
OMEGA - Ordering Messy GA :
Solving Permutation Problems with the

Fast Messy Genetic Algorithm and Random Keys

Dimitri Knjazew

Dept. of General Engineering

University of Illinois

Urbana, IL 61801

dimitri@illigal.ge.uiuc.edu

David E. Goldberg

Dept. of General Engineering

University of Illinois

Urbana, IL 61801

deg@uiuc.edu

Abstract

This paper presents an ordering messy ge-

netic algorithm (OmeGA) that is able to

solve diÆcult permutation problems eÆ-

ciently. It is essentially a fast messy genetic

algorithm (fmGA) using random keys to rep-

resent chromosomes. Experimental results

that show the random key-based simple ge-

netic algorithm (RKGA) being outperformed

by its messy competitor in 32-length ordering

deceptive problems are presented.

1 INTRODUCTION

Various genetic-evolutionary algorithms (GEAs) have

been developed for solving permutation problems over

the past few years. Research in this area is very inter-

esting, since there is a great variety of permutation-

based commercially interesting applications including

scheduling, timetabling and vehicle route planning

problems. Unfortunately, many methods use either

problem-speci�c or ad-hoc representation codings and

operators. Also, the performance has not been suÆ-

ciently tested on hard problems, leaving the question

of how the algorithm scales up unanswered.

Therefore, it would be interesting to design genetic

algorithms (GAs) that use eÆcient codings and

operators and have good scale-up properties. Further-

more, a more detailed and systematic analysis should

be done on the GA performance. We suggest that

so-called competent genetic algorithms that solve hard

problems quickly, reliably and accurately (Goldberg,

1993), would be good candidate approaches for this

undertaking. Much research has been done in this

area and numerous competent GAs have been de-

veloped, including the fmGA (Goldberg, Deb, Kar-

gupta, & Harik, 1993), the gene expression messy ge-

netic algorithm (Bandyopadhyay, Kargupta, & Wang,

1998), the linkage learning genetic algorithm (Harik,

1997) and the Bayesian optimization algorithm (Pe-

likan, Goldberg, & Cant�u-Paz, 1999).

This paper develops the ordering messy GA (OmeGA)

specialized for permutation problems which repre-

sents the solutions by vectors of real numbers (ran-

dom keys). In a number of experiments it is shown

that the OmeGA signi�cantly outperforms the sim-

ple GA in solving ordering deceptive problems, which

are hard sequencing problems de�ned elsewhere (Kar-

gupta, Deb, & Goldberg, 1992).

We start with a background description (section 2)

and develop the OmeGA (section 3). We then con-

tinue with an introduction to the fast messy genetic

algorithm (section 4) and random keys (section 5).

Afterwards, we describe the use of multiple epochs

(section 6) and introduce ordering deceptive problems

(section 7) and di�erent codings that determine the

problem diÆculty (section 8). Finally, we present ex-

perimental results (section 9) and conclude the paper.

2 BACKGROUND

This section gives background information necessary

for understanding the following sections. We start

with a short overview of some permutation-oriented

genetic-evolutionary algorithms (GEAs) and discuss

the notion of building blocks and deceptive problems.

We take a closer look at competent GAs and explain

why we decided to focus on the fmGA for this paper.

Finally, we overview some representation models for

permutations.

Numerous genetic-evolutionary algorithms have been

designed for a wide variety of permutation-based prob-

lems over the past few years. Problems such as the

traveling salesman problem (Goldberg & Lingle, 1985),

scheduling (Davis, 1985), vehicle route planning (Blan-

ton Jr. & Wainwright, 1993) or integrated circuit de-

sign (Louis & Rawlins, 1991) have been tackled. Many

of these tasks are commercially important. However,

only little research work has been done to examine how

permutation-solving GEAs scale up or, in other terms,

how their computational complexity increases with the

underlying problem diÆculty and size.

One approach to investigate the scale-up behavior of

a GA is testing it on arti�cial problems where the so-

lution is known a priori and where the problem dif-

�culty can be varied. For this purpose researchers

in the GA community frequently used deceptive prob-

lems which are hard multimodal optimization prob-

lems for binary strings introduced by Goldberg (1989).

