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Abstract

We generalize Holland’s Schema Theorem to the
setting that genes are arranged, not necessarily in
a linear sequence, but as the nodes in a
connected graph. We have experimental results
showing that the flourishing of building blocks
can be expected for two distinct graphs we have
investigated, one being a tree and the other being
the lattice points in a cube in Euclidean 3-space.

1 INTRODUCTION

Holland developed the ground work for genetic
algorithms in the 1970’'s (Holland, 1975). His Schema
Theorem says that building blocks should flourish. Its
proof relies on the fact that genes in a chromosome are

arranged in a linear sequence. But why limit ourselves to

this arrangement of genes? Ultimately genes should be

A schema is to be a pattern which can match individual
bit strings. We use the asterisk, *, to be a wildcard
character, and thensghemds a string of length each

of whose components is either a bit value 0 or 1, or the
wildcard character. The schema positions holding a 0 or 1
are calledixed positions; those holding the wildcard are
unfixed The schemanatchesan individual bit string if

the latter agrees identically with the schema at the
schema’s fixed positions. If an individual bit pattern
matches a schema, we say that bit pattern is a
representativeof the schema.

If L=12, an example of a schemeasis (*, *, 0, *, *, 1, O,

* * * * %) This schema has 3 fixed positions, at indices
3, 6, and 7. Therder of a schemagrder(s), is the

number of fixed positions in it, 3 for this example. The
defining length &(s) , of a schema is the distance between
its first and last fixed positions. For the above example,
the first and last fixed positions are at indices 3 and 7
respectively, so the defining lengthis 7 - 3 = 4.

arranged in geometries most appropriate to the problem ablow we return to the populatidghwhich is a subset of

hand, which may not be sequential. For example, for
Koza's work (Koza, 1992) in genetic programming, the
natural arrangement is tree-like. Other arrangements
which might be appropriate to some problem are (a) a
high-dimensional cube of short edge size, such as {0, 1,

2120 or (b) a web of points on the surface of a sphere.

the universe. The population undergoes generational
changes by subjecting it to the evolutionary forces of
survival of the fittest, mating with crossover, and
mutation, soon to be detailed. Recall the presence of the
fitness functiorf. Implicit in a generational change is the
hope that fitter and fitter individuals begin to appear in the
population as timeincreases. Holland talks bfiilding

In this paper we generalize Holland’s Schema Theorem tohlocks meaning schemas of low defining length (so, also

the case that genes are arranged, not necessarily in a

linear sequence, but as the nodes in a connected graph.

In this paper, a gene will simply be a bit.

2 HOLLAND’S SCHEMA THEOREM

low order) whose representatives tend to have higher
fitnesses. The supposition is that the fixed values within a
building block are ones that are beneficial to the

individual. Holland’s Schema Theorem asserts that we
can expect an increase, as time advances, in the number of
representatives of the good building blocks witRin

First we carefully review the setting in which the theorem | gt the size of the population bk Let the individuals in

is proved. We follow the development found in
(Goldberg, 1989). There is a univetd@f individuals,
each of which is a bit string (a list of bits) of a fixed

length, call that length. In set-theoreticg) = 2. There

is a fitness functioh:U — O which assigns to each

P be denotedy, a,, ...,ay, and let their associated fitness

values bdy, f,, ...,f. Create the next generation

population as follows. We use theeighted roulette wheel
approach for choosing individuals for parenting: an
individual g; is selected for parenting with a probability

individual a fithess value which is a positive real number. €qual to its relative fithess within the population, that is,

Also present is a populatidhwhich is a subset of the
universeU. There will be generations of the population.

with probability fi/(ijj) . Having selected two parents

in this way, we perform mating with one-point crossover:



at random choose one of thel positions 2 through is greater than 1, we conclude that the numbét-of
length L. Cut each parent in two, between the chosen  representatives can be expected to increaseR{gno
position and the preceding one, next interchange parentap(t+1). The smalle(H) is, the closer factor

fragments to form two children, then add the childrento , _ ;
the next generation. Continue in this way until the next 1-(3(H)/(L~1)) isto 1. The smallgpy, andorder(H)

generation reaches the same size as the preceding one. are, the closer factdfl — pm)order(H) is to 1.1{H)
Note that two parents produce two children. Finally, with
some low probability,,, subject each bit in each child to

a mutational change.

