
Hierarchical Problem Solving
and the Bayesian Optimization Algorithm

Martin Pelikan

Illinois Genetic Algorithms Laboratory

University of Illinois

Urbana, IL 61801

pelikan@illigal.ge.uiuc.edu

David E. Goldberg

Illinois Genetic Algorithms Laboratory

University of Illinois

Urbana, IL 61801

deg@illigal.ge.uiuc.edu

Abstract

The paper discusses three major issues.

First, it discusses why it makes sense to ap-

proach problems in a hierarchical fashion. It

de�nes the class of hierarchically decompos-

able functions that can be used to test the al-

gorithms that approach problems in this fash-

ion. Finally, the Bayesian optimization algo-

rithm (BOA) is extended in order to solve the

proposed class of problems.

1 INTRODUCTION

Recently, the connection between human innovation

and genetic algorithms has been discussed (Goldberg,

2000; Holland, 1995; Koza, 1994; Koza, Bennett III,

Andre, & Keane, 1999). There are two important im-

plications of this result: the innovation can be thought

of as a model of genetic algorithms and the genetic al-

gorithms can be thought of as a model of innovation.

Moreover, in the genetic and evolutionary computa-

tion community there has been a growing interest in

what we call hierarchical problem solving.

The purpose of this paper is threefold. The paper dis-

cusses why it makes sense to approach problems in a

hierarchical fashion and combine promising solutions

from lower levels to form the solutions on a higher

level. The class of hierarchically decomposable prob-

lems, as an extension of widely discussed, used, and an-

alyzed additively decomposable problems, is de�ned.

Finally, the Bayesian optimization algorithm (BOA)

is extended in order to solve the described class of

problems.

Section 2 provides the background and motivation.

The class of hierarchically decomposable problems is

de�ned in Section 3. The Bayesian optimization algo-

rithm is brie
y described in Section 4. Section 5 dis-

cusses possible extension of models used in the BOA to

guide the search in order to adjust the model-building

to hierarchical problems. The directions of future re-

search are outlined in Section 6. The paper is summa-

rized and concluded in Section 7.

2 GENETIC ALGORITHMS,

INNOVATION, AND

HIERARCHY

A genetic algorithm (Holland, 1975; Goldberg, 1989)

evolves a population of potential solutions to a given

problem. The �rst population of solutions is generated

at random. By means of a measure of quality of solu-

tions given by a user, usually expressed in the form of

one or multiple functions, better solutions are selected

from the current population. The selected solutions

undergo the operators of mutation and crossover in

order to create the population of new solutions (the

o�spring population) that fully or in part replace the

original (parent) population. The process repeats until

the termination criteria (e.g., convergence to a single-

ton) given by the user are met.

As it was argued recently (Goldberg, 2000), selection,

crossover, and mutation are not very interesting op-

erators when acting alone. By repeatedly applying

selection alone, the best solution of the initial pop-

ulation would simply overtake the entire population.

More importantly, nothing but the small, randomly

generated, region of the search space (the initial pop-

ulation of solutions), would be explored. By repeat-

edly applying crossover alone, the �nal e�ect would be

the one of shu�ing parts of a set of randomly gener-

ated solutions. By repeatedly applying mutation, the

neighborhood of randomly generated solutions would

only be explored. Thus, the e�ects of applying either

operator by itself would be no better than the one of

generating a number of solutions at random with no



bias whatsoever.

Important features of these operators emerge when us-

ing a combination of these. By using the selection and

mutation together, the initial population of solutions is

continually improved by selecting better solutions and

exploring their close neighborhood. By introducing

crossover, the solutions are no longer only improved

by slight perturbations but pieces of solutions are com-

bined together to form new solutions. This process is

not unlike a human cross-fertilizing innovation (Gold-

berg, 2000).