A deceptive problem may be designed by combining

a desired number of deceptive subfunctions that mis-

lead the genetic algorithm letting it converge to cer-

tain local optimal points. No information about the

subfunctions is passed to the GA. To �nd the global

optimum, partial solutions (or schemas) with above-

average �tness|the so-called building blocks|must be

identi�ed and grouped together. Kargupta, Deb, and

Goldberg (1992) developed ordering deceptive prob-

lems for permutations which we will discuss in detail

in section 7.

A deceptive problem's degree of diÆculty grows with

increasing number and size (order) of the subfunc-

tions. Particularly, for the simple genetic algorithm

the problem diÆculty increases when a loose coding is

chosen such that the elements of the subfunctions are

mapped to distant positions within the problem rep-

resentation. This results in a greater building-block

length and, consequently, the building blocks are more

likely to be disrupted when traditional recombination

operators such as single-point or two-point crossover

are applied. In general, no �xed recombination oper-

ators guarantee proper mixing with an arbitrary cod-

ing. This problem is usually referred to as \the link-

age problem" in the literature. Thierens and Goldberg

(1993) showed in a dimensional analysis of mixing pro-

cesses in simple genetic algorithms that the required

population size grows exponentially with the building-

block length and number. Section 8 introduces some

problem codings for ordering deceptive problems.

To tackle the linkage problem and to achieve a better

scale-up behavior, �rst-generation genetic algorithms

need to be extended by some additional mechanisms.

In this paper we focus on the fast messy GA (fmGA)

that uses an adaptive representation of the solutions

and can be easily transformed into a permutation-

solving GA. We explain the mechanics of the fmGA

in section 4.

Various representation models for permutations are

proposed in the GA literature. Very often, integer

numbers are used to encode a sequence directly. Nu-

merous crossover operators have been designed to keep

the o�spring generated by recombination operators

feasible, for example the partially mapped crossover

(PMX) (Goldberg & Lingle, 1985), the uniform or-

dering crossover (UOX) (Davis, 1991) and the relative

ordering crossover (ROX) (Kargupta et al., 1992) we

will later refer to in section 7.

An alternative way to encode sequences is using binary

matrices that describe the relative order of the permu-

tation elements. If a matrix A has a 1 bit on position

(i; j), the element i has to appear before element j

in the sequence and vice versa for a 0 bit. Unfortu-

nately, this representation is not perfect, since it in-

volves many nonexistent orderings, as was pointed out

in Whitley and Yoo (1994). Therefore, repair mecha-

nisms are required to obtain valid permutations.

For the random-key representation, on the contrary,

no repair is needed and traditional crossover operators

can be applied in the normal way. We explain how to

encode permutations by random keys in section 5.

3 DESIGNING THE OMEGA

In this section we introduce the ordering messy genetic

algorithm (OmeGA). We design the OmeGA on the

basis of three key ideas:

� all basic mechanisms of the fast messy genetic al-

gorithm are applied

� the alleles are real or long integer numbers

� the alleles are treated as random keys to encode

permutations.

Like in the fmGA, the \messy" genes are represented

as a pair of gene locus and allele, except that real num-

bers that are treated as random keys replace binary

digits:

messy gene: (gene locus, random key).

All \messy" genetic operators are used in the normal

way. This poses no infeasibility problems for the ro-

bust random-keys coding of the permutations. By ap-

plying the mechanisms of the fmGA, we ensure a good

building-block mixing and independence from the un-

derlying problem coding. Therefore, one would expect

the GA to scale up well.

4 A BRIEF INTRODUCTION TO

THE FAST MESSY GENETIC

ALGORITHM

The �rst steps towards the development of competent

genetic algorithms were taken by Goldberg, Korb, and

Deb (1989) who developed the messy GA (mGA) in

1989. However, �rst-generation messy GAs su�ered

some handicaps which made application to large-sized

problems impossible. An interested reader might refer

to Goldberg, Deb, and Korb (1990) for more details.

The fast messy GA is an improved version of the messy

GA and was developed four years later by Goldberg,

Deb, Kargupta, and Harik (1993). This section briey

describes its key features. We �rst explain the messy

representation and operators. Then, we look at the

organization of the fmGA and �nish with some im-

portant techniques that remarkably contribute to its

success. For a more detailed description we refer to

Goldberg et al. (1993).