the average fitness of thoSerepresentatives iR(t), is
somewhat greater thar(P) , the average fitness of all of

) . ) o P(t), then the quantity (E2) can exceed 1. Whence:
Our population at timg P(t), consists of individuala,,

a, ...,ay, With corresponding fitnessés f,, ...,fy. LetH  Holland’s Schema Theorem Assume schemid has
be some given schema, and suppose wiltinthere are  short defining lengtt§(H) (therefore, also low value for

m representatives ¢, denote therrail, Qe B order(H)). Also assume the mutation ragtg, is low. If the
Denote representatives ¢ have somewhat above average fitness

u(H) = (5, f, )/m within the pppulatlorP(t) at timet, then the numbgr of

K representatives df can be expected to increase in the

which is the average fitness of tHerepresentatives in next generatiof(t+1).
P(t), and denote

HP) = (ijj)/N 3 A NON-LINEAR SCHEMA THEOREM
which is the average fitness in the entire popula@) Now we want to consider scenarios where individuals in a

universe are described by some set of bit values but where

the bits are arranged in a configuration which is not

will be chosen for parenting i‘sik/(zj f;) ., therefore, the necessarily a linear sequence. For example, the bits might
. o be arranged as the nodes of a tree. Or they might be

probability that someéi-representative is chosen for arranged as the lattice points (the points with integer

parenting is(2, f; )/(Z;f;) . There are altogetier coordinates) in a parallelepiped (a “box”) in multi-

parents chosen, so the number of parents th&t-are dimensional real spadEn
representatives has expected vatmé(zkfik)/(zj fj)

The probability that a particuI&rr—representativeaik ,

More generally, we will assume the bits are arranged as
The latter number rewrites to Cu(H)/p(P) . the nodes in some connected finite gr&gpWe shall
assume there is some notion of the distance between two

Assuming a representative ldfis chosen for mating, and  5qes (perhaps path lengthGh Also we will assume

recalling that a cutpoint for crossover is chosen with there is some natural notion of ways to GUhto two

uniform randomness to cut just in front of the positions  ,on_empty subsets of its nodes (possiblv by clioping one
2..L, then the bit values making the parent a or severF:alI)/edges @). (b y By Clipping

representative dfl will not be separated from one another ) _

under crossover if the cutpoint is chosen outside the sparft sSchema will be as before: &'s nodes we assign values
of those bit values, and the latter happens with probabilityof either 0 or 1 or the wildcard, *. Fixed positions in the

1—(8(H)/ (L —1)). Thus, after mating with crossover schema, versus unfixed positions, means the same as

the number of children that are representatives of before. The order of a schema means (as before) the
number of fixed positions in it.

: H o(H . -
should be at least as big ((P))EEEL— L(Tig : We need a notion analogous to a schema’s defining
) » ] o length. We have assumed there is a notion of distance
Recallpy, is the probability that a single bit is mutated to  petween two nodes i. If B is some subset @G-nodes,

the complementary value, ancer(H) is the number of  gefine thediameterA(B) of B to be the maximum
fixed positions irtH. An H-representative remains such,  jistance between any two nodesirSince graplG is
despite mutation, with probabilitgl — pm)‘”der( o finite, the diameter of ang@-subset, including itself, is

a well-defined (finite) positive real number. Given a
schemaH, define itsrelative diameter

relA(H) = A(fixed( H)/A(G)

Now, in the next generatidP(t+1) of the population, the
number of representatives dfshould be at least as big as

(E1) m [ECI(H)E _ 5(H)B[(1_ pm)order(H) . wherefixedH) is the set of fixed nodes H. Figure 1
(P) L-1 suggestively illustrates the diamet&y§G) and
If the factor complementary to, A(fixed( H)) . The relative diameter of a schema is a real

number in the unit interval [0, 1]. Note that in the original

order(H) Holland scenario, whel bits are arranged in a linear

H(H)O dH)O
(E2) %DEEL—:LD[H—

m)



seqguence, the relative diameter of a schensa (H)O )
3(H)/(L-1). m —ZP—)DE(l—reIA(H)) , and after mutation, the

number of children which ard-representatives should be
at least as big as

PH)O—, . yorder(H)

(E3) m (P)DE(l relA(H)) d(1-p,,) .