One of the implications of this argument is that the re-

sults of genetic and evolutionary computation can be

used as a tool for understanding and modeling human

innovation. On the other hand, the achievements and

experience from human innovation and engineering de-

sign can be seen as yet another source of inspiration for

genetic and evolutionary computation in order to de-

sign methods that solve hard problems of our interest

quickly, accurately, and reliably. This paper investi-

gates on using hierarchical problem solving as one of

the cornerstones of engineering design in order to im-

prove current genetic and evolutionary optimization

methods.

In engineering design, the problems are often solved

in a hierarchical fashion. New designs or ideas are

composed of other designs or ideas without having to

reinvent these. Many sub-parts of our new design can

be created separately and the �nal result is produced

by combining the alternatives. For example, when de-

signing a car, the car stereo and the engine can be

designed separately and combined together to form a

part of a new car design. Various alternatives can be

tried and the �nal choice can be done by comparing

di�erent combinations of reasonable car stereos and

engines. When designing an engine, there is no need

to reinvent the carburetor, and one can simply choose

one from a set of reasonable carburetors that we have

already designed. When completing the design, we can

simply use an appropriate engine in combination with

the remaining parts (e.g., the car stereo). To put all

the parts together, we need not reinvent nuts and bolts

each time we modify some part of the engine (e.g., the

size of cylinders) but simply use some reasonable ones

we have designed along the way. In general, higher-

level knowledge can be obtained at much lower price

when we approach the problem at lower level �rst, and

use the results of this in order to compose higher-order

solutions.

Next section describes a general class of hierarchically

decomposable functions. With this de�nition at hand,

the subsequent section continues by proposing an ex-

tension of the recently proposed Bayesian optimization

algorithm to the class of hierarchically decomposable

problems which are an extension of additively decom-

posable problems discussed in our earlier work.

In the following text, the solutions are represented by

binary strings of a �xed length, but the results can

be easily extended to �xed-length strings over any �-

nite base alphabet. Each string position represents a

(binary) random variable and the set of promising so-

lutions selected according to their �tness represents a

multivariate random sample.

3 HIERARCHICALLY

DECOMPOSABLE FUNCTIONS

Hierarchically decomposable functions (HDFs) were

�rst presented by Goldberg (1998) who designed the

so-called Tobacco Road Function which combined de-

ception and multimodality up a number of levels (also

in Goldberg (1997)). The class of hierarchically consis-

tent functions was later presented by Watson, Hornby,

and Pollack (1998). In HDFs, the �tness contribution

of each building block (an intact sub-part of the so-

lution quasi-separable from its context) is separated

from its interpretation (meaning) when it is used as

a building block for constructing the solutions on a

higher level. The overall �tness is de�ned as the sum

of �tness contributions of each building block.

In this paper, we will consider a more general class

of hierarchically decomposable functions than the one

introduced by Watson et al. (1998) that allows any

order and interpretation of every building block on

each level. Furthermore, the �tness contribution of

each considered vector of interpretations will not be

assigned uniformly but an arbitrary function for each

block of interpretations can be used. Finally, the in-

dividual contributions will not be automatically mul-

tiplied by the length of the input vector.

Let us consider a hierarchical function on input vectors

X = (X0; : : : ; Xn�1) of n variables de�ned on L � n

levels. The value of variable Xi is denoted by xi. On

each level i 2 f1; : : : ; L�1g, let us de�ne mi functions

that contribute to the overall �tness. On input, each

of these functions gets a vector of building-block in-

terpretations (meanings) from a lower level. On each

level i there will be mi recursively computed interpre-

tations.

The interpretations on a 0th level are simply the val-

ues of input variables, i.e. v0;k = xk for all k. There

are m0 = n such interpretations. On level i > 0, the

jth contributory function fi;j is de�ned on a subset of



interpretations from the lower level, with the indices

from Si;j � f0; : : : ;mi�1 � 1g. These interpretations

will be joint together to form a higher-level interpre-

tation by function Ti;j . We denote the vector of in-

terpretations with the indices from Si;j by Vi;j , i.e.