Unlike the simple genetic algorithms, that use a �xed

chromosome coding, messy GAs represent the genes by

the pair (allele locus, allele value) in chromosomes of

variable length. Thus, a string of messy genes may be

over-speci�ed when multiple versions of the same gene

exist or under-speci�ed when certain genes are miss-

ing. To evaluate over-speci�ed chromosomes the genes

are scanned from left to right with a �rst-come-�rst-

serve precedence rule. For evaluating under-speci�ed

chromosomes a competitive template which is a com-

pletely speci�ed �xed-bit string is used in the fmGA.

Before evaluation, the chromosome's missing genes are

�lled with the corresponding alleles from the template.

Note that a chromosome can be both under- and over-

speci�ed.

Like in simple GAs, selection and recombination is

used to create a new population, except that tradi-

tional crossover is replaced by cut and splice operators

(Goldberg, Korb, & Deb, 1989). The cut operator

breaks a messy chromosome into two parts with a cut

probability pc = p�(� � 1), where p� is a speci�ed

bitwise cut probability and � the length of the chro-

mosome. The cut position is randomly chosen along

�. The splice operator joins two chromosomes with a

certain splice probability ps.

The fast messy GA is organized in two nested loops:

the outer loop and inner loop. The outer loop iterates

over the order k of the processed building blocks. Ev-

ery cycle of the outer loop is denoted as an era. When

a new era starts, the inner loop is invoked which is

divided into the three phases:

� Initialization Phase

� Building-Block Filtering Phase

� Juxtapositional Phase

The initialization phase creates a population of ran-

dom individuals. The population size has to be large

enough and chromosomes have to be long enough to

ensure the presence of all possible genic and allelic

combinations|candidates for building blocks after the

initialization phase is completed. Then, the building-

block �ltering phase is invoked that works like a �l-

ter: \bad" genes not belonging to building blocks are

supposed to be �ltered out such that afterwards the

population contains a high proportion of short strings

consisting of \good" genes. This is accomplished by

repeatedly performing selection and deleting random

genes in all chromosomes until the overall string length

is reduced to a value near k.

During the juxtapositional phase the selection oper-

ator is used and the above described cut and splice

operators are applied to combine the short strings to-

gether that hopefully form the global optimal solution.

After the juxtapositional phase is �nished, the inner

loop of the fmGA terminates. The actual template

is then replaced by the best individual found so far,

which becomes the new template for the next level

and so on. Thus, the set of local optimal points dis-

covered on level k serves as a launch pad for level k+1.

The whole procedure can be repeated until a maximum

level (era) is reached.

The fmGA uses two important techniques that re-

markably contribute to its success: thresholding and

tie-breaking. Thresholding refers to a certain amount

of genes two chromosomes must have in common be-

fore they can be compared during selection. If two

individuals share � genes together, they are ready to

compete against each other. This method prevents

the competition of building blocks belonging to di�er-

ent subfunctions|an e�ect called cross-competition in

the literature|and successfully tackles problems with

non-uniformly scaled building-blocks, that is, building

blocks with di�erent contributions to the chromosome

�tness.

Tie-breaking extends the selection operator as follows:

when two or more individuals of the same �tness are

compared during selection, the one with the shortest

string length is preferred. In addition, the fmGA ini-

tialization is extended such that chromosomes of all

possible building-block lengths from 1 to k are cre-

ated. Tie-breaking helps solving problems with non-

uniformly sized building-blocks.

5 USING RANDOM KEYS FOR

REPRESENTATION

This section explains the concept of random keys

and the random key-based simple genetic algorithm

(RKGA).

The random keys have been introduced by Bean

(1994). Here, real or long integer random numbers

are used as sort keys to decode a sequence. A permu-

tation of length l is then represented as a real vector

r = (r1; r2; : : : ; rl) with typically r 2 [0; 1]l. By sorting

the random keys such that

r�(1) � r�(2) � ::: � r�(l)

holds, where � : f1; ::; lg ! f1; ::; lg is the correspond-

ing mapping function arranging the keys in ascending

order, the permutation is decoded as follows:

(�(1); �(2); : : : ; �(l)).

