On Evolutionary Optimization with Approximate Fitness Functions

Yaochu Jin, Markus Olhofer and Bernhard Sendhoff
Future Technology Research
Honda R&D Europe (D) GmbH
63073 Offenbach/Main, Germany
Email: {yaochu.jin, markus.olhofer, bernhard.sendhoff} @hre-ftr.f.rd.honda.co.jp
Phone: +49-69-89011735/4/6

Abstract The evaluation of the quality of solutions
is usually very time-consuming in design optimization.
Therefore, time-efficient approximate models can be
particularly beneficial for the evaluation when evo-
lutionary algorithms are applied. In this paper, the
convergence property of an evolution strategy (ES)
with neural network based fitness evaluations is inves-
tigated. It is found that the evolutionary algorithm
will converge incorrectly if the approximate model has
false optima. To address this problem, two strategies
to control the evolution process are introduced. In ad-
dition, methods to eliminate false minima in neural
network training are proposed. The effectiveness of
the methods are shown with simulation studies on the
Ackley function and the Rosenbrock function.

1 Introduction

Evolutionary computation techniques are receiving in-
creasing attention in design optimization. Compared
with the conventional optimization methods, evolu-
tionary optimization algorithms have the following
characteristics:

e They do not need derivative information of the
systermn;

e They are known to be robust (Goldberg 1989),
which is substantial for optimization problems
that have rugged, discontinuous and multi-modal
objective functions;

e They are able to solve optimization problems with
both real and integer parameters;

e They are inherently parallel and thus well suitable
for multi-disciplinary design optimization (Coello
1999).

Due to these attracting properties, evolutionary al-
gorithms have successfully been applied to mechani-

cal and aerodynamic optimization problems, including
preliminary turbine design (Tong and Gregory 1992),
turbine blade design (Trigg et al. 1997; Olhofer et al.
2000), multi-disciplinary rotor blade design (Hajela
and Lee 1998) and multi-disciplinary wing platform
design (Obayashi et al. 1997).

One essential difficulty in generation-based ap-
proaches to aerodynamic optimization is the huge time
consumption due to the high complexity of the aero-
dynamic analysis and the large number of evaluations
needed in the evolutionary optimization. To cope with
this problem, time efficient approximate models have
to be used in optimization. Among other approxi-
mate models, Response Surface Methodology (Myers
and Montgomery 1985), Krieging models, also referred
as the Design and Analysis of Computer Experiments
(DACE) model in the statistical literature (Sacks et al.
1989), and artificial neural network models (Bishop
1995) are most widely used. A combination of evolu-
tionary computation and neural networks for aerody-
namic design optimization was suggested in (Pierret
1999; Lee and Hajela 1996).

However, it is generally difficult to get a model
with sufficient approximation accuracy. One of the
problems is the lack of training data for the neural
network, because data collection is a computationally
expensive process. This is especially true when the
dimension of the model is high. Due to this, the ap-
proximate model may be of low fidelity and even in-
troduce false minima. In this case, the convergence of
the evolutionary algorithm needs to be investigated.
So far, most of the research work has concentrated on
noisy fitness functions and very interesting results have
been obtained (Beyer 1998). Generally, re-sampling
during fitness evaluation and resizing the population
(Fitzpatrick and Grefenstette 1988; Goldberg et al.
1992; Hammel and Béack 1994) can reduce the influ-
ence of noise to a certain extent. Unfortunately, the
convergence property of evolutionary algorithms with



approximate fitness evaluation has received much less
attention. An approximate fitness function is com-
bined with the original fitness function to accelerate
the evolution process in (Ratle 1998; El-Beltagy et al.
1999). The problem of unstable and divergent opti-
mization paths has been identified in (Ratle 1998), al-
though it has not been addressed concretely.

