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Abstract

It has been argued that optimal per-locus
mutation rates in GAs are proportional to
selection pressure and the reciprocal of geno-
type length. In this paper we suggest that
the notion of error threshold, borrowed from
molecular evolution, sheds new light on this
argument. We show empirically the existence
of error thresholds in GAs running on a sim-
ple abstract landscape; and then investigate
a real-world industrial problem, demonstrat-
ing comparable phenomena in a practical ap-
plication. We study the correspondence be-
tween error thresholds and optimal mutation
rates on these two problems, and explore the
e�ect of di�erent selection pressures. Re-
sults suggest that error thresholds and op-
timal mutation rates are indeed correlated.
Moreover, as the selection pressure increases,
both error thresholds and optimal mutation
rates increase. These �ndings may have prac-
tical consequences, as heuristics for measur-
ing error thresholds in real-world applications
will provide useful guidelines for setting op-
timal mutation rates.

1 INTRODUCTION

The performance of a GA heavily depends on the
choice of its main control parameters: population size,
mutation rate, and recombination rate. Despite re-
search so far, there are no general heuristics on how to
set them. It has been suggested that the mutation rate
is the most sensitive GA control parameter (Scha�er
et al., 1989; B�ack, 1996). Several studies in the lit-
erature look for \optimal" mutation rates (Hesser &

M�anner, 1992; M�uhlenbein, 1992; B�ack, 1992, 1993),
and optimal schemes for varying the mutation rate
over a single run (Fogarty, 1989; B�ack & Sch�utz, 1996).
The studies by Hesser and M�anner (1992), M�uhlenbein
(1992), and B�ack (1992, 1993, 1996) coincide in that
optimal per-locus mutation rates depend mainly on
1=L (the reciprocal of the genotype length). Moreover,
B�ack (1996) suggests that as the selection pressure in-
creases the optimal mutation rate also increases.

In this paper we suggest new foundations for the de-
pendency of optimal mutation rates on both the selec-
tion pressure and the reciprocal of the genotype length.
Also, the sensitivity of the mutation rate is explained
by this new viewpoint. This knowledge comes from the
�eld of molecular evolution, in particular from the no-
tion of error thresholds (Section 3). The error thresh-
old is the critical mutation rate beyond which struc-
tures created by an evolutionary process are destroyed
more frequently than selection can reproduce them.
The existence of this phenomenon in GAs and its re-
lationship with the more familiar notion of optimal
mutation rates, has been introduced in Ochoa et al.
(1999) for simple landscapes. Here, we explore em-
pirically optimal mutation rates and error thresholds
on a real-world engineering problem | the Wing-Box

design optimization problem. In particular, we study
the dependence of both optimalmutation rates and er-
ror thresholds on the selection pressure. Also, we are
interested in the relationship between error thresholds
and optimal mutation rates. These issues are initially
explored on abstract toy problems (e.g. the Royal
Staircase functions, described in section 4.1), thus the
following step would be to explore whether similar phe-
nomena occurs in a real-world problem. The Wing-
Box problem was formulated originally in the frame-
work of the GAME (Genetic Algorithms in Manufac-
turing Engineering) project at COGS, University of
Sussex. British Aerospace provided industrial realistic
data for the de�nition of this problem (Section 4.2).



The remainder of this document is organized as fol-
lows. Section 2 discusses the notion of selection pres-
sure in GAs, describes ranking and how this selection
scheme allows control over the selection pressure. Sec-
tion 3 introduces the notions of quasispecies and error
thresholds from the �eld of molecular evolution, it also
discusses the hypothesized relationship between error
thresholds and optimal mutation rates. Section 4 de-
scribes the test problems used in this paper: the Royal
Staircase, and the Wing-Box problem. Sections 5 and
6 describe our methods and results respectively, and,
�nally, Section 7 summarizes our �ndings.

2 SELECTION PRESSURE

In GAs, selection allocates reproductive opportuni-
ties for each organism in the population. The �tter
the organism, the more times it is likely to be se-
lected for reproduction. Selection has to be balanced
with variation from mutation and recombination |
the exploitation-exploration balance. Several selection
mechanisms have been suggested in the literature, al-
though there are no general guidelines on which to use
on a given circumstance. There is, however, the notion
of di�erent selection pressures associated with each se-
lection mechanism. Selection pressure is an informal
term that indicates the strength of a selection mech-
anism. Loosely, the selection pressure measures the
ratio of maximum to average �tness in the population.