The following example demonstrates how random key

chromosomes are decoded after single-point crossover.

Crossing two parent strings

A: (0.46,0.91j0.33,0.75,0.51) � (3 1 5 4 2)

B: (0.84,0.32j0.64,0.04,0.48) � (4 2 5 3 1)

after the second gene yields the following o�spring:

A': (0.46,0.91,0.64,0.04,0.48) � (4 1 5 3 2)

B': (0.84,0.32,0.33,0.75,0.51) � (2 3 5 4 1).

Note that the corresponding permutations on the right

side are valid. In general, any sequence of real num-

bers can be interpreted as a valid permutation. Thus,

traditional recombination operators would always gen-

erate feasible o�spring when used on random key vec-

tors. Besides recombination, a simple mutation oper-

ator could be implemented by replacing a random key

with a new randomly generated number. More sophis-

ticated mutation operators are discussed in Norman

and Bean (1997) for random keys or in Janikow and

Michalewicz (1991) for real vectors in general. Also,

various mutation techniques from evolution strategies

(Schwefel, 1995) can be adopted.

epoch 1

era kmax era kmaxera 1 era 2

epoch 2

era 1 era 2

....

....

Figure 1: Multiple epochs in the OmeGA. After the

outer loop of the OmeGA terminates, an epoch is com-

pleted. Then, the best individual found in era k is

carried over to the next epoch where it serves as a

competitive template.

A simple GA that uses the random key representa-

tion is denoted by \random key genetic algorithm"

(RKGA) in the literature. A detailed description of

the RKGA can be found in Bean (1994).

6 MULTIPLE EPOCHS

Referring to the advice given by Kargupta (1995) to

apply the fmGA iteratively at each level, we extended

the OmeGA by enclosing the outer loop into an exter-

nal cycle that iterates over a desired number of epochs.

An epoch starts with the �rst era and �nishes with

the maximum era kmax, as illustrated in �gure 1. Af-

terwards, the best individual found so far is used as

a competitive template for the succeeding epoch and

so on. Multiple epochs are useful when the popula-

tion size is not large enough but cannot be further

increased because of memory reasons. Then, there is

still a chance of �nding the global optimal solution in

a later epoch. This idea is also motivated by research

work on the \fundamental tradeo�"|the tradeo� be-

tween population size and the number of epochs (Gold-

berg, 1999).

7 ORDERING DECEPTIVE

PROBLEMS

This section introduces two concrete deceptive prob-

lems for permutations that will be later used to test the

performance of the ordering GAs. We start with a de-

scription of two ordering deceptive functions and then

show how to construct ordering deceptive problems.

We �nally give some comments on previous research

work that has been done on this topic.

Kargupta, Deb, and Goldberg (1992) de�ned two

deceptive functions of order four: the relative ordering

function, here denoted by frel, and the absolute

ordering function, here denoted by fabs. These

functions are de�ned as follows.