In this paper, the convergence property of the evo-
lutionary algorithms with approximate fitness evalua-
tion is investigated empirically. We show that an incor-
rect convergence occurs when the approximate fitness
function has false optima. To improve the convergence
of the evolutionary algorithm, we then introduce the
concept of controlled evolution, in which, the evolu-
tion proceeds using not only the approximate fitness
function, but also the true fitness function. There are
two possibilities to combine the true fitness function
with the approximate fitness function. In the first ap-
proach, a certain number of individuals within a gen-
eration are evaluated with the true fitness function.
Such individuals are called controlled individuals. The
second approach is to introduce controlled generation,
which means that in every M generations, N(N < M)
generations will be controlled. In a controlled gener-
ation, all the individuals are evaluated with the true
fitness function. The most important question is how
many individuals or how many generations should be
controlled to guarantee the correct convergence of an
evolutionary algorithm when false optima are present
in the approximate fitness function. To answer this
question, extensive simulations have been carried out
on the Ackley function and the Rosenbrock function,
which are widely studied in the field of evolutionary
computation.

It is noticed that false optima in the approximate
model pose the main problem in the evolutionary op-
timization. Accordingly, efforts are made to remove
the false optima, which are usually located in the area
where no training data are available. In this paper,
the minimization problem is considered, therefore, our
goal is to eliminate the false minima. Some prelimi-
nary methods are proposed to eliminate false minima,
in neural network training. They are applied to the
Ackley function and encouraging results are obtained.

2 Convergence Properties of
Evolution Strategies with
Approximate Fitness Evaluations

All experiments in this paper have been carried out
with a particular version of the evolution strategy
(ES): the derandomized approach with the covariance

matrix adaptation, which will very briefly be outlined
in the next section.

2.1 The Evolution Strategy with Covariance
Matrix Adaptation (CMA)

The ES can be described as follows:

Zt) = Ft-1)+z% (1)
oi(t) = o3(t—1)exp(r' 2) exp(72;) (2)
o~ NO); E~NGEDY) ()

where Z is the parameter vector to be optimized and 7,
7' and o; are the strategy parameters. The o; are also
called step-sizes and are subject to self-adaptation.
The z;, z and 7 are normally distributed random num-
bers and a random number vector, respectively, which
characterize the mutation exercized on the strategy
and the objective parameters.

The derandomized CMA differs from the standard ES
mainly in three respects:

e In order to reduce the stochastic influence on the
self-adaptation, one stochastic source for both the
adaptation of the objective and of the strategy
parameters is used. In the derandomized ap-
proach (Ostermeier 1994), the actual step length
in the objective parameter space is used to adapt
the strategy parameter. Therefore, the self-
adaptation of the strategy parameters depends
more directly on the local topology of the search
space.

e The second method is the introduction of the
cumulative step size adaptation. Whereas the
standard evolution strategy extracts the neces-
sary information for the adaptation of the strat-
egy parameters from the population (ensemble ap-
proach), the cumulative step size adaptation relies
on information collected during successive gener-
ations (time averaged approach). This leads to a
reduction of the necessary population size.

e In the CMA algorithm the full covariance matrix
of the probability density function

det(C—1 .
%exp (_1(2&1" ct Z’)) . @)

2
is adapted for the mutation of the objective pa-
rameter vector (B satisfies C = BBT with z; ~
N(0,1), then B ~ N(0,C); 6(t — 1) denotes the
global step-size):

#(t) = #(t—1)+0(t—1)B(t—1) 7,

f(2) =

Zi ~ N(O, 1)
(5)



Since C~! has to be positive definite with
det(C~1) > 0, the different matrix entries can-
not be determined independently and the detailed
adaptation algorithm is a little more involved, see
(Hansen and Ostermeier 1996; Kreutz et al. 1999)
for a detailed description.

2.2 Convergence of the Evolution Strategy
with Neural Networks for Fitness
Evaluations

In this section, we investigate empirically the con-
vergence property of the evolution strategy when a
trained multilayer perceptron (MLP) neural network
is used for fitness evaluations. The investigation is
carried out on two benchmark problems, the Ackley
function and the Rosenbrock function.