Of course, this is the analogue to the expression (E1) in
section 2 above.

Non-Linear Schema TheoremLetH be a schema.
Assume (i) the mutation raj, is low, (ii) H has low

order, (iii)H has low relative diameteelA(H) , and (iv)

relA(H) = dp(H) . If representatives d¢fl have somewhat
above average fitness within the populafR§t), then the
number of representativesidfcan be expected to
increase in the next generatiB(t+1).

Of course, for this theorem it would be enough to replace
(iii) and (iv) with (iii") dp(H) is low. But we anticipate

that, in generaldp(H) is considerably harder to calculate
thanrelA(H) .

With regard to proving theorems about the burgeoning of
Figure 1: Diameters of Grapgh andfixedH) building blocks, possible relations betwesnA(H) and
within it. dp(H) are:

1.relA(H) =dp(H) for all schem&d;
When graplG is cut in two (in some natural but as yet .
unspecified way), it is possible for two fixed positions in 2. relaH) 2 <_jp(H? for all schemdd which have low
a schema to become separated (wind up in separate relative diameterelA(H)
subsets o6-nodes); term this disruptionof the schema. 3 (o|A(H) > dp(H) for the maiority of scherrtd which
Define thedisruption probability dp(H), of a schem# ' ( h?a;e I%(W)relative diar:\etle); whi
to be the probability that a random cut (whatever that may '

mean) disrupts the schema. Note that in the original
Holland scenario, whel bits are arranged in a linear 4 BITS ARRANGED IN A TREE

sequence, the disruption probability of a schefnia Now we investigate connecting bits as the nodes in a tree.
d(H)/(L-1), so, is equal to the relative diameter In particular, consider the full binary tree T on 63 nodes.
relA(H) . In this tree, levels 0 through 5 are full; level 5 contains 32
leaf nodes. The edges in this graph are those that connect
children to parents. Only the root node has no parent, so
there are 62 edges altogether. For our notion of distance,
we will use path length between two nodes (we mean the

Now we prove the non-linear analogue of Holland’s
Schema Theorem. Let scheide given. Suppose there
aremrepresentatives @1 in the populatiorP(t). As

before,u(H) denotes the average fitness otthe shortest path that goes through their nearest common
representatives iR(t), andu(P) the average fitness of ancestor). The longest path in this tree has length 10; this
the entire populatioR(t). Again, when creating a is the length of path that connects any leaf in the root’s
generational change, we select individuals for parenting right subtree to any leaf in the root's left subtree.

by a weighted roulette wheel. Again the number of Manufacturing a schemta amounts to making some of
parents which arel-representatives has expected value he 63 nodes have fixed values of O or 1, and assigning an
m Cu(H)/ u(P) . Two children are formed from two asterisk to the other nodes. We can write a function that
parents by making a random cut@fthen interchanging returns the length of the longest path between two fixed
parental fragments. A child of aitrepresentative nodes in a schema. ThuslA(H) s easily calculated

continues to be aH-representative if the random cut did directly.

not disruptH, which happens with probability Idp(H). ) ] ) ]

At this point we make the critical assumption: Assume ~ Given two parent bit trees, we perform mating with
relA(H) = dp(H) . Then the number of children which are crossover in the style of (Koza, 1992): at random select

H-representatives should be at least as big as



Table 1: Tree Experiments

SchemJi Number dp(H) dp/relA # times

order | trials least most avg least most avg |[dp>relA
2 100 0.0161 | 0.1613 | 0.1089| 0.1613 0.1618 0.1613 0
3 800 0.0323 | 0.2258 | 0.1606| 0.1613 0.241p 0.1937 0
4 12K 0.0484 | 0.2903 | 0.2007( 0.1613 0.3024  0.2237 0
5 140K 0.0806 | 0.3387 | 0.2368| 0.1613 0.3629 0.2532 0
6 1400K| 0.1129 | 0.3871| 0.2691| 0.1613 0.4032 0.2810 0
8 1000 0.1935 | 0.4355| 0.3265| 0.2097 0.448D  0.3330 0
16 1000 0.3548 | 0.6290| 0.4948] 0.3548 0.6290  0.49%4 0
32 1000 0.5806 | 0.8387| 0.7165 0.580¢ 0.8387 0.7165 0
48 1000 0.7742 | 0.9677| 0.8737| 0.7742 0.9677 0.8737 0

