mean th
shortest path that goes through their nearest common
ancestor). The longest path in this tree has length 10; th
is the length of path that connects any leaf in the root’s
right subtree to any leaf in the root’s left subtree.

Manufacturing a schemaH amounts to making some of
the 63 nodes have fixed values of 0 or 1, and assigning
asterisk to the other nodes. We can write a function tha
returns the length of the longest path between two fixed
nodes in a schema. Thus  is easily calculated
directly.

Given two parent bit trees, we perform mating with
crossover in the style of (Koza, 1992): at random select

δ H( ) L 1–( )⁄
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Figure 1: Diameters of GraphG andfixed(H)
within it.
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Table 1: Tree Experiments

Schema Number dp(H) dp / # times

order trials least most avg least most avg dp>

2 100 0.0161 0.1613 0.1089 0.1613 0.1613 0.1613 0

3 800 0.0323 0.2258 0.1606 0.1613 0.2419 0.1937 0

4 12K 0.0484 0.2903 0.2007 0.1613 0.3024 0.2237 0

5 140K 0.0806 0.3387 0.2368 0.1613 0.3629 0.2532 0

6 1400K 0.1129 0.3871 0.2691 0.1613 0.4032 0.2810 0

8 1000 0.1935 0.4355 0.3265 0.2097 0.4480 0.3330 0

16 1000 0.3548 0.6290 0.4948 0.3548 0.6290 0.4954 0

32 1000 0.5806 0.8387 0.7165 0.5806 0.8387 0.7165 0

48 1000 0.7742 0.9677 0.8737 0.7742 0.9677 0.8737 0

Column 2 is the number of random schema generated for the given order. Columns 3-5 and 6-8
give values of the disruption probabilitydp(H) and of the ratiodp(H)/ . Column 9
shows thatdp(H) never exceeded  in these experiments.

rel∆
rel∆

rel∆ H )( )
rel∆ H )( )
one of the 62 edges in the tree and interchange the
parental subtrees beneath that edge.

Now we address the calculation ofdp(H), the probability
that a random cut will disrupt a schemaH. Of course, here
by disrupt we mean that at least one fixed node ofH is in
the subtree underneath the edge being cut, and at least one
fixed node ofH lies in the rest of the tree. Since there are
only 62 edges which can be cut, we write a function that
explicitly calculatesdp(H) by examining the
consequences of the 62 possible cuts.

It becomes too expensive to explicitly determine by
exhaustion whether  for all schemasH
(nor has a mathematical proof occurred to us). For
example, the number of schemas of order 4 is a multiple
of C(63, 4), where C(63, 4) = the number of ways of
combining 63 items 4 at a time = 595,665. Instead we
make the following statistical analysis. For some orders 2,
3, 4, etc., we manufacture many random schema, and for
those schema we explicitly calculate and compare

 anddp(H). The results are given in Table 1. As
the last column in Table 1 shows, in our experiments,
dp(H) never exceeded . Moreover, as columns 6-
8 show, for low order schemas,dp(H) was on average
quite a bit smaller than .

We thank our colleague Dr. Terry Watkins of the
University of New Orleans Mathematics Department for
the statistical assertions of this paragraph. Suppose we
test the hypothesis that  by taking n =
1000 randomly chosen schemaH and for those seeing if
the hypothesis holds. These are Bernoulli trials where we
will assume the probability of success (that is,

) is constant. If every one of the 1000
trials results in success, then with confidence level 0.9999

we can assert that the proportion of schemas for which t
hypothesis  holds must be at least
0.9999999.

Thus, the experiments reported in Table 1 suggest with
extraordinary statistical persuasion that
for all the schema in our setting.

5  BITS ARRANGED IN A CUBE

Now we consider bits arranged as the lattice points with

a parallelepiped in 3-dimensional Euclidean space . 
lattice point is one whose coordinates are integers. Our
parallelepiped will actually be a cube. We will consider
several cubes. The first cube has 8 points on each edge

and consists of the vectors (l, m, n) in  such that each
of the coordinatesl, m, nis an integer in the range 0..7.
Such vectors are the nodes in our graphG. We intend
there to be an edge between two vectors ( = nodes) if th
two vectors agree in two of their coordinates and differ b
1 in the remaining coordinate. But, in truth, since the
notion of distance we will use will be Euclidean distance
the edges are less significant than the physical proximit
of nodes to one another. The other two cubes are simila
but with, respectively, 10 and 12 points on each edge. T
number of bits in our three cubes are, respectively, 83 =
512, 103 = 1000, and 123 = 1728.