For the experiments in this paper we used rank selec-

tion. This selection scheme is parameterized in such a
way that allows control over the selection pressure. It
also eliminates the need for �tness scaling mechanisms.

2.1 RANK SELECTION

In rank selection, individuals in the population are
ranked according to �tness. The expected value of
each individual depends on its rank rather than on its
absolute �tness. The linear ranking method proposed
by Baker (1985) works as follows: Organisms in the
population are ranked in increasing order of �tness,
from 1 to M (the population size). The user chooses
the expected value Max (Max � 0) of the individual
with rank M . The expected value of each individual i
in the population at time t is given by:

ExpV al(i; t) = Min+ (Max�Min)
rank(i; t)� 1

M � 1
(1)

Where Min is the expected value of the individual
with rank 1. Given the constraints Max � 0 andP

i
ExpV al(i; t) = M , it is required that 1 �Max � 2

andMin = 2�Max. At each generation the individu-
als in the population are ranked and assigned expected
values according to equation 1, Baker recommended
Max = 1:1 and showed that this scheme compared fa-
vorably to proportional selection on some selected test
problems. The selective pressure of linear ranking can
be varied by tuning the maximumexpected valueMax
(see Equation 1), which controls the slope of the linear
function. The value recommended by Baker (1985) of
Max = 1:1 means that, on average, the best individ-
ual is expected to be sampled 1.1 times, this is a rather
moderate selective pressure, close to the extreme case
of a random walk (Max = 1:0). The maximum possi-
ble expected value for linear ranking is Max = 2:0.

3 QUASISPECIES AND ERROR

THRESHOLDS

Quasispecies theory was derived in the 70s by Eigen
and Schuster (1979) to describe the dynamics of repli-
cating nucleic acid molecules under the inuence of
mutation and selection. This theory was originally de-
veloped in the context of pre-biotic evolution, but in
a wider sense it describes any population of reproduc-
ing organisms. An important concept in quasispecies
theory is the notion of error threshold of replication.
If replication were error free, no mutants would arise
and evolution would stop. On the other hand, evolu-
tion would also be impossible if the error rate of repli-
cation were too high (only a few mutations produce
an improvement, but most will lead to deterioration).
The notion of error threshold allows us to quantify the
resulting minimal replication accuracy (i.e. maximal
mutation rate) that still maintains adaptation.

This can be seen at its clearest in an extreme form
of a �tness landscape which contains a single peak of
�tness � > 1, all other sequences having a �tness of
1. With an in�nite population there is a phase transi-
tion at a particular error rate p, the mutation rate at
each of the � loci in a sequence. In Eigen and Schuster
(1979), this critical error rate is determined analyti-
cally (Equation 2), and it is de�ned as the rate above
which the proportion of the in�nite population on the
peak drops to chance levels.

p =
ln(�)

L
(2)

In Equation 2, � represents the selective advantage of
the master sequence over the rest of the population
(i.e. the selection pressure), and L the chromosome
length. In the simplest case, � is the ratio of the mas-
ter sequence reproduction rate (�tness) to the average
reproduction rate of the rest.



As stated originally, the quasispecies model considered
in�nite and asexual populations. Later on extensions
were developed that consider �nite populations and
recombination. Most quasispecies studies considered
simple landscapes, including single peak landscapes,
double peak landscapes and at �tness landscapes.
The work of Bonhoe�er and Stadler (1993), described
below, studied error thresholds on more complex land-
scapes.