relative ordering function frel:
f(1 2 3 4) = 4.0 f(4 2 1 3) = 1.2

f(1 2 4 3) = 1.1 f(4 1 3 2) = 1.2

f(1 3 2 4) = 1.1 f(1 4 2 3) = 1.2

f(1 4 3 2) = 1.1 f(2 3 4 1) = 1.5

f(2 1 3 4) = 1.1 f(4 1 2 3) = 2.1

f(3 2 1 4) = 1.1 f(3 4 1 2) = 2.2

f(4 2 3 1) = 1.1 f(3 1 4 2) = 2.2

f(2 4 3 1) = 1.2 f(2 1 4 3) = 2.4

f(2 3 1 4) = 1.2 f(4 3 2 1) = 2.4

f(3 1 2 4) = 1.2 f(4 3 1 2) = 2.4

f(1 3 4 2) = 1.2 f(2 4 1 3) = 2.4

f(3 2 4 1) = 1.2 f(3 4 2 1) = 3.2

absolute ordering function fabs:
f(1 2 3 4) = 4.0 f(2 4 3 1) = 2.0

f(4 2 3 1) = 1.8 f(3 2 4 1) = 2.0

f(1 3 2 4) = 1.8 f(1 4 2 3) = 2.0

f(1 2 4 3) = 1.8 f(4 1 2 3) = 2.6

f(1 4 3 2) = 1.8 f(3 4 1 2) = 2.6

f(3 2 1 4) = 1.8 f(2 3 4 1) = 2.6

f(2 1 3 4) = 1.8 f(2 4 1 3) = 2.6

f(4 2 1 3) = 2.0 f(2 1 4 3) = 2.6

f(4 1 3 2) = 2.0 f(4 3 2 1) = 2.6

f(3 1 2 4) = 2.0 f(4 3 1 2) = 2.6

f(1 3 4 2) = 2.0 f(3 1 4 2) = 2.6

f(2 3 1 4) = 2.0 f(3 4 2 1) = 3.3

In frel, only the relative ordering of the permutation

elements matters. Here, the global optimal point is

(1 2 3 4) with a function value equal to 4.0 and

the misleading attractor is (3 4 2 1) with the sec-

ond highest function value of 3.2. For the function

fabs, the elements have to be placed in correct abso-

lute positions in addition to being arranged in the right

relative order.

Let us consider a sample permutation and apply fabs.

The sequence

(1 2 11 14 b5 b6 b7 b8 9 10 3 12 4 13 15 16

20 18 19 17)

contains a building block consisting of the alleles

f5, 6, 7, 8g placed on correct absolute positions

5 � 8 and in the optimal order. Thus, the building

block would contribute to the overall �tness by the

value of 4.0. The elements f17,18,19,20g are present

in the right section but their order corresponds to

4 � 2 � 3 � 1, therefore they gain a score of 1.8. Here,

� denotes relative order. Finally, the items f1,2,3,4g

are in the correct relative order but 3 and 4 are mis-

placed. In this case, a partial credit of 1.0 is given to

this o-schema equal to the half of the number of alleles

in the correct section.

Ordering deceptive problems can be constructed by

concatenating a desired number of the above de�ned

subfunctions. The overall function value of the whole

permutation is the sum of the subfunction values. In

this paper we consider 32-allele problems consisting of

subfunction No. deen6 loose

1 1, 3, 5, 7 1, 9, 17, 25

2 2, 4, 6, 8 2, 10, 18, 26

3 9, 11, 13, 15 3, 11, 19, 27

4 10, 12, 11, 16 4, 12, 20, 28

5 17, 19, 21, 23 5, 13, 21, 29

6 18, 20, 22, 24 6, 14, 22, 30

7 25, 27, 29, 31 7, 15, 23, 31

8 26, 28, 30, 32 8, 16, 24, 32

Table 1: Problem Codings. Here, genes belonging to

the subfunctions are shown for deen6 and loose cod-

ing.

eight subproblems. On these problems Kargupta et al.

(1992) tested the performance of the simple GA us-

ing several recombination operators: PMX, ROX and

UOX. For the absolute problem only the GA using

PMX could �nd the global optimum whereas the op-

timal solution of the relative problem could only be

found with ROX. Since no problem information is sup-

posed to be given beforehand, the simple GA, working

with any crossover operator, would scale up badly for

one of the two problems. This fact motivates the de-

velopment of new GAs which are independent from the

internal structure of the task to be solved.

8 PROBLEM CODINGS

In the following paragraphs we de�ne three di�erent

problem codings determining the degree of diÆculty

of ordering deceptive problems and explain how to de-

code and evaluate chromosomes. These codings will

be later used to compare the scale-up properties of

the OmeGA and the RKGA.

By tight coding we denote a coding scheme where

building blocks are tight with a de�ning length three.

The de�ning length of a building block is the distance

between its outermost genes. In deflen6 coding the

de�ning length is six. We further denote a coding

where the sum of all de�ning lengths is maximal by

loose coding. Table 1 shows the genes comprising the

subfunctions for the loose and deen6 coding.

Coding-oriented function evaluation of a random key

vector r works as follows. First, a copy of r is created.