A neural network is trained to approximate the
2-D Ackley function. In this simulation, 600 training
data are collected from one run of evolution with the
Ackley function! as the objective function. The MLP
network used has one hidden layer with 20 nodes. The
rooted-mean-squared (RMS) error on the training data
is 0.20 and the input-output mapping is shown in Fig.
1(a). It can be seen that a false minimum exists at the
right side of the surface, near (z1,z2) = (—4,1). This

(a)

Figure 1: Neural network approximation of the Ackley
function; (a) with training data from optimization; (b)
with additional random samples.

can be ascribed to the poor distribution of the training
samples. We deliberately use such samples to simulate
the situation frequently encountered in practice, i.e.
sparse and poorly distributed training data. Recall
that for the problems we are discussing, data collection
is expensive. If we run the evolutionary algorithm with
this neural network model, the algorithm converges to
the false minimum, which is an expected result.

To show that the problem we identified above is
a general one, simulations are also conducted on the

LThe situation that training data is only available from
earlier optimisation attemtpts is not uncommon in aerody-
namic structure optimisation

2-D Rosenbrock function. Similarly, we generate 150
samples from one run of evolution on the 2-D Rosen-
brock function, which is much smoother compared to
the Ackley function. The surface learned by the neural

fitness

e
ﬂ” ”m IIIIII' '

- T
-2 - 0 20 4 6 8 100 120 140 160 1% 200
P epochs.

Figure 2: (a) The neural network approximation of the
2-D Rosenbrock function with training data from one
evolution run. (b) The incorrect convergence of the
ES on the 12-D Ackley function with random samples.

network is shown in Fig. 2(a). Comparing it with the
true 2-D Rosenbrock function, it is seen that the left
ramp of the 2D-Rosenbrock function becomes almost
flat due to the poor distribution of the training data.
No doubt, evolution with this neural network model is
vulnerable to serious errors, because the global mini-
mum of this approximate model lies in the area where
the true value is very large. Therefore, an evolution-
ary optimization based on such an approximate model
will converge to the false minimum.

2.3 Training the Neural Network with
Random Samples

To illustrate that the false minima in the neural net-
work model are caused by the poor distribution of
the training data, we add some random samples to
the data set. For the 2-D Ackley function, 150 data
are generated randomly in addition to 450 data col-
lected from one run of evolution. An MLP with 20
hidden nodes is trained and the resulting neural net-
work mapping is provided in Fig. 1(b). It is noticed
that the neural network has now correctly learned the
main features of the Ackley function, albeit the RMS
approximation error is larger. No false minima are
introduced. This is confirmed by running the evolu-
tion process with the neural network model for fitness
evaluations, in which a near-optimum is found.

Similar results are obtained for the 2-D Rosen-
brock function. Therefore, we can conclude that false
minima can be eliminated with some random samples
for low-dimensional systems. Unfortunately, this is not



an effective approach for high-dimensional systems. To
illustrate this, simulations are conducted on the 12-D
Ackley function. In the simulation, 450 random sam-
ples together with 1440 samples collected from one run
of evolution are used to train the neural network. De-
spite that the neural network achieves a good approx-
imation on the training data, the evolution process
carried out with this neural network model still con-
verges incorrectly. In Fig. 2(b), the solid and dashed
lines in the lower part of the figure denote the mean
and best fitness values during evolution, where unfor-
tunately, the true mean and best fitness values that
are denoted by the solid and dotted line in the upper
part of the figure are much larger. That is to say, ran-
dom samples cannot deal with the problem properly
if the input dimension of the system is high. Similar
results are observed on the 12-D Rosenbrock function.

3 Improvement of Convergence with
Controlled Evolution

In the last section, we have seen that additional train-
ing samples are not sufficient to solve the problem
of “incorrect” convergence of evolutionary algorithms
with neural network models. Therefore, we introduce
the concept of controlled evolution. Two methods are
proposed:

Controlled individuals In this approach, part of
the individuals () in the population (A in to-
tal) are chosen and evaluated with the real fitness
function. If the controlled individuals are chosen
randomly, we call it a random strategy. If we
choose the best 1 individuals as the controlled in-
dividuals, we call it a best strategy.