3.1 ERROR THRESHOLDS ON COMPLEX

LANDSCAPES

Bonhoe�er and Stadler (1993) studied the evolution of
molecular quasispecies on two di�erent complex �tness
landscapes, the Sherrington Kirkpatrick spin glass and
the Graph Bipartitioning landscape. They described
an empirical approach for locating error thresholds on
these highly correlated landscapes. In order to lo-
cate the error threshold empirically, they simulated
the evolution of a population at a constant error rate
for 200,000 cycles, which proved long enough to reach
equilibrium on several parameters of the population
(the maximal �tness, the average �tness among oth-
ers). The error threshold may be approached from
below and above, with both methods producing simi-
lar results. To approach it from below, the simulation
starts with a homogeneous population at the global
optimum. Then the population is allowed to reach
equilibrium at a constant mutation rate of 0.0. After-
wards, the mutation rate is increased by a �xed, small
step and the computation continues with the current
population. This process continues until a prede�ned
maximum for the mutation rate, pmax, is reached. To
approach the error threshold from above, the simula-
tion starts with a random population. Then the pop-
ulation is allowed to reach equilibrium at a constant
mutation rate of pmax. Afterwards, the mutation rate
is decreased by a �xed step and the computation con-
tinues with the current population. This process is
repeated until the mutation rate is 0.

For both approaches, the consensus sequence in the
population is calculated at the end of each simula-
tion cycle for each mutation step. The consensus se-
quence is de�ned as the sequence of predominant sym-
bols (bits) in each position; it is plotted as follows: if
the majority of individuals has a `1' or `0' in a position
i the �eld is plotted white or black, respectively. The
�eld is plotted grey if the position is undecided (see
Figures 3 - 5, for similar plots). The error threshold
is characterized by the loss of the consensus sequence,
i.e. the genetic information of the population. Beyond
the error threshold the consensus sequence is no longer
constant in time.

The empirical method described above was developed
using the quasispecies equations as the underlying
model of evolution. In this paper, we borrow this ap-
proach but use a GA instead of the quasispecies model
for simulating evolution. The resulting method can be
applied to locate error thresholds in GAs running on
general complex landscapes.

3.2 ERROR THRESHOLDS AND

OPTIMAL MUTATION RATES

The notion of error threshold seems to be intuitively
related to the idea of an optimal balance between ex-

ploitation and exploration in genetic search. Too low
a mutation rate implies too little exploration; in the
limit of zero mutation, successive generations of selec-
tion remove all variety from the population, and once
the population converges to a single point in geno-
type space all further exploration ceases. On the other
hand, mutation rates can be too excessive; in the limit,
where mutation places a randomly chosen allele at ev-
ery locus on a genotype, the evolutionary process de-
generates into random search with no exploitation of
the information acquired in preceding generations.

Any optimal mutation rate must lie between these two
extremes, but its precise position will depend on sev-
eral factors including, in particular, structure of the
�tness landscape. It can, however, be hypothesized
that where evolution proceeds through a successive ac-
cumulation of information, then a mutation rate close
to the error threshold is an optimal mutation rate for
the landscape under study. This mutation rate should
maximise the search done through mutation subject to
the constraint of not losing information already gained.

4 TEST PROBLEMS

4.1 THE ROYAL STAIRCASE FAMILY OF

FUNCTIONS

The Royal Staircase family of functions was proposed
by van Nimwegen and Crutch�eld (1998) for analyz-
ing epochal evolutionary search. These functions are
related to the Royal Road functions (Mitchell et al.,
1992). Although simple, Royal Staircase functions
capture some essential elements found on complex
problems, namely, the existence of highly degenerate
genotype-to-phenotype maps (i.e. the mapping from
genetic speci�cation to �tness is a many-to-one func-
tion). Next, we present a description of the Royal
Staircase class of �tness functions:



1. Genotypes are speci�ed by binary strings s =
s1s2 : : : sL; si 2 f0; 1g, of length L = NK.

2. Starting from the �rst position, the number I(s)
of consecutive 1s in a string is counted.

3. The �tness f(s) of string s with I(s) consecutive
ones, followed by a zero, is f(s) = 1 + bI(s)=Kc.
The �tness is thus an integer between 1 and N+1,
corresponding to 1 plus the number of consecutive
fully-set blocks starting from the left.

4. The single global optimum is s = 1L; namely, the
string of all 1s.

Fixing N (number of blocks) and K (bits per block)
determines a particular problem or �tness landscape.
For the experiments in this paper we selected N = 3
and K = 10, that is a string length of 30.

4.2 THE WING-BOX PROBLEM

The Wing-Box problem was formulated as part of
the Genetic Algorithms in Manufacturing Engineer-
ing (GAME) project at COGS, University of Sussex
1. An industrial partner, British Aerospace, provided
data from a real Airbus wing box.