Column 2 is the number of random schema generated for the given order. Columns 3-5 and 6-8
give values of the disruption probability(H) and of the ratialp(H)/relA(H)) . Column 9

shows thatlp(H) never exceedetklA(H))

one of the 62 edges in the tree and interchange the
parental subtrees beneath that edge.

Now we address the calculationdi{H), the probability
that a random cut will disrupt a scherHaOf course, here
by disrupt we mean that at least one fixed node i3fin

the subtree underneath the edge being cut, and at least o
fixed node o lies in the rest of the tree. Since there are
only 62 edges which can be cut, we write a function that
explicitly calculatesip(H) by examining the
consequences of the 62 possible cuts.

It becomes too expensive to explicitly determine by
exhaustion whetherelA(H) = dp(H) for all schentds
(nor has a mathematical proof occurred to us). For
example, the number of schemas of order 4 is a multiple
of C(63, 4), where C(63, 4) = the number of ways of
combining 63 items 4 at a time = 595,665. Instead we
make the following statistical analysis. For some orders 2
3, 4, etc., we manufacture many random schema, and fo
those schema we explicitly calculate and compare
relA(H) anddp(H). The results are given in Table 1. As
the last column in Table 1 shows, in our experiments,
dp(H) never exceederklA(H) . Moreover, as columns
8 show, for low order schemaiy(H) was on average
quite a bit smaller thanelA(H)

We thank our colleague Dr. Terry Watkins of the
University of New Orleans Mathematics Department for
the statistical assertions of this paragraph. Suppose we
test the hypothesis tha¢lA(H) >dp(H) by taking n =
1000 randomly chosen scheidand for those seeing if

6-

in these experiments.

we can assert that the proportion of schemas for which the
hypothesisrelA(H) = dp(H) holds must be at least
0.9999999.

Thus, the experiments reported in Table 1 suggest with
eétraordinary statistical persuasion thatA(H) = dp(H)
161 all the schema in our setting.

5 BITS ARRANGED IN A CUBE

Now we consider bits arranged as the lattice points within

a parallelepiped in 3-dimensional Euclidean spﬁée A
lattice pointis one whose coordinates are integers. Our
parallelepiped will actually be a cube. We will consider
several cubes. The first cube has 8 points on each edge

and consists of the vectotsr, ) in 02 such that each

,0f the coordinatek m, nis an integer in the range 0..7.
ISuch vectors are the nodes in our gr@phVe intend

there to be an edge between two vectors ( = nodes) if the
two vectors agree in two of their coordinates and differ by
1 in the remaining coordinate. But, in truth, since the
notion of distance we will use will be Euclidean distance,
the edges are less significant than the physical proximity
of nodes to one another. The other two cubes are similar
but with, respectively, 10 and 12 points on each edge. The

number of bits in our three cubes are, respectivély, 8
512, 16 = 1000, and 1= 1728.
We will cut such a cube with a hyperplane. In

3-dimensional Euclidean spalie3 hyperplanas

the hypothesis holds. These are Bernoulli trials where wedetermined by four real numbers a, b, ¢, d, and consists of

will assume the probability of success (that is,
relA(H) = dp(H)) is constant. If every one of the 1000

those vectorsx( y, 2 suchthamk+by+clZz = d .
The half-spaces into which the hyperplane cuts the world

trials results in success, then with confidence level 0.999%onsists of thosex(y, 2 which satisfy



Table 2: Cube Experiments

Edge | Ball Avg Avg % Avg ratiadp/relA
size size order | relA relA=dp all 1000 whealp>relA
8 19 7.63 0.211 73.5 0.915 1.439
10 27 11.20 0.195 64.0 1.015 1.486
12 57 22.92 0.229 66.5 1.034 1.526