Controlled generations In this approach, the
whole population of 7 generations will be eval-
uated with the real fitness function in every A
generations, where n < A.

Furthermore, when controlled individuals or controlled
generations are introduced, new training data are
available. Therefore, on-line learning of the neural net-
work will be applied to improve the approximation of
the network model in the region of optimisation and
in turn to improve the convergence of the evolutionary
algorithm.

3.1 Controlled individuals

We first consider the individual based methods for the
12-D Ackley function. To determine the number of
individuals () that need to be evaluated using the

aaaaaaaaaaaaaaaaaa

nnnnnnnnnnnnnnnnnnnn

Figure 3: (a) Convergence of ES with controlled indi-
viduals: (a) The random strategy; (b) the best strat-
egy. Solid line: reported fitness; dashed line: true
fitness.

original fitness function to guarantee a correct conver-
gence, an 1 of 1 to 11 is tested for both the random
strategy and the best strategy for a (u, ) = (3,12)-
ES. The best fitness found by the ES with the random
strategy reported by the neural model (solid line) and
by the real fitness function (dashed line) for different
n are plotted in Fig. 3(a). All the results are aver-
aged over 10 runs. It can be seen that for the random
strategy, convergence of the evolutionary algorithm is
not achieved until 7 > 9 . The result using the best
strategy is better (see Fig. 3 (b)). When 5 out of 12 in-
dividuals are evaluated with the real fitness function,
the reported best fitness is close to the true fitness.
When 7 is larger than 7, a near-optimum is found. In
Fig. 3, the z coordinate denotes the number of the
controlled individuals in a population.

3.2 Controlled generations

The results of the generation based method are shown
in Fig. 4(a), which are also averaged over 10 differ-
ent runs. In the figure, the x-coordinate denotes the
number of generations in which all the individuals are
evaluated with the original fitness function in every 12
generations. For example, if 1 equals 8, then in every
12 generations, the true fitness function will be used
in 8 of the 12 generations. In this way, we are able to
compare the results obtained in the generation based
method with the results in the individual based strate-
gies, because in both cases, the same 7 entails the same
computational overhead. Notice, that in which 7 gen-
erations out of 12 generation the original function is
used is determined randomly. We see that with the
increase of 7, a near-optimal or optimal solution will
be found, however, the average fitness reported by the
neural model never converges to the true fitness.



Number of Generations:

Figure 4: Convergence of ES: (a) with controlled gen-
erations; (b) with best strategy and on-line learning.
Solid line: reported fitness; dashed line: true fitness.

(a) (b)

Figure 5: Convergence of ES for the Rosenbrock func-
tion: (a) with best strategy; (b) with best strategy and
on-line learning. Solid line: reported fitness; dashed
line: true fitness.

3.3 Controlled Evolution and On-line
Learning of Neural Network Models

When some of the individuals are evaluated using the
real fitness function, new data are available and on-
line learning can be implemented. In the following,
we investigate in which way the algorithm can bene-
fit, if these newly available data are used to train the
neural network on-line. The result for the “best strat-
egy with on-line learning” is given in Fig. 4(b). The
evolutionary algorithm reports a correct fitness when
only 2 individuals are evaluated with the real fitness
function. When about 50% of the whole population
are evaluated with the real fitness function, a good
near-optimal or optimal solution is found.

Similar results have been obtained for the 12-D
Rosenbrock function. Fig. 5(a) shows the convergence
of the evolutionary algorithm for different 1 values,
where the best strategy is applied. It is seen that
when 7 > 6, the algorithm converges to the correct fit-
ness value and a near-optimal solution is found. When
on-line learning is introduced, the convergence prop-
erty improves considerably and the resulting solution
is near-optimal when n > 5 (see Fig. 5(b)). In both

Figure 6: Percentage of correct convergence. Solid
line: random strategy; dashed line: best strategy; dot-
ted line: best + online learning.

cases, the results are based on an average of ten runs.