A common problem faced in the design of aircraft
structures, is to de�ne structures of minimum weight
that can withstand a given load. Fig. 1 sketches the
elements of a wing relevant to this problem. The wing
is supported at regular intervals by slid ribs which run
parallel to the aircraft's fuselage. On the upper part of
the wing, thin metal panels cover the gap separating
adjacent ribs. The objective is to �nd the number of
panels and the thickness of each of these panels while
minimizing the mass of the wing and ensuring that
none of the panels buckle under maximum operational

stresses. More details, and the equations for calcu-
lating the �tness function, can be found in McIlhagga
et al. (1996).

4.2.1 GENETIC REPRESENTATION -

THE DELTA ENCODING

A full description of a potential solution to the Wing-
Box problem requires the de�nition of the number of
ribs N and the thickness of the N � 1 panels. There
is a constraint on the thickness of these panels which

is that adjacent panels should not di�er in thickness
by more than 0.25 mm. The simplest way to accom-
plish this, is to encode the di�erences in thickness be-
tween adjacent panels rather than the absolute thick-

1http://www.cogs.susx.ac.uk/projects/game/
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Figure 1: Relevant elements of a wing. Wing dimen-
sions are �xed. The variable elements are the number
of ribs and the thickness of the top panels.

ness of the panels. If we know the di�erence in thick-
ness �th(i) between panels i and i+1 for i 2 (1; N�1),
the absolute thickness of the �rst panel is enough to
de�ne everything else.

N:   Number of ribs

th(i): Thickness of i    panelth

th(2)-th(1) th(N-1)-th(N-2)
. . .. . . ∆ ∆th(i)= th(N-2)=

th(i+1)-th(i)
th(1)=∆

N th(1)

Figure 2: Genetic representation of the wing parame-
ters.

Originally, the Wing-Box parameters were encoded fol-
lowing the order described by Fig. 2. For the experi-
ments in this paper we �xed the number of panels in
50 (i.e N = 51 ribs, since the number of ribs is 1 +
the number of panels), thus our genetic encoding is
the same, but excluding the �rst gene. The thickness
of the �rst panel was allowed to vary between 10 and
15 mm by steps of 10�3 mm. This requires 5 � 103

values which can be represented with a minimum of
13 bits. For all subsequent N � 2 panels the di�er-

ence in thickness with the previous panel is encoded.
According to manufacturing tolerance considerations,
only �ve values were allowed for these di�erences in
thickness: f�0:25;�0:125;0:0; 0:125; 0:25g. Three bits
are needed to encode these �ve values. Notice that a
change in �th(i) leads to changes in the thickness of
panel i+ 1, and of all subsequent panels up to the tip
of the wing. Notice also that in both the encoding of
the �rst section, and the remainder N � 2 sections,
there is an amount of redundancy in the genotype to



phenotype mapping. To sum up, the number of bits
needed for encoding an individual is 13 for the �rst
panel, and 3 for each of the others 49 panels, that is
13 + 3� 49 = 160.

5 METHODS

All experiments were run using a generational GA
with linear ranking and stochastic universal sampling.
Three di�erent selection pressures { strong, medium,
and weak, were tested. These qualitative magnitudes
correspond to setting the Max parameter in Equation
1 to 2.0, 1.5, and 1.1, respectively. The genetic oper-
ators were the standard bit mutation, and two-point
recombination with a rate of 0.6. The mutation rate
was expressed as mutations per genotype. Several mu-
tation rates were explored. The population size was
always 100. The string lengths were 30 for the Royal
Staircase function, and 160 for the Wing-Box problem
(see Section 4.2.1)

Two types of experiments were run. First, for calcu-
lating and producing the error thresholds plots (Figs.
3-8), we used the empirical described in section 3.1.
We approached the error threshold from \above", that
is, the simulation started from a random population.
Then the population was allowed to reach equilib-
rium 2 at a constant high mutation rate (5:0=L for the
Staircase problem and 6:0=L for the Wing-Box Prob-
lem). Afterwards, the mutation rate was decreased
by a small step (0:2 for the Staircase problem and 0:1
for the Wing-Box Problem) and the computation was
continued with the current population. This process
was repeated until the mutation rate was 0.0.