Vi;j = fvi�1;kjk 2 Si;jg. The jth interpretation on the

level i, denoted by vi;j , is then given by the recursive

function

vi;j =

�
Ti;j(Vi;j) if i > 0

xj otherwise
; (1)

where i 2 f0; : : : ; L � 1g, and j 2 f0; : : : ;mj � 1g.

A simple example of the recursive computation of the

interpretations for a vector of n = 9 variables and

L = 3 levels is shown in Figure 1.

The total �tness is de�ned as the sum of functions

de�ned on the subsets of interpretations that are in-

terpreted together in order to get the interpretation on

a higher level. For jth interpretation Ti;j , the corre-

sponding function with the same inputs is denoted by

fi;j . The overall value of the �tness function is thus

given by

f(X) =

L�1X
i=1

mi�1X
j=0

fi;j(Vi;j): (2)

To solve HDFs, two issues must be addressed. The

models must allow groups of variables to be merged

into a single unit that will be further treated as a

new ultimate variable. Moreover, niching becomes an

important issue because in order to have enough ma-

terial to combine, we need to preserve diversity; to

combine solution from a certain level to form a solu-

tion of a higher order, we want to have a su�cient

number of the parts of solutions we want to combine.

Niching methods were frequently discussed in recent

work (Goldberg, 1989; Oei, Goldberg, & Chang, 1991;

Mahfoud, 1995; Mengshoel & Goldberg, 1999). Here

we focus on the modeling part, i.e. on how the mod-

els to be used should look like and how these can be

learned given the set of promising solutions.

Example:

The following function is de�ned by using bipolar

fully deceptive functions of order 6. A bipolar func-

tion of order 6 is constructed from a deceptive func-

tion of order 3 which is de�ned on binary vectors

v1,1v1,0 v1,2

1,2TT1,1

X X1 2 X X X3 4 5 X6 X8X0 X7

v vv vv v

T2,0

v2,0

1,0T

v vv0,0 0,3 0,4 0,5 0,6 0,7 0,80,1 0,2

Figure 1: An example interpretation for n = 9 variables
on L = 3 levels.

X = (X0; X1; X2) of order 3 as

f3deceptive(u) =

8>><
>>:

0:9 if u = 0

0:8 if u = 1

0 if u = 2

1 otherwise

;

where u is the number of one's in the input vector

(string) X . The bipolar function of order 6 is de�ned

on binary vectors of length 6 as

f6bipolar(u) = f3deceptive(j3� uj):

The function is de�ned on L levels. The input vector

is of size n = 6l. All interpretation functions will be

de�ned in the same way and they will interpret a block

of 6 bits according to the major occurrence of either

bit (in case of tie, we interpret the block as 0), i.e.

vi;j =

�
0 if u � 3

1 otherwise
;

where u is the number of ones in the input vector of

interpretations (each of which is a binary number),

i 2 f0; : : : ; L � 1g, and j 2 f0; : : : ;mj � 1g. The

contributory functions fi;j simply return the value of

the bipolar function fbipolar, i.e.

fi;j(Vi;j) = fbipolar(u);

where Vi;j is the input vector of interpretations (each

of which is again a binary value), and u is the number

of ones in the input vector Vi;j . The function has two

global optima in points 000 : : : 0 and 111 : : :1. Sim-

ilarly as functions additively composed of a bipolar

function, it has a great number of deceptive local op-

tima. Moreover, the optima on the higher levels aggra-

vate the deception of functions on each level. To scale



each function according to their \importance", mea-

sured for instance by the number of input bits that

a�ect its value, the function contribution can be mul-

tiplied by a factor of 6j , where j is the number of the

level.