In the following, we briefly compare the conver-
gence property on the 12-D Ackley function for the
different individual based strategies. In Fig. 6, the
solid line denotes the percentage of correct conver-
gence when the “random strategy” is adopted, while
the dashed line and the dotted line represent the per-
centage of correct convergence when the “best strat-
egy” is used and when on-line learning is applied. It is
shown that the best strategy works much better than
the random strategy and on-line learning can further
improve the convergence property.

3.4 What Can One Benefit from an
Approximate Model in Evolution

We have seen that when the neural network model has
false minima (in particular if the global minimum is
false), it is imperative to use it in conjunction with the
original fitness function in order to guarantee the cor-
rect convergence of the evolutionary algorithm. There-
fore, the question arises whether we can at all benefit
from such a “potentially” erroneous model, or whether
it is better to restrict the population size to the num-
ber of individuals which we would have to evaluate in
any case with the original function in the combined ap-
proach; thus, to use a smaller population and to give
up the approximate model all together. Suppose for a
(1, A)-ES, at least n individuals have to be evaluated
using the original function to guarantee the correct
convergence of the algorithm, where y < n < X. The
question is whether we are better off with a (u,n)-ES
and all the individuals are evaluated with the original
fitness function. Simulations are first run on the Ack-
ley function. Fig. 7(a) shows the best result when 7
individuals are evaluated using the original function,
where the solid line denotes the fitness from a com-
bination of original function and the neural network



(a) o (b)

Figure 7: Comparison of the best fitness when using
(solid line) and not using the approximate models: (a)
the Ackley function; (b) the Rosenbrock function.

model with false minima, while the dashed line shows
the best fitness using the original function only. The
results shown in the figure are the best solution using
different (u, A) combinations. Suppose an approxi-
mate model is used and 3 individuals need to be con-
trolled. Then, we have the following possible combi-
nations when only the original function is used: (1, 2),
(1, 3) and (2, 3). Notice that when only the original
function is used for evaluation, we have p < A < 7.
In the case when both the original function and the
neural network model are used, we have y < n and
A < 21, because A > 271 does not make much sense ac-
cording to our aforementioned simulation results. For
the Rosenbrock case, we made a similar comparison,
which is given in Fig. 7(b).

From these results, we see that we neither benefit
nor lose much from using an approximate model when
the model has false minima. However, we do benefit
in the following two cases.

e If there are no false minima in the approximate
model, the model can be used for evolution in
presence of certain range of errors. In this case,
when on-line learning is introduced in the fi-
nal stage of the evolution, better solutions could
be obtained and much computation time can be
saved.

e When on-line learning is introduced, a better solu-
tion can also be achieved even if false minima are
present, provided that the algorithm converges
correctly.

However, to introduce large number of evaluations
using the original function is undesirable. Therefore,
we should additionally strive to achieve a better ap-
proximation quality of the network while minimizing
the number of additional data needed.

(a) (b)

Figure 8: Network approximation of sin(z): (a) Train-
ing samples only; (b) with additional artificial samples.

(a) (b)

Figure 9: Network approximation of sin(z): (a) with-
out regularization; (b) with regularization.

4 Elimination of False Minima in
Neural Network Training with
Regularization Techniques

Let us first consider a simple situation. Suppose a
neural network is used to approximate the function
y = sin(z). The training data are uniformly collected
in the range of z € [0,2n7]. The approximation result
is presented in Fig. 8(a). We notice that a false mini-
mum has been introduced in the range of z < 0, which
can be attributed to the distribution of the training
data near the left bound of [0, 27]. At first sight, Fig.
8(b), the use of artificial samples can remove the false
minima. However, a closer inspection reveals, that it
is merely shifted to lower values of z, which can be
seen more clearly in Fig. 9(a), which shows the func-
tion for lower x values. To further investigate this
phenomenon, let us have a look at the mathematics of
an MLP network with one hidden layer:

H n
fan =Y wib(O ] vjizy) (6)
i=1 7j=1

where w; is the weight between i-th node of the hidden
layer and the output layer (we call it output weight
for short), H is the number of hidden nodes, vj; is the
weight connecting the jth input and the i-th hidden
node, n is the number of inputs, and 6() is the sigmoid



function: .