Second, for estimating optimal mutation rates, we cal-
culated the number of evaluations before �nding the
optimum string on the Royal Staircase problem (av-
eraged over 100 runs). For the more complex Wing-
Box problem, where the optimum string is not known
before-hand, the approach was to calculate the best-
so-far �tness reached after a �xed number of function
evaluations 3 (averaged over 20 runs).

25,000 generations proved to be long enough to reach
equilibrium on population best and average �tness on our
test problems.

35� 105 evaluations proved to be enough to reach equi-
librium on best-so-far average �tness.

6 RESULTS

6.1 ERROR THRESHOLDS

6.1.1 Royal Staircase Problem

Figure 3 shows results for strong and medium selection
pressures on a Royal Staircase function with N = 3,
K = 10. The pictures illustrate the existence of a
stable consensus sequence for mutation rates below the
error threshold. The error threshold is characterized
by the loss of the consensus sequence. Beyond the
error threshold the consensus sequence is no longer
constant in time. In this case the consensus sequence
below the error threshold is the single optimum string
in the landscape (the string of all ones, displayed white
below). The error thresholds for each �tness level or
step can be observed. Error thresholds were shown to
be lower for medium selection pressure.
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Figure 3: The consensus sequence on the Royal Stair-
case function (N = 3;K = 10), for strong and medium
selection pressures. The X-axis shows the consensus
bit (0 = black, 1 = white) for each position i, the
Y-axis shows the mutation rate.

6.1.2 Wing-Box Problem

Figure 4 shows results for a strong selection pressure
on the Wing-Box problem. Figure 4(Left) shows the
existence of a stable consensus sequence for mutation
rates below the error threshold. The error threshold
is again visualized as the transition from a stable con-
sensus sequence to a random sequence of bits. Notice
that there is not a clear and single transition, from ap-
proximately bit 75 to bit 125 the error threshold looks
higher than for the rest of the bits. Otherwise the
transition seems to occur around 1.5 to 2.0 mutations
per genotype. Figure 4(Right) was produced with the
aim of highlighting the results, it plots the same data
as �gure 4(Left) but mapping the consensus sequence
onto the string of all ones. Thus the error threshold
is distinguished as the transition from a white to a
random pattern of bits.
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Figure 4: The consensus sequence on the Wing-Box
problem for a strong selection pressure. Left �gure
shows the standard consensus sequence plot, whereas
Right �gure highlights the error thresholds by map-
ping the consensus sequence onto the string of all ones.

Figures 5 shows error thresholds for medium and weak
selection pressures. The consensus sequence was again
mapped onto the string of all ones to highlight the
transition. Hence, the error threshold is distinguished
as the transition from a white to a random pattern of
bits. It can be noticed that the error threshold de-

creases as the selection pressure decreases. For the
medium selection pressure the transition for most bits
occurs around 1.0 mutations per genotype, whereas for
the weak selection pressure it occurs around 0.1 muta-
tions per genotype. Again there is no single transition
for all bits in the genotype.
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Figure 5: Error thresholds on the Wing-Box problem
for medium (Max = 1:5) and weak (Max = 1:1) se-
lection pressures.

6.2 OPTIMAL MUTATION RATES

6.2.1 Royal Staircase Problem

Curves in Figure 6 show the number of evaluations to
reach the global maximum as a function of the muta-
tion rate, for medium and strong selection pressures.
Each data point gives the average of 100 runs. The

standard deviations (not shown for the sake of clar-
ity) were of the same order of magnitude as the av-
erage. Thus, there were large run-to-run variations in
the time to reach the optimal string. Optimal muta-
tion rates are those which �nd the peak with the least
number of evaluations. Notice that there is not a single
critically precise optimal mutation rate, but instead a
range of mutation values producing near-optimal re-
sults. Optimal mutation rates were shown to be lower
for the medium selection pressure. In the plots we in-
dicate, with an arrow, the empirically estimated error
thresholds. Error thresholds were found to be within
the range of optimal mutation rates for both medium
and strong selection pressures. Thus, these results sup-
port the hypothesized relationship between these two
measures.
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Figure 6: Number of evaluations for �nding the op-
timum string as a function of the mutation rate on a
Royal Stair case function. Arrows indicate the approx-
imate magnitude of the error threshold in each case.