4 PROBABILISTIC

MODEL-BUILDING GENETIC

ALGORITHMS

Probabilistic model-building genetic algorithms (PM-

BGAs), also called the estimation of distribution algo-

rithms (M�uhlenbein & Paa�, 1996), replace genetic re-

combination of the genetic algorithms (GAs) (Holland,

1975; Goldberg, 1989) by building an explicit model of

promising solutions and using the constructed model

to guide the further search. As models, probability

distributions are used. For an overview of recent work

on PMBGAs, see Pelikan, Goldberg, and Lobo (2000).

The Bayesian optimization algorithm (BOA) (Pelikan,

Goldberg, & Cant�u-Paz, 1998) uses Bayesian networks

to model promising solutions and subsequently guide

the further search. In the BOA, the �rst population of

strings is generated at random. From the current pop-

ulation, the better strings are selected. Any selection

method can be used. A Bayesian network that �ts the

selected set of strings is constructed. Any metric as

a measure of quality of networks and any search algo-

rithm can be used to search over the networks in order

to maximize/minimize the value of the used metric.

Besides the set of good solutions, prior information

about the problem can be used in order to enhance

the estimation and subsequently improve convergence.

New strings are generated according to the joint distri-

bution encoded by the constructed network. The new

strings are added into the old population, replacing

some of the old ones.

As a model of the selected strings, a Bayesian net-

work is used in the BOA. A Bayesian network is a

directed acyclic graph with the nodes corresponding

to the variables in the modeled data set (in our case,

to the positions in the solution strings). Mathemati-

cally, a Bayesian network encodes a joint probability

distribution given by

p(X) =

n�1Y
i=0

p(Xij�Xi
); (3)

where X = (X0; : : : ; Xn�1) is a vector of all the vari-

ables in the problem, �Xi
is the set of parents of Xi

in the network (the set of nodes from which there ex-

ists an edge to Xi) and p(Xij�Xi
) is the conditional

probability of Xi conditioned on the variables �Xi
. A

directed edge relates the variables so that in the en-

coded distribution, the variable corresponding to the

terminal node will be conditioned on the variable cor-

responding to the initial node. More incoming edges

into a node result in a conditional probability of the

corresponding variable with conjunctional condition

containing all its parents.

To construct the network given the set of selected solu-

tions, various methods can be used. All methods have

two basic components: a scoring metric which discrim-

inates the networks according to their quality and the

search algorithm which searches over the networks to

�nd the one with the best scoring metric value. The

BOA can use any scoring metric and search algorithm.

In our recent experiments, we have used the Bayesian-

Dirichlet metric (Heckerman, Geiger, & Chickering,

1994). The complexity of the considered models was

bounded by the maximum number of incoming edges

into any node denoted by k. To search the space of

networks, a simple greedy algorithm was used due to

its e�ciency. For further details, see Pelikan, Gold-

berg, and Cant�u-Paz (1999).

5 HIERARCHICAL MODEL

BUILDING

To hierarchically solve a problem, we need to incre-

mentally �nd important low-order partial solutions

and combine these to create the solutions of higher

order. Starting with single bits (symbols of base al-

phabet), once we get top high-quality solutions of some

order we simply treat these solutions as the building

blocks to be used to construct solutions of higher or-

der. In this fashion, the order of partial solutions we

get gradually grows over time.

5.1 HIERARCHICAL MODELS

In order to adjust modeling to hierarchical problems,

we will use models that, among estimating the joint

distribution between single variables, also allow mul-

tiple variables to be merged together and form a new

variable. This variable will be further treated as a sin-

gle unit. In this fashion the solutions of higher order

can be formed by using groups (clusters) of variables

as basic building blocks.

The idea of clustering the input variables and treating

each cluster as an intact building block comes from

learning used in the extended compact genetic algo-

rithm (ECGA) (Harik, 1999). For each group of vari-

ables only instances that are in the modeled data set

will be considered like in learning Bayesian networks



(a) ECGA (b) BOA

(c) hBOA (d) Hidden variables

Figure 2: Models used in a) ECGA, b) BOA, c) hierarchical BOA (Hu�man networks), and d) an alternative

model based on using hidden variables.

with local structure (Friedman & Goldszmidt, 1999).