= . 7
l1+e 2 (7)
‘When all the hidden nodes of the neural network are in

saturation, the output of the network can be estimated
as follows:

0(z)

H
fRén =Y widi, (8)
=1

L,
si={ 5 ©)
This clearly shows that the amplitude of the network’s

output in saturation only depends on the amplitude of
the output weight. Furthermore, we have

NN 22— Z lwi], Vw; <O. (10)

where
VjiZ; — +00
VjiZ; — —Q

From the above equation, it is seen that the negative
output weights should be as small as possible in order
to avoid a false minimum. A straightforward way is to
add a penalty term in the cost function to penalize a
large negative output weight:

J=E+X |wil, w; <0, (11)

where FE is the conventional error function and X is the
regularization coefficient. We call it a biased weight
decay, which is a special case of the weight decay
method introduced in (Ishikawa 1996). The biased
weight decay regularization is applied to the case dis-
cussed in Fig. 9(a). In Fig. 9(b) it can be seen that
the false minimum is removed.

Since the idea here is to prevent the neural net-
work from generating false minima when it is satu-
rated, another straightforward way is to regularize the
saturated output of the neural network directly. Sup-
pose the saturated neural network output is fRy, then
we can regularize the network in the following manner:

J=E+)‘(ymin_f]%oN)27 (12)

where Y, is the prescribed value for the network out-
put when it is saturated. Before this method can be
applied, it is necessary to estimate fRy. When the
sigmoid function in equation (7) is used, fry can be
estimated by randomly assign '0’ or ’1’ to § in equation
(8). To get a better estimation, the final value of fRoy
can be obtained by averaging N random estimation:

N
Fitn = 3 2 I8 0) (13)
=1

where fy(7) is the i-th random estimation of fRoy-

Figure 10: (a) Distribution of the training samples.
(b) Trained neural network with training samples only.

N
T

<5
2

ALY

Figure 11: (a) Trained neural network with (a) biased
weight decay and (b) regularization.

4.1 Simulation Examples

To demonstrate the feasibility of the proposed meth-
ods, first simulation studies have been carried out on
the 2-D Ackley function. To simulate the situation
in which the training data are poorly distributed, we
use training data collected from a small area of the
parameter space, as shown in Fig. 10(a). When only
the training data are used, the input-output mapping
of the neural network is given in Fig. 10(b). It is no-
ticed that the learned surface is very irregular where
no training data are presented and a false minimum
occurs. We apply the two methods from the last sec-
tion to improve the neural network approximation: 1)
artificial samples plus the biased weight decay 2) arti-
ficial samples plus regularization of the saturated neu-
ral network output. The training results are provided
in Fig. 11(a) and (b), respectively. We see that both
methods remove the false minima.

5 Conclusions

The convergence of the evolution strategy with approx-
imate fitness functions is empirically investigated and
the occurence of false minima, is identified as the main
problem. Three methods are introduced to cope with
it:



1. The introduction of additional training data for
neural network learning.

2. The combination of network model and original
evaluation function in the controlled evolution ap-
proach combined with on-line learning.

3. The introduction of approriate regularization
techniques to avoid false minima.

Method (1) is the most straightforward approach, how-
ever in higher dimensions it is not feasible. Method (2)
with on-line learning (and as such combined with 1)
achieved the best results and is currently applied to
evolutionary optimisation of turbine blades in a tran-
sonic compressor cascade (Olhofer et al. 2000). The
main benefit of method (3) is that it does not rely on
additional data and it should therefore be investigated
further.

If the controlled individual method is used, the best
strategy should be adopted and on-line learning is rec-
ommended. Besides, the number of the controlled in-
dividuals should be larger than 50% of the popula-
tion size. If the controlled generation method is em-
ployed, there should be more than 50% of the gener-
ations in which all the individuals are controlled. It
is also shown that with the best strategy and on-line
learning, one is able to benefit from using an approx-
imate fitness function even if there are false minima
present in the model.