We will cut such a cube with a hyperplane. In

3-dimensional Euclidean space , ahyperplane is
determined by four real numbers a, b, c, d, and consists
those vectors (x, y, z) such that .
The half-spaces into which the hyperplane cuts the wor
consists of those (x, y, z) which satisfy

rel∆ H( ) dp H( )≥

rel∆ H( )

rel∆ H( )

rel∆ H( )

rel∆ H( ) dp H( )≥

rel∆ H( ) dp H( )≥

rel∆ H( ) dp H( )≥

rel∆ H( ) dp H( )≥

ℜ3

ℜ3

ℜ3

a x⋅ b y⋅ c z⋅+ + d=



e
 our

tio

t

e

e

Table 2: Cube Experiments

Edge Ball Avg Avg % Avg ratiodp/

size size order all 1000 whendp>

8 19 7.63 0.211 73.5 0.915 1.439

10 27 11.20 0.195 64.0 1.015 1.486

12 57 22.92 0.229 66.5 1.034 1.526

For all three edge sizes, 1000 random schema were manufactured. Column 2 is the
maximum number of points in a ball with  = 0.25. Column 5 is the percentage of
the 1000 schema which satisfy . Column 6 has the average ratio of
dp(H) to , taken over all 1000 schema, and column 7 has that average ratio
over just the minority of schema for whichdp(H) > .

rel∆
rel∆ rel∆ dp≥ rel∆

rel∆
rel∆ H( ) dp H( )≥

rel∆ H( )
rel∆ H( )
 (which we term thesky side)

versus those which satisfy  (thesod
side). We manufacture a random hyperplane by choosing
four random real numbers a, b, c, d out of the real interval
[-1, 1]. A random hyperplane may not pass through the
cube at all; for instance, the entire cube might lie in the
sky side. If a hyperplane does pass through the cube, it
disrupts a schema if at least one fixed position in the
schema is on the sky side and at least one schema fixed
position is on the sod side. Crossover between two parents
consists of intersecting each parent with the same random
hyperplane, then interchanging parental sky sides (or sod
sides, of course) to form two children.

Our distance function will be Euclidean distance, the
square root of the sum of the squares of the differences of
corresponding vector coordinates.

For speaking of a Schema Theorem, we really want to
make an assertion about schemas of low relative diameter.
So, for our experiments, we manufactured numerous trial
schemas of low relative diameter, done as follows. The
relative diameter we here report on is  = 0.25
(behavior for this value is typical). The schema’s fixed
positions are all chosen to lie within a geometric ball, of
this relative diameter, about some center lattice point.
Geometry necessitates that there is some maximum
number (see column 2 of Table 2) of lattice points that
can fit in this ball. (As can be deduced from Table 2, this
maximum number amounts to just several percentage
points of the entire cube.) To manufacture random
schemas, we choose a center point at random, then, with
50-50 chance upon each addition, add each possible cube
point that fits in this ball as another fixed position in the
schema we are manufacturing. In Table 2, the average
order (column 3) of the schemas we manufacture is a bit
less that half the maximum number (column 2) because
balls centered near a cube face do not receive points
outside the cube.

Having manufactured a random schemaH of low relative
diameter as just described, we estimate the probability
dp(H) as follows. We choose 1000 hyperplanes at

random, then use the ratio of hyperplanes that disrupt th
schema, to hyperplanes that pass through the cube, as
approximation ofdp(H). (We would not be very
interested at crossover time in hyperplanes that do not
pass through the cube.)

Column 5 gives the percentage of the 1000 trial schema
which satisfy . This proportion ranges
between 73.5% and 64.0%.

In the ranking of desirable relationships between
anddp(H) which is given at the end of section 3, the
relationship shown in Table 2 is the third:

for a majority of schema of low relative
diameter. But the picture is actually a little rosier than
that. Column 6 of Table 2 shows the average ratio

 over all 1000 schema. This evidence

says values  anddp(H) are on average rather
close to one another. Column 7 looks at the average ra

 over just that minority of schemas for

which . This evidence says that when

dp(H) exceeds , it does not do so excessively.

These experiments indicate that arranging bits at lattice
points in boxes, which for purposes of crossover are cu
by hyperplanes, can entail the desired behavior that
building blocks have their representation increased. If a
schema’s representatives in the population have
somewhat above average fitnesses, then their numbers
should increase in the next generation provided the
schema has low disruption probabilitydp(H). Quantity
dp(H) is hard to calculate, but is usually less than relativ
diameter  and on average is rather close to the

value .

6  CONCLUSIONS

We have generalized Holland’s Schema Theorem, to th
setting that bits are arranged, not necessarily in a linear
sequence, but as the nodes of a connected graphG. To do

a x⋅ b y⋅ c z⋅+ + d>
a x⋅ b y⋅ c z⋅+ + d≤

rel∆

rel∆ H( ) dp H( )≥

rel∆ H( )

rel∆ H( ) dp H( )≥

dp H( ) rel∆ H( )⁄
rel∆ H( )

dp H( ) rel∆ H( )⁄
dp H( ) rel∆ H( )>

rel∆ H( )

rel∆ H( )

rel∆ H( )



so we posited the existence of a distance function, and our
theorem incorporates the premise that .

We gave experimental results showing that Holland-like
behavior, meaning the flourishing of building blocks, can
reasonably be expected for two distinct graphsG, one
being a tree and the other being a cube of lattice points in
Euclidean 3-space.

We have given both theory and experimental evidence
that bits (genes) need not be limited to alignment in a
sequence. Ultimately genes should be arranged in ways
that are natural to the problem at hand.
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