The clusters (groups) of variables are related as in clas-

sical directed-acyclic-graph (DAG) Bayesian networks

used in the original BOA algorithm. This class of hy-

brid models was �rst introduced by Davies and Moore

(1999) who called these models Hu�man networks.

Let us, for example, at certain point in time, have three

positions with only two values in the entire population:

000 and 111. Then, instead of working with each of

these positions separately, these can be merged into

a single binary variable with two new values 00 and

10, where 00 corresponds to 000 and 10 corresponds to

111. In this fashion, both the model complexity as well

as the model expressiveness improve. Moreover, by

reducing the number of variables, the search for good

networks becomes more e�cient and accurate. Each

group of merged variables represents an intact part of

the solutions from lower-level that is to be treated as

a single variable on a higher level.

An example model with a few groups of variables is

shown in Figure 2c. For comparison, similar examples

of models in the BOA and ECGA are shown in parts

a) and b) of the same �gure. The use of Hu�man net-

works does not require sacri�cing modeling generality

as in the ECGA. All relationships expressed by DAG

models can be covered. On the other side, the overly

complex DAG models used in the original BOA can

be signi�cantly simpli�ed by \crossing over" the two

approaches.

Similar reduction of total model complexity can be

achieved by using hidden variables often used in

Bayesian networks. In fact, using hidden variables

is an alternative and more general approach to the

problem of hierarchical model building. We believe

that using these models would further improve model-



building for problems of a very complex structure. A

similar model to the one shown in Figure 2c, based on

using hidden variables, is shown in Figure 2d.

5.2 SCORING METRIC FOR HUFFMAN

NETWORKS

To learn a model of solutions on a certain level, we will

use a combination of the learning methods used in the

original Bayesian optimization algorithm (BOA) (Pe-

likan, Goldberg, & Cant�u-Paz, 1999), the extended

compact genetic algorithm (ECGA) (Harik, 1999), and

Bayesian networks with local structure (Friedman &

Goldszmidt, 1999). To discriminate the networks, a

minimum description length (MDL) metric will be

used. The BDe metric with additional term preferring

simpler networks (Friedman & Goldszmidt, 1999) can

be used, too. However, simpler models must be pre-

ferred to more complex ones, since the clusters tend to

grow inde�nitely and the boundary on the complexity

of models can not be directly applied without weaken-

ing the modeling capabilities on hierarchical problems.

To store data according to a particular model, we need

to store (1) the de�nition of clusters (groups) of vari-

ables in the model, (2) the probabilistic relationships

between the groups of variables (edges between the

groups in the model), and (3) the data set (the set of

selected solutions) compressed according to the model.

Each variable (bit position) is in exactly one of the

clusters. The description of data will contain the fol-

lowing �elds: (1) the number of clusters in the model,

(2) an array of cluster de�nitions, and (3) the popula-

tion compressed according to the model.

In further text we will use the following notation:

n denotes the number of variables; N denotes the

number of instances in the modeled data set; m de-

notes the number of clusters (groups of variables);

G = (G0; : : : ; Gm�1) denotes the set of clusters Gi;

jGij denotes the number of variables in Gi; jjGijj de-

notes the number of instances of variables Gi; �i de-

notes the set of parent groups of Gi; j�ij denotes the

number of parent groups in �i; and jj�ijj denotes the

number of instances of the set of groups �.

There can be at most n groups of variables, i.e. m � n,

and therefore in order to store the numberm of groups,

at most log
2
n bits can be used.