Afterwards, the elements of the copy are rearranged

according to the coding scheme, yielding a new vec-

tor r0 which is then transformed into a permutation

and evaluated as described in section 7. Finally, the

function value is assigned to r and r0 is discarded. For

instance, when using the loose coding in the 32-length

0

1

2

3

4

5

6

7

8

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

M
ax

im
um

 n
um

be
r

of
 c

or
re

ct
 s

ub
pr

ob
le

m
s

Number of function evaluations

Relative ordering problem, deflen6 coding

OmeGA
RKGA

(a) relative problem, deen6 coding

0

1

2

3

4

5

6

7

8

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

M
ax

im
um

 n
um

be
r

of
 c

or
re

ct
 s

ub
pr

ob
le

m
s

Number of function evaluations

Absolute ordering problem, deflen6 coding

OmeGA
RKGA

(b) absolute problem, deen6 coding

0

1

2

3

4

5

6

7

8

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

M
ax

im
um

 n
um

be
r

of
 c

or
re

ct
 s

ub
pr

ob
le

m
s

Number of function evaluations

Relative ordering problem, loose coding

OmeGA
RKGA

(c) relative problem, loose coding

0

1

2

3

4

5

6

7

8

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

M
ax

im
um

 n
um

be
r

of
 c

or
re

ct
 s

ub
pr

ob
le

m
s

Number of function evaluations

Absolute ordering problem, loose coding

OmeGA
RKGA

(d) absolute problem, loose coding

Figure 2: Maximum number of correct subfunctions found by the OmeGA and the RKGA for the relative and

absolute ordering problem with deen6 and loose coding.

ordering deceptive problem, the copy of the string r is

rearranged in the following way, yielding r0:

r = (r1; r2; r3; r4; r5; r6; r7; r8; :::)

r0 = (r1; r9; r17; r25; r2; r10; r18; r26; :::).

The probability of building-block disruption grows

with the de�ning length of the building blocks for a

random-key based simple GA using one or n-point uni-

form crossover operators. Therefore, ordering prob-

lems coded with loose coding are harder for the GA

to solve than those with tight coding. On the con-

trary, we would expect the OmeGA to �nd the global

optimum independently from the underlying coding

thanks to its exible messy representation.

9 EXPERIMENTS

This section presents experimental results comparing

the performance of the RKGA and the OmeGA for

absolute and relative ordering problems of length 32.

In all following experiments the mutation probability

was kept zero to observe the e�ect of recombination

alone. Moreover, in all runs the crossover probability

in the RKGA and the splice probability in the OmeGA

were set to 1.0. With these parameters the best results

were obtained. Binary tournament selection without

replacement was used. The RKGA performed the best

with single-point crossover.

The OmeGA was organized as follows. The inner loop

processed over 60 generations, including the juxtapo-

sitional phase which took 30 generations. The outer

loop iterated over four eras and the maximum num-

ber of epochs was set to four. We used an empirically

determined population size such that the global opti-

mal solution could be found within four epochs. At

the same time, we tried to keep the amount of func-

tion evaluations small. The number of individuals in

the �rst, second, third and fourth era were 750, 1750,

3250 and 6250.

During the building-block �ltering phase the chromo-

somes started with an initial length equal to the prob-

lem size 32 and were reduced to their correspond-

ing building block length k at the end of the �lter-

ing phase. We used tie-breaking in all experiments,

since it signi�cantly contributed to the success of the

OmeGA. For example, in era 3 there were 750 indi-

viduals of length 1, 1000 individuals of length 2 and

1500 individuals of length 3 present after the building-

block �ltering process. For the juxtapositional phase

we limited the maximum allowed string length of the

messy chromosomes to 2l. The cut probability was set

to 0.03.

The RKGA processed over 350 generations with a pop-

ulation size of 6250, equal to the maximal population

size in the OmeGA. With these parameters we made 20

independent runs for the absolute and relative prob-

lems with all three codings. Since the experiments

with tightly coded problems yielded almost the same

results as with deen6 coding, they are not presented

here.

In �gure 2a and 2b the maximum number of correct

subfunctions found by the RKGA and the OmeGA is

plotted versus the number of function evaluations for

the relative and absolute problem with deen6 coding.

Both algorithms found the global optimum in every

run. In all plots the points corresponding to the �lter-

ing phases are omitted in the OmeGA curve for sim-

plicity. The number of function evaluations includes

evaluations during the initialization and the �ltering

phases.