Acknowledgements The authors would like to thank
T. Arima and E. Korner for their support.

References

Beyer, H.-G. (1998). Evolutionary algorithms in noisy
environments: Theoretical issues and guidelines for prac-
tice. Evolutionary Computation. Submitted.

Bishop, C. (1995). Neural Networks for Pattern Recogni-
tion. Oxford Press.

Coello, C. (1999). An updated survey of evolutionary
multiobjective optimization techniques: State of art and
future trends. In Proceedings of 1999 Congress on Evolu-
tionary Computation, Washington D. C.

El-Beltagy, M., P. Nair, and A. Keane (1999). Metamod-
eling techniques for evolutionary optimization of compu-
tationally expensive problems: promises and limitations.
In Proceedings of Genetic and Evolutionary Conference,
Orlando, Florida.

Fitzpatrick, J. and J. Grefenstette (1988). GA in noisy
environments. Machine Learning 3.

Goldberg, D. (1989). Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley.

Goldberg, D., K. Deb, and J. Clark (1992). Genetic algo-
rithms, noise, and the sizing of the populations. Complex
Systems 6.

Hajela, P. and J. Lee (1998). Genetic algorithms in mul-
tidisciplinary rotor blade design. In Proceedings of 36th
Structures, Structural Dynamics, and Material Confer-
ence, New Orleans.

Hammel, U. and T. Béick (1994). Evolution strategies
on noisy functions: How to improve convergence proper-
ties. In Proceedings of 3rd Conference on Parallel Problem
Solving from Nature, Jerusalem.

Hansen, N. and A. Ostermeier (1996). Adapting arbi-
trary normal mutation distributions in evolution strate-
gies: The covariance matrix adaption. In Proc. 1996 IEEE
Int. Conf. on Ewvolutionary Computation, pp. 312-317.
IEEE Press.

Ishikawa, M. (1996). Structural learning with forgetting.
Neural Networks 9(3), 509-521.

Kreutz, M., B. Sendhoff, and C. Igel (1999, March).
EALib: A C++ class library for evolutinary algorithms
(1.4 ed.). Institut fiir Neuroinformatik, Ruhr-Universitét
Bochum.

Lee, J. and P. Hajela (1996). Parallel genetic algorithm
implementation in multidisciplinary rotor blade design.
Journal of Aircraft 33.

Myers, R. and D. Montgomery (1985). Response Surface
Methodology. John Wiley & Sons.

Obayashi, S., Y. Yamaguchi, and T. Nakamura (1997).
Multiobjective genetic algorithm for multidisciplinary de-
sign of transonic wing planform. Journal of Aircraft 34.

Olhofer, M., T. Arima, T. Sonoda, and B. Sendhoff
(2000). Optimization of a stator blade used in a transonic
compressor cascade with evolution strategies. In Adaptive
Computation in Design and Manufacture. Submitted.

Ostermeier, A. (1994). A derandomized approach to self
adaptation of evolution strategies. Ewolutionary Compu-
tation 2(4), 369-380.

Pierret, S. (1999). Three-dimensional blade design by
means of an artificial neural network and Navier-Stokes
solver. In Lecture Series at von Karman Institute for Fluid
Dynamics, Belgium.

Ratle, A. (1998). Accelerating the convergence of evolu-
tionary algorithms by fitness landscape approximation. In
Proceedings of 5th Conference on Parallel Problem Solv-
ing from Nature, Amsterdam.

Sacks, J., W. Welch, T. Mitchell, and H. Wynn (1989).
Design and analysis of computer experiments. Statistical
Science 4(4).

Tong, S. and B. Gregory (1992). Turbine preliminary de-
sign using artificial intelligence and numerical optimiza-
tion techniques. Journal of Turbomachinary 114(1).

Trigg, M., G. Tubby, and A. Sheard (1997). Automatic
genetic optimization approach to 2D blade profile design
for steam turbine. In Proceedings of International Gas
Turbine and Aeroengine Congress, Orlando, Florida.