The de�nition of each group contains (1) the size of

the group, (2) the indices of the variables contained in

the group, (3) the set of instances of this group, (4) the

set of this group's parent identi�ers, and (5) the set of

conditional probabilities of the instances in this group

given all the instances of its parent groups. There can

be at most n variables in each group, and therefore

the size of each group can be stored by using log
2
n

bits. This boundary could be further reduced by ana-

lyzing the entire description at once. There are
�

n

jGij

�
possibilities to choose variables to form Gi. Thus, to

identify the set of variables in Gi, we need to store only

the order of this subset in some ordering of all possi-

ble subsets of this size, i.e. we need at most log
2

�
n

jGij

�
bits. Assuming that we use binary variables, the set of

instances of Gi can be stored by using log2 2
jGij = jGij

bits for the number of instances and jGij:jjGijj bits for

the speci�cation of all bits in these instances.

Each group can have at most n � 1 parents in the

network. Thus, the number of parents can be stored

by using log
2
(n� 1) bits. The number of bits needed

to store the components of �i is log2
�
m

j�ij

�
.

To store conditional probabilities for Gi, we will store

a frequency of each combination of instances of the

variables in Gi and its parents. There are at most

jjGijj:jj�ijj

possible instances. However, this number might be

further reduced by using local structures (Friedman &

Goldszmidt, 1999) or considering only instances that

really appear in the modeled data set. Each frequency

can be stored in 0:5 log
2
N bits with a su�cient degree

of accuracy (Friedman & Yakhini, 1996). Thus, to

store the conditionals corresponding to Gi, we need at

most

jGij log2N

2

Y
Gj2�i

(jjGj jj � 1)

bits, since the last frequency can be computed from

the remaining ones.

To store the data compressed according to the above

model, we need at most

�N

jGj�1X
i=0

X
gi;�i

p(gi; �i) log p(gij�i)

bits (Friedman & Goldszmidt, 1999), where the inner

sum runs over all instances gi and �i of variables in

Gi and �i respectively, p(gi; �i) is the probability of

the instance with the variables in Gi and �i set to

gi and �i respectively, and p(gij�i) is the conditional

probability of the variables in Gi set to gi given that

the variables in �i are set to �i.

The overall description length is then computed as the

sum of all terms computed above. The lower the met-

ric, the better the model.



5.3 BUILDING A HUFFMAN NETWORK

A method for building Hu�man networks for com-

pression of large data sets was presented in Davies

and Moore (1999). This method proceeds similarly

as other search methods commonly used for learning

Bayesian networks by incrementally performing ele-

mentary graph operations on the model to improve

the value of the scoring metric. This algorithm is of-

ten used for its e�ciency. A general scheme of the

greedy search method used in the original BOA as well

as in Davies and Moore (1999) follows:

(1) Initialize the network (to an empty, random, or

the best network from the last generation).

(2) Pick an elementary graph operation that improves

the score of the current network the most.

(3) If there is such operation, perform it, and go to

step 2.

(4) If no operation improves the score, �nish.

In addition to usually used operations as edge addi-

tion, edge removal, and edge reversal, we can use a new

operation that can either (1) join two of the groups

of variables to form a single cluster or (2) move one

variable from one cluster to another one (and deleting

clusters that has become empty, if any). In (Davies &

Moore, 1999), the second operation was used. In both

cases, the con
icts appearing with existence of cycles

must be resolved. When joining two groups, the edges

can be either conservatively rearranged so that only

edges that coincided with both of the groups will be

considered or that all edges to and from either of the

groups will be considered, if possible.

6 FUTURE WORK

We are currently implementing the extended hierarchi-

cal BOA (hBOA) in order to test the algorithm on var-

ious hierarchically decomposable problems. In order

to analyze the performance of our algorithm and com-

pare it to alternative methods, a set of test problems

will be designed. The results of our recent research at

the Illinois Genetic Algorithms Laboratory, focusing

on various aspects of problem di�culty, will be used

in order to design a rigorous test-suite for methods

that approach the problem in a hierarchical fashion.

Alternative solutions to the problem of hierarchical

modeling will be compared on the designed test-suite.

One of the alternatives, based on using hidden vari-

ables, was outlined above. There are other methods

that may be used and the question of suitability of

each approach still remains open.