6.2.2 Wing-Box Problem

Curves in �gures 7-9 show the average best-so-far �t-
ness attained after 5 � 105 evaluations as a function
of the mutation rate for strong, medium and weak se-
lection pressures. Because we are dealing with a min-
imization problem, optimal mutation rates are those
that produce the lower �tness value (the lower wing
structure weight). Each data point gives the average of
20 runs. Notice that di�erent mutation rate ranges and
step sizes were used for each selection pressure. In each
case a single mutation value can be distinguished as
the one producing the minimal average weight. These
optimal mutation rates are shown to decrease in mag-
nitude as the selection pressure decreases.

Again we indicate in the plots, with arrows, the em-
pirically estimated error thresholds. For the three se-
lection pressures explored, error thresholds were found
to be close to the empirically estimated optimal muta-



tion rates. Thus, results for this real-world application
also support the hypothesized relationship between er-
ror thresholds and optimal mutation rates.
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Figure 7: Average best-so-far �tness after 5�105 eval-
uations on the Wing-Box problem for a strong selec-
tion pressure (Max = 2:0). Error bars show � the
standard deviation. The arrow indicates the approxi-
mate error threshold.
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Figure 8: Average best-so-far �tness after 5�105 eval-
uations on the Wing-Box problem for a medium selec-
tion pressure (Max = 1:5). The arrow indicates the
approximate error threshold. Error bars show � the
standard deviation

7 DISCUSSION

Our results suggest that error thresholds and opti-
mal mutation rates are indeed correlated. Moreover,
this relationship carried over from simple toy problems
such as the Royal Staircase to a real-world application,
the wing-box problem. The main implications of these
�nding are two-fold. First, theoretically, in helping
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Figure 9: Average best-so-far �tness after 5 � 105 on
the Wing-Box problem for a weak selection pressure
(Max = 1:1). Error bars show � the standard de-
viation. The arrow indicates the approximate error
threshold

to understand GAs' behavior, as insights about error
thresholds will shed light on our understanding of op-
timalmutation rates. Second, practically, as heuristics
for �nding error thresholds will provide useful guide-
lines for setting optimal mutation rates, thus improv-
ing the performance of GAs.

The consensus sequence plots (Figures 3 - 5), borrowed
and adapted from theoretical biology (Bonhoe�er &
Stadler, 1993), are new to the GA community. They
represent a novel way to visualize the structure of �t-
ness landscapes, since features such as the \step-ness"
of the Royal Staircase function can be clearly noticed
(Figure 3). They may serve as a tool to di�erenti-
ate critical (and less critical) areas in the genotype,
which may have practical implications when tackling
real-world problems. First, it may be possible to in-
fer important knowledge about an applied problem.
Second, it may be possible to re�ne the genotype rep-
resentations and optimal schedules for mutation rates
as discussed below.

The strength of selection was shown to have a signi�-
cant e�ect on the magnitude of both error thresholds
and optimalmutation rates. The stronger the selection
pressure, the higher these magnitudes. This suggests
that the selection scheme used has to be taken into
consideration when setting the mutation rate. This is
particularly true when empirically comparing the per-
formance of di�erent selection mechanisms on a given
problem. To be fair, comparisons should be made
choosing the optimal mutation rate for each selection
scheme.



As discussed above, there are di�erences in the error
threshold magnitude across the genotype, which are
more clearly observed for the Royal Staircase problem
(Figure 3) than the wing-box problem. This supports
the idea that a time-varying scheme for the mutation
rate would be optimal. This idea was originally pro-
posed by Fogarty (1989), who found that varying the
mutation rate over time and across the bit representa-
tion of individuals (or both), signi�cantly improved the
performance of the GA. More recently, similar �ndings
were reported by B�ack (1992) and M�uhlenbein (1992).
A clear implication of the �ndings here are that not
only can useful estimates of optimal mutation rates
be inferred from error thresholds but also that a sys-
tematic method of setting a non-�xed schedule of such
rates can be devised for families of real world applica-
tion problems. This, then, deserves future investiga-
tion.
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