For all three edge sizes, 1000 random schema were manufactured. Column 2 is the
maximum number of points in a ball witklA = 0.25. Column 5 is the percentage of
the 1000 schema which satigfglA(H) = dp(H) . Column 6 has the average ratio of
dp(H) to relA(H) , taken over all 1000 schema, and column 7 has that average ratio
over just the minority of schema for whidp(H) > relA(H) .

alk+b0Oy+clz>d (which we term theky sidg random, then use the ratio of hyperplanes that disrupt the
versus those which satis§/k+b [y +cz<d (thed schema, to.hyperplanes that pass through the cube, as our
side. We manufacture a random hyperplane by choosingapme'matlon otip(H). (We would not be very

: ' ; interested at crossover time in hyperplanes that do not
our random real numbers a, b, ¢, d out of the real interval ass through the cube.)

[-1, 1]. A random hyperplane may not pass through the P 9 '

cube at all; for instance, the entire cube might lie in the Column 5 gives the percentage of the 1000 trial schema
sky side. If a hyperplane does pass through the cube, it which satisfyrelA(H) = dp(H) . This proportion ranges
disrupts a schema if at least one fixed position in the between 73.5% and 64.0%.

schema is on the sky side and at least one schema fixed ] . ) ]

position is on the sod side. Crossover between two parent§? the ranking of desirable relationships betweef(H)
consists of intersecting each parent with the same randoranddp(H) which is given at the end of section 3, the
hyperplane, then interchanging parental sky sides (or sodelationship shown in Table 2 is the third:

sides, of course) to form two children. relA(H) = dp(H) for a majority of schema of low relative

Our distance function will be Euclidean distance, the diameter. But the picture is actually a little rosier_than
square root of the sum of the squares of the differences dhat. Column 6 of Table 2 shows the average ratio
corresponding vector coordinates. dp(H)/relA(H) over all 1000 schema. This evidence

For speaking of a Schema Theorem, we really wantto ~ Says valueselA(H) — andp(H) are on average rather
make an assertion about schemas of low relative diameteiclose to one another. Column 7 looks at the average ratio
So, for our experiments, we manufactured numerous trialdp(H)/relA(H) over just that minority of schemas for
schemas of low relative diameter, done as follows. The \yhich dp(H) > relA(H) . This evidence says that when
relative diameter we here reportom&dA = 0.25 dp(H) exceedselA(H) , it does not do so excessively.
(behavior for this value is typical). The schema’s fixed

positions are all chosen to lie within a geometric ball, of These experiments indicate that arranging bits at lattice
this relative diameter, about some center lattice point. ~ Points in boxes, which for purposes of crossover are cut
Geometry necessitates that there is some maximum by hyperplanes, can entail the desired behavior that
number (see column 2 of Table 2) of lattice points that  building blocks have their representation increased. If a
can fit in this ball. (As can be deduced from Table 2, this Schema’s representatives in the population have
maximum number amounts to just several percentage somewhat above average fithesses, then their numbers
points of the entire Cube_) To manufacture random should increase in the next generation provided the
schemas, we choose a center point at random, then, withschema has low disruption probabilidg(H). Quantity
50-50 chance upon each addition, add each possible cub@XH) is hard to calculate, but is usually less than relative
point that fits in this ball as another fixed position in the diameterrelA(H) and on average is rather close to the
schema we are manufacturing. In Table 2, the average yajuerela(H) .

order (column 3) of the schemas we manufacture is a bit

less that half the maximum number (column 2) because

balls centered near a cube face do not receive points 6 CONCLUSIONS

outside the cube. We have generalized Holland’s Schema Theorem, to the
Having manufactured a random scheraf low relative setting that bits are arranged, not necessarily in a linear

diameter as just described, we estimate the probability Sequence, but as the nodes of a connected @apb do
dp(H) as follows. We choose 1000 hyperplanes at



sSo we posited the existence of a distance function, and our
theorem incorporates the premise tretiA(H) = dp(H)

We gave experimental results showing that Holland-like
behavior, meaning the flourishing of building blocks, can
reasonably be expected for two distinct graghsne

being a tree and the other being a cube of lattice points in
Euclidean 3-space.

We have given both theory and experimental evidence
that bits (genes) need not be limited to alignment in a
sequence. Ultimately genes should be arranged in ways
that are natural to the problem at hand.
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