The paper did not discuss niching, which becomes a

very important issue when solving hierarchical prob-

lems. Although it may not be necessary to use niching

for solving additively decomposable problems, when

solving hierarchical problems it becomes a necessity

since many alternative low-order solutions should be

preserved before we can �nd the best way of juxta-

posing these. In other words, the importance of the

notion of minimal sequential non-inferior BB of a so-

lution dominates the one of the minimal sequential su-

perior BB of a solution (Goldberg, 1997). Therefore,

one of the most important issues of future research

on this topic should include the use of niching in the

methods based on probabilistic modeling, as the BOA

algorithm. More advanced niching techniques can be

designed by using the constructed model as a hint on

the structure of the problem at hand.

7 SUMMARY AND CONCLUSIONS

Recently, Watson et al. (1998) suggested that the sim-

ple genetic algorithm can solve some hierarchically de-

composable problems quite e�ciently. On the other

side, anomalous behavior of the simple GA on prob-

lems with rewards for various combinations of building

block was observed (Forrest & Mitchell, 1993). We be-

lieve that the algorithms that use Hu�man networks

to model promising solutions will o�er an e�cient and

very robust method to solve the class of hierarchical

problems. Even though the hierarchical BOA is aimed

to solve hierarchically decomposable problems, we ex-

pect that its overall performance on other problems

will also improve. In fact, by simplifying the used class

of models without sacri�cing their generality, modeling

capabilities of the BOA should improve what should

result in that the BOA will solve a more general class

of problems e�ciently and reliably.

The paper discussed three major issues. It provided

the reasons for approaching problems in a hierarchi-

cal fashion. The class of hierarchically decompos-

able problems which extends additively decomposable

problems in order to test for hierarchical capabilities of

optimization algorithms was de�ned. Possible exten-

sions of the original Bayesian optimization algorithm

were outlined, and the direction of future research in

the discussed area was drawn.

Acknowledgments

The authors would like to thank Erick Cant�u-Paz for

many useful discussions.

This work was sponsored by the Air Force O�ce of Sci-

enti�c Research, Air Force Materiel Command, USAF,



under grant F49620-97-1-0050. Research funding for

this work was also provided by the National Science

Foundation under grant DMI-9908252. Support was

also provided by a grant from the U. S. Army Re-

search Laboratory under the Federated Laboratory

Program, Cooperative Agreement DAAL01-96-2-0003.

The U. S. Government is authorized to reproduce and

distribute reprints for Government purposes notwith-

standing any copyright notation thereon.

The views and conclusions contained herein are those

of the authors and should not be interpreted as neces-

sarily representing the o�cial policies or endorsements,

either expressed or implied, of the Air Force O�ce of

Scienti�c Research, the National Science Foundation,

the U. S. Army, or the U. S. Government.

References

Davies, S., & Moore, A. (1999). Using bayesian net-
works for lossless compression in data mining. In
Proceedings of the Fifth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining (KDD-99) (pp. 387{391). San Diego, CA:
ACM Press.

Forrest, S., & Mitchell, M. (1993). What makes a prob-
lem hard for a genetic algorithm? some anoma-
lous results and their explanation. Machine Learn-
ing , 13 (2/3), 285{319.

Friedman, N., & Goldszmidt, M. (1999). Learning
Bayesian networks with local structure. In Jordan,
M. I. (Ed.), Graphical models (1 ed.). (pp. 421{459).
Cambridge, MA: MIT Press.

Friedman, N., & Yakhini, Z. (1996). On the sample com-
plexity of learning Bayesian networks. In Horvitz, E.,
& Jensen, F. (Eds.), Proceedings of the 12th Confer-
ence on Uncertainty in Arti�cial Intelligence (UAI-
96) (pp. 274{282). San Francisco: Morgan Kauf-
mann Publishers.

Goldberg, D. E. (1989). Genetic algorithms in search,
optimization, and machine learning. Reading, MA:
Addison-Wesley.