Figures 2c and 2d demonstrate the performance of

both GAs for the loose coding. The OmeGA found

the global optimum of the absolute problem in 19 out

of 20 runs. The optimum of the relative problem was

found in every run. The maximum number of cor-

rect subfunctions discovered by the RKGA was seven

in the absolute and �ve in the relative problem. The

global solution was not found at all. Especially �g-

ure 2c demonstrates how the RKGA is mislead by the

deceptive attractors: while it converges to highly �t

solutions, the number of correct building blocks de-

creases to a low value.

These results clearly show the OmeGA's independence

from the underlying problem coding. For all tested

codings the OmeGA curves have roughly the same ap-

pearance and the problem was completely solved in

almost every run, whereas the RKGA succeeded only

with tightly coded problems (deen6 and tight cod-

ing). Although this is not an thorough scale-up anal-

ysis the results suggest that the OmeGA has a signif-

icantly better scalability than the RKGA. It is inter-

esting that the RKGA curve in �gure 2d converges to

a signi�cantly higher value than the RKGA curve in

2c. This indicates that the absolute problem is less

deceptive for random-key based GAs.

10 CONCLUSIONS

In this paper we developed an ordering messy ge-

netic algorithm | the fast messy GA representing

its chromosomes with random keys. We introduced

three problem codings and compared the performance

of RKGA and OmeGA in experiments with length-32

ordering deceptive problems. In result, RKGA was

clearly outperformed by its messy competitor. We

summarize some bene�ts of OmeGA that became ap-

parent in the experimental results:

� OmeGA is linkage-friendly and coding indepen-

dent

� relative and absolute ordering deceptive problems

are solved optimally.

For future research work we recommend a more ac-

curate and detailed analysis on the scalability of the

two GAs with di�erent problem lengths. It would be

also interesting to investigate OmeGA's performance

on harder ordering problems with overlapping, di�er-

ently sized, and di�erently scaled building blocks that

we would expect to appear in real world permutation-

based problems like scheduling or vehicle routing prob-

lems.

Acknowledgments

The authors would like to thank Franz Rothlauf, who

proposed the usage of random keys, Martin Pelikan,

Erick Cantu-Paz, Fernando Lobo and Martin Butz for

their useful comments and suggestions. The authors

would like to give special thanks to Professor Hans-

Paul Schwefel for encouraging the �rst author to spend

a portion of his diploma thesis studies with the second

author thus enabling this collaboration to take place.

Professor Schwefel also provided important guidance

and essential suggestions that greatly improved this

work. The �rst author was partially supported by

the \Studienstiftung des Deutschen Volkes"(Germany)

and the Sigma-Xi Research Society.

The work was sponsored by the Air Force OÆce of Sci-

enti�c Research, Air Force Materiel Command, USAF,

under grant F49620-97-1-0050. Research funding for

this work was also provided by the National Science

Foundation under grant DMI-9908252. Support was

also provided by a grant from the U. S. Army Re-

search Laboratory under the Federated Laboratory

Program, Cooperative Agreement DAAL01-96-2-0003.

The U. S. Government is authorized to reproduce and

distribute reprints for Government purposes notwith-

standing any copyright notation thereon.

The views and conclusions contained herein are those

of the authors and should not be interpreted as neces-

sarily representing the oÆcial policies or endorsements,

either expressed or implied, of the Air Force OÆce of

Scienti�c Research, the National Science Foundation,

the U. S. Army, or the U. S. Government.

References

Bandyopadhyay, S., Kargupta, H., & Wang, G. (1998).
Revisiting the GEMGA: Scalable evolutionary op-
timizaiton through linkage learning. (pp. 603{608).
Piscataway, NJ: IEEE Service Center.

Bean, J. C. (1994). Genetic algorithms and random keys
for sequencing and optimization. ORSA Journal on
Computing , 6 (2), 154{160.

Blanton Jr., J. L., & Wainwright, R. L. (1993). Mul-
tiple vehicle routing with time and capacity con-
straints using genetic algorithms. In Proceedings of
the Fifth International Conference on Genetic Algo-
rithms (pp. 452{459).