Goldberg, D. E. (1997, November). The design of in-
novation: Lessons from genetic algorithms. Unpub-
lished manuscript.

Goldberg, D. E. (1998, June 15). Four keys to under-
standing building-block di�culty. Presented in Pro-
jet FRACTALES Seminar at I.N.R.I.A. Rocquen-
court, Le Chesnay, Cedex.

Goldberg, D. E. (2000). The design of innovation:
Lessons from genetic algorithms, lessons for the real
world. Technological Forecasting and Social Change.
In press.

Harik, G. (1999). Linkage learning via probabilis-
tic modeling in the ECGA (IlliGAL Report No.
99010). Urbana, IL: University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory.

Heckerman, D., Geiger, D., & Chickering, M. (1994).
Learning Bayesian networks: The combination of

knowledge and statistical data (Technical Report
MSR-TR-94-09). Redmond, WA: Microsoft Re-
search.

Holland, J. (1995). Hidden order: How adaptation builds
complexity,. Addison Wesley.

Holland, J. H. (1975). Adaptation in natural and arti�-
cial systems. Ann Arbor, MI: University of Michigan
Press.

Koza, J. (1994). Genetic programming II: Automatic
discovery of reusable programs. Cambridge, Mas-
sachusetts: Massachusetts Institute of Technology.

Koza, J. R., Bennett III, F. H., Andre, D., & Keane,
M. A. (1999). Genetic programming III: Darwinian
invention and problem solving. San Fransisco, CA:
Morgan Kaufmann Publishers.

Mahfoud, S. W. (1995, May). Niching methods for ge-
netic algorithms. Doctoral dissertation, University of
Illinois at Urbana-Champaign, Urbana, IL. Also Il-
liGAL Report No. 95001.

Mengshoel, O. J., & Goldberg, D. E. (1999). Probabilis-
tic crowding: Deterministic crowding with probabil-
isitic replacement. In Banzhaf, W., Daida, J., Eiben,
A. E., Garzon, M. H., Honavar, V., Jakiela, M., &
Smith, R. E. (Eds.), Proceedings of the Genetic and
Evolutionary Computation Conference GECCO-99,
Volume I (pp. 409{416). Orlando, FL: Morgan Kauf-
mann Publishers, San Fransisco, CA.

M�uhlenbein, H., & Paa�, G. (1996). From recombination
of genes to the estimation of distributions I. Binary
parameters. In Eiben, A., B�ack, T., Shoenauer, M.,
& Schwefel, H. (Eds.), Parallel Problem Solving from
Nature - PPSN IV (pp. 178{187). Berlin: Springer
Verlag.

Oei, C. K., Goldberg, D. E., & Chang, S.-J. (1991).
Tournament selection, niching, and the preservation
of diversity (IlliGAL Report No. 91011). Urbana, IL:
University of Illinois at Urbana-Champaign.

Pelikan, M., Goldberg, D. E., & Cant�u-Paz, E.
(1998). Linkage problem, distribution estimation,
and Bayesian networks (IlliGAL Report No. 98013).
Urbana, IL: University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory.

Pelikan, M., Goldberg, D. E., & Cant�u-Paz, E. (1999).
BOA: The Bayesian optimization algorithm. In
Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., & Smith, R. E. (Eds.),
Proceedings of the Genetic and Evolutionary Com-
putation Conference GECCO-99, Volume I (pp. 525{
532). Orlando, FL: Morgan Kaufmann Publishers,
San Fransisco, CA.

Pelikan, M., Goldberg, D. E., & Lobo, F. (2000). A sur-
vey of optimization by building and using probabilis-
tic models. Computational Optimization and Appli-
cations. In press.

Watson, R. A., Hornby, G. S., & Pollack, J. B. (1998).
Modeling building-block interdependency. In Paral-
lel Problem Solving from Nature, PPSN V (pp. 97{
106). Springer Verlag.