Davis, L. (1985). Job shop scheduling with genetic algo-
rithms. In Proceedings of an International Confer-
ence on Genetic Algorithms and Their Applications
(pp. 136{140).

Davis, L. (1991). A genetic algorithms tutorial. In Hand-
book of Genetic Algorithms (pp. 1{101).

Goldberg, D. (1999). Using time eÆciently: Genetic-
evolutionary algorithms and the continuation prob-
lem. In Banzhaf, W., Daida, J., Eiben, A. E., Gar-
zon, M. H., Honavar, V., Jakiela, M., & Smith, R. E.
(Eds.), Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-99, Volume I (pp.
212{219). Orlando, FL: Morgan Kaufmann Publish-
ers, San Fransisco, CA.

Goldberg, D. E. (1989). Genetic algorithms and Walsh
functions: Part I, a gentle introduction. Complex
Systems, 3 (2), 129{152. (Also TCGA Report 88006).

Goldberg, D. E. (1993). Making genetic algorithms y:
A lesson from the Wright Brothers. Advanced Tech-
nology for Developers, 2 , 1{8.

Goldberg, D. E., Deb, K., Kargupta, H., & Harik,
G. (1993). Rapid, accurate optimization of diÆcult
problems using fast messy genetic algorithms. Pro-
ceedings of the Fifth International Conference on Ge-
netic Algorithms, 56{64.

Goldberg, D. E., Deb, K., & Korb, B. (1990). Messy
genetic algorithms revisited: Studies in mixed size
and scale. Complex Systems, 4 , 415{444.

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy ge-
netic algorithms: Motivation, analysis, and �rst re-
sults. Complex Systems, 3 (5), 493{530. (Also TCGA
Report 89003).

Goldberg, D. E., & Lingle, Jr., R. (1985). Alleles, loci,
and the traveling salesman problem. In Proceedings
of an International Conference on Genetic Algo-
rithms and Their Applications (pp. 154{159).

Harik, G. R. (1997). Learning gene linkage to eÆciently
solve problems of bounded diÆculty using genetic al-
gorithms. Unpublished doctoral dissertation, Univer-
sity of Michigan, Ann Arbor. Also IlliGAL Report
No. 97005.

Janikow, C. Z., & Michalewicz, Z. (1991). An experi-
mental comparison of binary and oating point rep-
resentations in genetic algorithms. In Proceedings of
the Fourth International Conference on Genetic Al-
gorithms (pp. 31{36).

Kargupta, H. (1995). SEARCH, polynomial complexity,
and the fast messy genetic algorithm (Technical Re-
port 95008). Urbana, IL: University of Illinois at
Urbana-Champaign.

Kargupta, H., Deb, K., & Goldberg, D. E. (1992). Or-
dering genetic algorithms and deception. In Parallel
Problem Solving from Nature - PPSN II (pp. 47{56).

Louis, S. J., & Rawlins, G. J. E. (1991). Designer genetic
algorithms: Genetic algorithms in structure design.
In Proceedings of the Fourth International Confer-
ence on Genetic Algorithms (pp. 53{60).

Norman, B., & Bean, J. (1997). A random keys genetic
algorithm for job shop scheduling. Engineering De-
sign and Automation, 3 , 145{156.

Pelikan, M., Goldberg, D. E., & Cant�u-Paz, E. (1999).
BOA: The Bayesian optimization algorithm. In
GECCO-99: Proceedings of 1999 Genetic and Evo-
lutionary Computation Conference, Volume 1 (pp.
525{532).

Schwefel, H. P. (1995). Evolution and optimum seeking.
Sixth-Generation Computer Technology Series. New
York: John Wiley & Sons, Inc.

Thierens, D., & Goldberg, D. E. (1993). Mixing in ge-
netic algorithms. In Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms (pp. 38{
45).

Whitley, D., & Yoo, N.-W. (1994). Modeling simple ge-
netic algorithms for permutation problems. In Whit-
ley, L. D., & Vose, M. D. (Eds.), Foundations of
Genetic Algorithms 3 (pp. 163{184). San Francisco,
California: Morgan Kaufmann Publishers, Inc.

